
Uniform Derivation of Decision Procedures
by Superposition�

Alessandro Armando1, Silvio Ranise1,2, and Michaël Rusinowitch2

1 DIST–Università degli Studi di Genova, via all’Opera Pia 13, 16145, Genova, Italy
{armando,silvio}@dist.unige.it

Phone: +39.010.353-2216 and Fax: +39.010.353-2948
2 LORIA-INRIA-Lorraine, 615, rue du Jardin Botanique, BP 101,

54602 Villers les Nancy Cedex, France
{ranise,rusi}@loria.fr

Phone: (33) 03.83.59.30.20 and Fax: (33) 03.83.27.83.19

Abstract. We show how a well-known superposition-based inference
system for first-order equational logic can be used almost directly as a
decision procedure for various theories including lists, arrays, extensional
arrays and combinations of them. We also give a superposition-based
decision procedure for homomorphism.

Keywords: Automated Deduction, Equational Logic, Term Rewriting,
Superposition, Decision Procedures, Lists, Arrays with Extensionality,
Homomorphism

1 Introduction

In verification with proof assistants (such as PVS, COQ, HOL, and Nqthm),
decision procedures are typically used for eliminating trivial subgoals represented
for instance as sequents modulo a background theory. These theories axiomatize
standard data-types such as arrays, lists, bit-vectors and have proved to be
quite useful for, e.g., hardware verification. Elimination of trivial sequents often
reduces to the problem of proving the unsatisfiability of conjunctions
of literals modulo a background theory T , which is the problem we shall
consider here.
The rewriting approach permits us the uniform design of decision proce-

dures for eliminating these subgoals and also offers an efficient alternative to
congruence closure techniques. This approach was inspired by Greg Nelson’s
thesis [Nel81] where it is suggested to apply Knuth-Bendix completion to derive
decision procedures. Here, instead of the Knuth-Bendix completion procedure,
we apply a standard complete superposition-based inference system for clausal
equational logic (given for instance in [NR01]). This allows us not only to handle
pure equality but also several interesting axiomatic theories that were not han-
dled previously that way such as lists, arrays, and extensional arrays. The proof
� The authors would like to thank C. Ringeissen and L. Vigneron for their comments
on a draft of this paper and the anonymous referees for helpful criticisms.

L. Fribourg (Ed.): CSL 2001, LNCS 2142, pp. 513–527, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



514 Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch

that the decision procedures are correct is straightforward w.r.t. other correct-
ness proofs given in the literature (compare for instance our decision procedure
for arrays with extensionality of Section 6 with [SDBL01]). In our approach,
combining theories is also immediate. As an illustration, we show how to decide
a combination of lists and arrays.
A second contribution of the paper is in the same spirit of applying Knuth-

Bendix completion to derive a decision procedure for the theory of homomor-
phism. This is the first decision procedure, to our knowledge, for this theory.

Related work. For lack of space we only discuss results that are closely re-
lated to ours. In previous work, the rewriting approach was mainly used for
pure equality theories. For instance, [BT00] focus on abstracting the control of
congruence closure algorithms, in order to give a uniform presentation of sev-
eral known algorithms. A recent extension to deal with equality modulo AC is
presented in [BRTV00].
In [NO80], Nelson and Oppen describe a decision procedure for the

“quantifier-free theory of the LISP list structure”. The procedure is obtained
as an extension of a congruence closure algorithm with a mechanism which aug-
ments the graph by selected instances of the axioms of the theory. The proof
of correctness is model theoretic and seems difficult to generalize. A discussion
of the difficulties of deriving a general method to obtain decision procedures by
extending congruence closure algorithms as well as a decision procedure for the
theory of arrays (without extensionality) can be found in [Nel81]. This discussion
has motivated our work.
In [SDBL01], the first decision procedure for an extensional theory of ar-

rays is presented. The key ingredient is a modified congruence closure algorithm
which is capable of handling (so called) partial equations. The correctness proof
is rather complex and it takes the main part of the paper; it is model-theoretic
and rather ad-hoc. In Section 6, we give a decision procedure for the same the-
ory considered in [SDBL01]. Our procedure is simpler to understand since it
amounts to applying (almost directly) standard equality reasoning in contrast
to handling partial equalities and our proof of correctness relies on basic prop-
erties of skolemization. As a consequence, the decision procedure (as well as its
correctness proof) for the theory of arrays with extensionality can be adapted
to similar presentations for sets and multisets.
Finally, we notice that we can easily derive decision procedures for com-

binations of theories in a manner closely resembling the combination schema
described in [NO78]. This is exemplified for a combination of the theory of lists
and arrays in Section 7. Furthermore, the decision procedures derived in our
framework can be extended so to provide the interface functionalities needed for
them to be plugged into the Nelson and Oppen combination schema [NO78].

2 Preliminaries

We assume the usual (first-order) syntactic notions of signature, (ground) term,
position, substitution, replacement, rewrite relation →, as defined, e.g., in [DJ90].



Uniform Derivation of Decision Procedures by Superposition 515

If Σ is a signature and X is a set of variables, then T (Σ,X) denotes the set
of terms built out of the symbols in Σ and the variables in X. T (Σ) abbreviates
T (Σ, ∅). 0-ary function symbols are called individual constants. Let l and r be
elements of T (Σ,X), then l = r is a T (Σ,X)-equality and ¬(l = r) (also written
as l �= r) is a T (Σ,X)-disequality. A T (Σ,X)-literal is either a T (Σ,X)-equality
or a T (Σ,X)-disequality, i.e. an expression of the form s �	 t where �	 is either =
or �=. A T (Σ,X)-clause is a disjunction of literals, i.e. an expression of the form
¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bm (abbreviated with A1, . . . , An ⇒ B1, . . . , Bm)
where A1, . . . , An, B1, . . . , Bm are T (Σ,X)-equalities (n ≥ 0 and m ≥ 0). We
simply use the terms equality, disequality, literals, and clauses when T (Σ,X) is
clear from the context. A flat equality is an equality of the form f(t1, . . . , tn) = t0
or t0 = f(t1, . . . , tn) where f is an n-ary function symbol and ti is either a
variable or an individual constant for i = 0, 1, . . . , n with n ≥ 0. A distinction is
a disequality t1 �= t2, where ti is either a variable or an individual constant for
i = 1, 2. A flat literal is either a flat equality or a distinction. A flat clause is a
disjunction of flat literals.
We assume the usual (first-order) notions of interpretation, satisfiability, va-

lidity, logical consequence (in symbols, |=), and theory (see, e.g., [End72]). Let
S be a set of ground literals, then we say that S is T -satisfiable (T -unsatisfiable)
iff T ∪ S is satisfiable (unsatisfiable, resp.). All the theories we shall consider in
this paper contain the quantifier-free theory of equality E .
Example 1. Assume that the axiom of T is h(f(x, y)) = f(h(x), h(y)) (where
x and y are implicitly universally quantified variables). We can show the T -
unsatisfiability of {h(c) = c′, h(c′) = c, f(c, c′) = h(h(a)), f(c′, c) = a,
h(h(h(a))) �= a}.
The satisfiability problem for a theory T amounts to establishing whether any
given finite set of ground literals is T -satisfiable or not. A decision procedure for
T is any algorithm that solves the satisfiability problem for T .

3 Our Approach

In this paper, we propose a uniform approach based on superposition inference
rules to build decision procedures for a variety of decidable theories. For all
theories T , the first step is to flatten all the input literals. The soundness
of this preprocessing step is ensured by the following fact.

Lemma 1. Let T be a T (Σ,X)-theory and S be a finite set of T (Σ)-literals.
Then there exists a finite set of flat T (Σ′)-literals S′ (where Σ′ is obtained from
Σ by adding a finite number of individual constants) such that S′ is T -satisfiable
iff S is.

Notice that flattening augments the size of the input set S of literals to O(n),
where n is the number of subterms in S.

Example 2. The following set of flat literals can be derived from the previous
example: {h(c) = c′, h(c′) = c, f(c, c′) = c2, f(c′, c) = a, h(a) = c1, h(c1) =
c2, h(c2) = c3, c3 �= a}.



516 Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch

Table 1. Inference rules of SP
Name Rule Applicability Conditions

Superposition

Γ ⇒ ∆, l[u′] = r Π ⇒ Σ, u = v

σ(Γ, Π ⇒ ∆, Σ, l[v] = r)
σ(u) �� σ(v), σ(u = v) �� σ(Π ∪ Σ),
σ(l[u′]) �� σ(r), σ(l[u′] = r) �� σ(Γ ∪ ∆)

Paramodulation

Γ, l[u′] = r ⇒ ∆ Π ⇒ Σ, u = v

σ(l[v] = r, Γ, Π ⇒ ∆, Σ)
σ(u) �� σ(v), σ(u = v) �� σ(Π ∪ Σ),
σ(l[u′]) �� σ(r), σ(l[u′] = r) �≺ σ(Γ ∪ ∆)

Reflection
Γ, u′ = u ⇒ ∆

σ(Γ ⇒ ∆) σ(u′ = u) �≺ σ(Γ ∪ ∆)

Factoring
Γ ⇒ ∆, u = t, u′ = t′

σ(Γ, t = t′ ⇒ ∆, u = t′) σ(u) �� σ(t),σ(u) �� σ(Γ ), σ(u = t) �≺
σ({u′ = t′} ∪ ∆)

Table 2. Simplification rules of SP

Name Rule Applicability Conditions

Subsumption

S ∪ {C, C′}
S ∪ {C} for some substitution θ(C) ⊆ C′, and there is no

substitution ρ such that ρ(C′) = C

Simplification

S ∪ {C[l′], l = r}
S ∪ {C[θ(r)], l = r} l′ = θ(l), θ(l) 	 θ(r), and C[θ(l)] 	 (θ(l) = θ(r))

Deletion
S ∪ {Γ ⇒ ∆, t = t}

S

We will make use of a superposition calculus, SP, comprising the inference rules
of Table 1 and the simplification rules of Table 2. SP is taken from [NR01]. It
extends the system from [Rus91] by the equality factoring rule [BG94], so that
more ordering restrictions are possible (in the non-Horn case). The relation �
is a reduction ordering [DJ90], which is total on ground terms. � is extended to
literals in the following way: (a �	 b) � (c �	 d) if {a, b}��{c, d}, where �� is
the multiset extension of �. Multisets of literals are compared using the multiset
extension of � on literals.
An inference system including simplification rules is refutationally complete

if any fair application of the rules to an unsatisfiable set of clauses will derive
the empty clause. Fairness means that if some inference is possible it will be per-
formed at some step unless one of the parent clauses gets simplified, subsumed,
or deleted. The calculus SP is known to be refutationally complete for general
first-order equational logic [BG94,NR01]. (Note that for Horn clauses Equality
Factoring is useless [KR91].) In Table 1 the substitution σ is the most general
unifier of u and u′, and u′ is not a variable in Superposition and Paramodulation.
We shall write Factoring instead of Equality Factoring for conciseness. In this
paper, a saturation of a set of clauses by SP is the final set of clauses generated
by a fair derivation from S using rules in SP with higher priority given to the
simplification rules. If the saturation terminates for the union of T and any set of
ground flat literals then it is a decision procedure for T : if the final set of clauses
contains the empty clause then the input set of literals is unsatisfiable; it is satis-
fiable, otherwise. This is a direct consequence of the refutational completeness of



Uniform Derivation of Decision Procedures by Superposition 517

SP. From now on, we shall call SP any fair application of the inference system
with priority given to the simplification rules.

3.1 A Decision Procedure
for the Quantifier-Free Theory of Equality

The following result says that SP can be used as a decision procedure for the
quantifier-free theory of equality E .1 In fact, the decision procedure we obtain is
just a variant of the Knuth-Bendix completion procedure (similar to the rational
reconstruction of Nelson and Oppen’s congruence closure algorithm of [BT00]).
We shall assume now and in the remainder of this paper that the ordering � is
s.t. t � c for each constant c and for each ground term t that contains a
symbol of arity greater than 0. Note that it is easy to satisfy this requirement
with a suitable precedence ordering.

Lemma 2. Let S be a finite set of flat T (Σ)-literals. All the saturations of S
by SP are finite.

Proof. Note that Simplification is applicable whenever Superposition is. Hence
Superposition is useless since Simplification has higher priority. Simplification
and Paramodulation generate ground flat literals. Reflection generates the empty
clause (which subsumes all other clauses). Since the number of possible ground
flat literals is finite, it readily follows that all saturations are finite. ��

Theorem 1. SP is a decision procedure for E.
Let n be the size of the input set of flattened literals. Each Simplification or
Paramodulation replaces a subterm by a �-smaller constant (i.e. a term of type
f(c1, . . . , cn) or c′ by some c). Hence the maximal number of inference steps is
equal to the number of subterms times the number of constants in Σ, i.e. O(n2).
Since finding a Simplification or Paramodulation inference is polynomial, the
whole saturation is polynomial.

4 A Decision Procedure for the Theory of Lists

Let ΣL be a signature containing the function symbols car (unary), cdr (unary),
and cons (binary), and let L be the theory obtained by adding the following two
axioms, denoted with Ax(L), to E :

car(cons(x, y)) = x (1)
cdr(cons(x, y)) = y. (2)

For simplicity, L is only a sub-theory of the “LISP list structure” considered in
[NO80]. However, a decision procedure for such a theory can be derived by pre-
processing the set of ground literals using the technique of [NO80] to eliminate
negative occurrences of the predicate recognizing atoms and by applying SP.
1 We do not claim this result to be new; it is stated here only to give the flavor of our
approach in the simple case of the pure equational theory.



518 Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch

Lemma 3. Let S be a finite set of flat T (ΣL)-literals. The clauses occurring in
the saturations of S ∪ Ax(L) by SP can only be the empty clause, ground flat
literals, or the equalities in Ax(L).
Proof. The proof is by induction on the length of the derivations. No inference
between axioms inAx(L) is possible. Thus, by inspection of the rules in SP, there
are four cases to consider: (a) a Simplification between a ground flat equality
and a ground flat literal,2 (b) application of Reflection to a ground distinction,
(c) a Superposition between an equality in Ax(L) and a ground flat equality of
the form cons(c1, c2) = c3 (where ci is an individual constant for i = 1, 2, 3), or
(d) a Paramodulation from a ground flat equality into a ground distinction. It is
straightforward to verify that in case (a) only ground flat literals are generated,
in case (b) the empty clause is generated, in case (c) ground flat equalities are
generated, and finally in case (d) ground distinctions are generated. ��

Lemma 4. Let S be a finite set of flat T (ΣL)-literals. All the saturations of
S ∪Ax(L) by SP are finite.

Proof. By Lemma 3, we know that the saturations of S ∪ Ax(L) by SP can
only contain the empty clause or ground flat literals. It is trivial to see that only
a finite number of flat literals can be built out of a finite set of symbols and
variables. ��

Theorem 2. SP is a decision procedure for L.
Let n be the size of the input set of flattened literals. At most O(n2) flat literals
can be created by Superposition during saturation. The size of the current set of
literals in a derivation is always bounded by a constant k which is O(n2). Other
inferences take polynomial time in k according to Section 3.1. Hence overall the
decision procedure is polynomial.

5 A Decision Procedure for the Theory of Arrays

Let ΣA be a signature containing the function symbols select (binary) and store
(ternary), and let A be the theory obtained by adding the following two axioms,
denoted by Ax(A), to E :

select(store(a, i, e), i) = e (3)
i �= j ⇒ select(store(a, i, e), j) = select(a, j) (4)

(where a, i, j, and e are variables and (4) denotes i = j∨select(store(a, i, e), j) =
select(a, j)). We shall assume that the ordering � is s.t. any term that con-
tains select or store is �-bigger than all ground terms not containing
them; moreover, all non constant symbols are greater than the con-
stant ones. Using an LPO ordering [DJ90], this can easily be ensured by a
suitable precedence relation.
2 Notice that Superposition can never apply to ground flat literals since Simplification
has higher priority.



Uniform Derivation of Decision Procedures by Superposition 519

Lemma 5. Let S be a finite set of flat T (ΣA)-literals. The clauses occurring in
the saturations of S ∪Ax(A) by SP can only be:

i) the empty clause; ii) the axioms in Ax(A); iii) ground flat literals;
iv) clauses of the form t �	 t′ ∨ c1 = c′

1 ∨ · · · ∨ cn = c′
n where c1, c

′
1, . . . , cn, c

′
n

(n ≥ 0) are individual constants and t �	 t′ is either a distinction between
two individual constants or an equality between individual constants or terms
of the form select(ci, i) (for some individual constants c and ci);

v) clauses of the form select(c, x) = select(c′, x)∨ c1 = k1 ∨ · · · ∨ cn = kn, where
ki (for i = 1, ..., n) is either the variable x or is one among the individual
constants c, c′, c1, c′

1, . . . , cn, c
′
n (n ≥ 0).

Proof. The proof is by induction on the length of the derivations. The base case
is simple and therefore omitted. By the induction hypothesis there are five types
of clauses produced after n inference steps: i)–v). For inferences with Reflexion
or Factoring on one clause the result is obvious. Deletion and Subsumption
do not create new clauses. For the sake of brevity, let replacement be either a
Superposition or Paramodulation step. Let us consider inference steps involving
two clauses. There are several cases to consider according to the categories the
clauses belong to:

ii)-ii): A Superposition can be applied to the axioms in Ax(A) but it gen-
erates the trivial clause i = i ∨ select(a, i) = e which is immediately
eliminated by Deletion. No new clause can be produced this way.

ii)-iii): A Superposition from a flat equality into axiom (3) produces a ground
flat equality, i.e. a clause of type iii), whereas a Superposition into
axiom (4) produces a clause of type v).

iii)-iii): The only possible inference is Simplification or Paramodulation be-
tween a ground flat equality and a ground flat literal. It produces
only ground flat literals, i.e. a clause of type iii).

iii)-iv): A replacement produces a clause of type iv).
iii)-v): A replacement produces a clause of type iv) or v).
iv)-iv): A replacement produces a clause of type iv).
iv)-v): A replacement produces a clause of type iv).
v)-v): A replacement produces a clause of type iv) or v).

There are no possible inference between axioms and clauses of type iv) or v). ��

Lemma 6. Let S be a finite set of flat T (ΣA)-literals. All the saturations of
S ∪Ax(A) by SP are finite.

The proof of this Lemma is analogous to that of Lemma 4 and therefore it is
omitted.

Theorem 3. SP is a decision procedure for A.

Let n be the size of the input set of flattened literals. At most O(2nk

) clauses
can be generated by saturation for some k (in fact k = 2). Hence the decision
procedure takes time O(2nk

).
Finally, it is worth noticing that the above decision procedure is similar to

the algorithm described in [Nel81].



520 Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch

6 A Decision Procedure for the Theory
of Arrays with Extensionality

Let As be the many-sorted version of the theory A of Section 5, i.e. the many-
sorted theory with sorts elem, index, and array, with function symbols store
and select of type array, index,elem −→ array and array, index −→
elem respectively, and with the sorted version of (3) and (4) as axioms.
(Notice that the use of sorts allows us to avoid problematic terms such as
store(a, store(a, i, e), select(a, store(a, i, e))).) Let As

e be the many-sorted theory
of arrays with extensionality obtained from As by extending the set of axioms
with

∀i.(select(a, i) = select(b, i))⇒ a = b (5)

where a and b are variables of sort array and i is a variable of sort index
(by abuse of notation, (5) denotes its clausal form). ΣAe

s
denotes a signature

containing the function symbols select, store, and a finite set of function symbols
s.t. if f is a function symbol of type s0, . . . , sn−1 −→ sn distinct from
select and store, then si is either index or elem, for all i = 0, 1, ..., n and
n ≥ 1. Furthermore, we assume that ΣAe

s
admits at least one ground term for

each sort, i.e. it is a sensible signature. Finally, let Ax(As) and Ax(As
e) be the

set of axioms of As and of As
e, respectively.

Lemma 7. Let S be a set of T (ΣAe
s
)-literals and let S′ be obtained from S by

replacing all the inequalities of the form t �= t′ with ∃i.select(t, i) �= select(t′, i),
where t and t′ are terms of sort array. Then S is As

e-satisfiable iff S′ is As-
satisfiable.

Proof. We must show that S ∪ As
e is satisfiable iff S′ ∪ As is or, equivalently,

that S ∪ Ax(As
e) is satisfiable iff S′ ∪ Ax(As) is. The ‘only if’ case is easy.

For the ‘if’ case, let I be a (many-sorted) model of S′ ∪ Ax(As). We define
the binary relation ∼ over arrayI to hold whenever selectI(a, i) = selectI(b, i)
for all i ∈ indexI , and we define ∼ over the indexI and elemI to be the
identity relation. We now show that ∼ is a ΣAs

e
-congruence. It is clearly an

equivalence. To prove that ∼ is a congruence it remains to show that if a ∼ b,
then storeI(a, i, e) ∼ storeI(b, i, e) for all i ∈ indexI and e ∈ elemI .3 Let us
assume that a ∼ b but storeI(a, i, e) �∼ storeI(b, i, e) for some i ∈ indexI and
e ∈ elemI , i.e. that selectI(storeI(a, i, e), k) �= selectI(storeI(b, i, e), k) for some
i, k ∈ indexI and e ∈ elemI . There are two cases to consider. If k = i then, since
I is a model of (3), we can conclude that e �= e, a contradiction. Otherwise (i.e. if
k �= i), since I is a model of (4), we can conclude that selectI(a, k) �= selectI(b, k).
This is in contradiction with the assumption a ∼ b. To conclude the proof, it is
sufficient to check that I ′ = I/ ∼ is a model of S′ ∪Ax(As

e). ��
3 The case for select trivially follows from the definition of ∼. For a function sym-
bol in ΣAs

e
distinct from select and store, congruence immediately follows from the

definition of ∼ and the properties of identity.



Uniform Derivation of Decision Procedures by Superposition 521

Lemma 8. Let S be a conjunction of ground literals, then S is As-satisfiable iff
it is A-satisfiable.

The following theorem is the key of our reduction mechanism.

Theorem 4. Let S be a set of T (ΣAs
e
)-literals and let S′ be obtained from

S by replacing all the inequalities of the form t �= t′ with select(t, sk(t, t′)) �=
select(t′, sk(t, t′)), where t and t′ are terms of sort array, and sk is a Skolem
function of type array,array −→ index. Then S is As

e-satisfiable iff S′ is
A-satisfiable.

Proof. The Theorem readily follows from Lemma 7, Lemma 8, and basic prop-
erties of skolemization. ��
A decision procedure for the theory of arrays with extensionality As

e

is as follows. Given as input a finite set S of T (ΣAs
e
)-literals, the procedure first

replaces every occurrence of literals of the form t �= t′ with select(t, sk(t, t′)) �=
select(t′, sk(t, t′)), where t and t′ are terms of sort array, and sk is a Skolem
function of type array,array −→ index. Then, it feeds the resulting set of
literals to the decision procedure for A described in Section 5.
It is worth noticing that our decision procedure can be straightforwardly

generalized to multi-dimensional arrays if we view them as arrays of arrays.
The worst-case time of the decision procedure for As

e is that of the procedure
for A, i.e. O(2nk

) for a fixed natural number k, since the size of the set of input
literals obtained by the pre-processing step described above is O(n).

7 Combining Decision Procedures for Lists and Arrays

To emphasize the flexibility of our approach, we show how easy it is to combine
the decision procedures for the theories of lists and arrays. Let ΣU be a signature
containing the function symbols select (binary), store (ternary), car (unary), cdr
(unary), and cons (binary). Let Ax(U) be the set of axioms obtained as the union
of Ax(A), Ax(L), and E . Furthermore, we shall assume that the simplification
ordering � (total on ground terms) satisfies the requirements of Section 5.
Lemma 9. Let S be a finite set of ground flat T (ΣU )-literals. The clauses occur-
ring in the saturations of S ∪Ax(U) by SP can only be of the type i), iii), iv), v)
given in Lemma 5, of the types given in Lemma 3, or elements of Ax(U).
Proof. Every Superposition or Paramodulation between axioms in Ax(U) gen-
erate a clause that can be deleted. Hence the proof is as that of Lemma 3 and
Lemma 5. ��

Lemma 10. Let S be a finite set of ground flat T (ΣU )-literals. All the satura-
tions of S ∪Ax(U) by SP are finite.

The proof of this Lemma is analogous to that of Lemma 4.

Theorem 5. SP is a decision procedure for U .



522 Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch

8 A Decision Procedure
for the Theory of Homomorphism

In this Section, we present an adaptation of the Knuth-Bendix completion pro-
cedure [KB70] to work modulo the theory of homomorphism. The completion
process always terminates for ground equations and gives a decision procedure
for this theory.4

Let ΣH be a signature containing the unary function symbol h and let H be
the theory obtained by adding instances of the following axiom schema, denoted
with Ax(H), to E :

h(f(x1, . . . , xn)) = f(h(x1), . . . , h(xn)) (6)

where f is any n-ary function symbol (n > 0) in a subset Σ′ of ΣH \ {h}. We
want to decide the H-unsatisfiability of the set of ground literals ψ.
Example 3. {h(c) = c′, h(c′) = c, f(c, c′) = h(h(a)), h(h(h(a))) �= a, f(c′, c) = a}
is H-unsatisfiable.
By Lemma 1, we can assume that ψ is a set of flat literals. Our decision procedure
consists of two steps. First, we complete the set of ground equalities in ψ modulo
H in order to get a rewrite system R. Second, for each inequality s �= t in ψ, we
compute the normal form s ↓R of s and the normal form t ↓R of t (w.r.t. R).
Then, if there exists an inequality s′ �= t′ in ψ s.t. s′ ↓R is identical to t′ ↓R, ψ
is H-unsatisfiable; otherwise, ψ is H-satisfiable.

8.1 Orientation

We introduce an ordering over ground terms which allows us to orient equalities
as rewrite rules in such a way that a superposition between a ground equality
and an equality in Ax(H) can only generate a ground equality.
We first define a weight function on the symbols in ΣH, denoted with [e]

where e is in ΣH: [c] = 1, for each constant symbol c in ΣH; [h] = 0; and [f ] = 1,
for f in ΣH s.t. f is not a constant and f is not h. The weight of a ground term
t, denoted with [t], is the sum of the weight of the symbols (of ΣH) occurring
in it. Then, we consider a total precedence � on symbols s.t. h � f � c, for all
constant symbol c and all non constant symbol f distinct from h of ΣH. In the
following f0(t) stands for t and fn(t) abbreviates f(fn−1(t)) for n > 1, where f
is a unary function symbol and t is any term. The ordering on ground terms we
shall use is defined as follows (similarly to the Knuth-Bendix ordering [KB70]):
s � t iff

4 Note that the word problem for ground Associative-Commutative (AC) theories
is decidable [NR91] but for ground AC+Distributivity is undecidable [Mar92].
A direct modification of the proof of this last result would show that ground
AC+Homomorphism is undecidable too.



Uniform Derivation of Decision Procedures by Superposition 523

1. [s] > [t] or
2. [s] = [t], s is of the form f(s1, . . . , sm), t is of the form g(t1, . . . , tn), and one

of the following condition holds:
2.1. f � g
2.2. f = g, m = n and (s1, . . . , sm) �� lex(t1, . . . , tm) (where �� lex denotes

the lexicographic extension of �).

Lemma 11. The relation � is transitive, irreflexive, and monotonic (i.e. s � t
implies f(.., s, ...) � f(..., t, ...), where f is in ΣH). Furthermore, � is well-
founded and it satisfies:

– f(c1, ..., cn) � hi(cn+1) for all i ≥ 0, all f that are not constants and are
different from h,

– h(f(x1, ..., xn)) � f(h(x1), ..., h(xn)) for all ground terms xi (i = 1, ..., n),
and

– hi(c) � hj(c′) for all i > j and for all constants c, c′ in ΣH.

Proof. The lemma is proved in exactly the same way as for the Knuth-Bendix
ordering [KB70].

We denote by l→ r the rule obtained by orienting an equality l = r when l � r.
Given a rewrite system R, We shall sometimes write s ↓R t to express that t is
the normal form of s by R.

8.2 Computation of Critical Pairs

Now, we are in the position to orient the equalities in ψ by means of the ordering
� defined in Section 8.1 and to perform a completion on the resulting set of
rewrite rules using superposition rules. Unfortunately, with a naive approach,
the number of rules generated by completion would be infinite. For instance,
from h(c) = c, f(c, c′) = c, and Ax(H) we can generate f(c, hn(c′)) = c for
n ≥ 0. To cope with this problem, we will consider any rewrite rule r as a rule
scheme (denoted Gen(r,R) or Gen(r) and defined below) and we compute all
superpositions between instances of two rule schemes in one step by using a
special purpose inference rule (cf. Homomorphism rule below).
Some preliminary definitions and lemmas are mandatory. We define an f -

term as a term with f as root symbol and for which the only other non-constant
function symbol is h, where f can be any symbol in ΣH (in particular, f can
possibly be h). We define an f -rule as a rewrite rule with an f -term as left-
hand side and an h-term or a constant symbol as right-hand side. For instance
f(c, h(c′)) is an f -term and f(c, h2(c′)) = h3(c) or f(c, h2(c′)) = c is an f -rules.
Examples of h-rules are h2(c′) = c or h2(c′) = h(c).
In the following, let Rh be a convergent set of h-rules. We recall that Σ′ is

the subset of ΣH \ {h} such that if f of arity n is in Σ′, then h(f(x1, . . . , xn)) =
f(h(x1), . . . , h(xn)) is in Ax(H).



524 Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch

Lemma 12. The set Rh ∪ {h(f(x1, . . . , xn)) = f(h(x1), . . . , h(xn)) | f ∈ Σ′} is
convergent (we shall denote it by Rh ∪H).

Lemma 13. Given constants c, c′ and two h-terms hj(c), hi(c′), the set {n | n ∈
N, such that hn(hj(c)) →∗

Rh
hi(c′)} is linear i.e. the union of a finite set of

nonnegative integers and a finite set of arithmetic sequences. We denote it by
Pj,c,i,c′ .

Proof. We may consider unary terms as words (for instance hj(c) as hjc). Note
that the set of ancestors {w|w →∗

Rh
w′} of a term w′ by Rh can be effectively

described by a context-free grammar. The set of h-terms with constant c is
obviously regular. Hence the set of hnhjc that reduces to hic′ is the intersection
of a regular language h∗hjc with a context-free language and therefore context-
free. The set of lengths of words of a context-free language is linear.5 ��
Let J be the set of constants that do not occur in a left-hand side of Rh. If

c �∈ J we say that c is bounded (in Rh).

Lemma 14. Given an h-term hj(c) and two constants c, c′ s.t. c′ is not bounded,
the set {i | ∃n ∈ N, hn(hj(c)) →Rh hi(c′)} is an interval [u,∞] denoted by
Pj,c, ,c′ .

Proof. Note that hi(c′) is Rh-irreducible. If there exists u, v with hv(hj(c)) ↓Rh

hu(c′) then for all g ∈ N we have hv+g(hj(c))→∗
Rh

hu+g(c′). ��
Given an f-rule r : f(t1, . . . , tn)→ tn+1, we define hn(r) ↓Rh∪H to be the rule

(hn(f(t1, . . . , tn)) ↓Rh∪H) → (hn(tn+1) ↓Rh∪H). By the convergence of Rh ∪H
this is well defined.

Definition 1. For f ∈ Σ′, we define Gen(r,Rh) as the set {hn(r) ↓Rh∪H | n ∈
N} where r denotes any f-rule f(t1, . . . , tn) → tn+1. For f �∈ Σ′ we define
Gen(r,Rh) = {r}. We shall omit the argument Rh in Gen when it is clear from
the context.

Now, we derive a finite description for Gen(r,Rh). We first classify the elements
in Gen(r) according to their bounded arguments. More specifically we introduce
the equivalence relation ∼ on f -rules in Gen(r):

Definition 2. Given two normalized (by Rh) rules r1 : f(hl1(c1), ..., hln(cn))→
hln+1(cn+1) and r2 : f(hj1(d1), . . . , hjn(dn))→ hjn+1(dn+1) and such that r1, r2 ∈
Gen(r), we have r1 ∼ r2 iff for all k, ck = dk and for all ck �∈ J , lk = jk.

For instance if Rh = {h(c) → c} then (g(h3(c′), c) = h2(c′)) ∼ (g(h2(c′), c) =
h3(c′)). We have the following simple lemma:

Lemma 15. The equivalence ∼ defined on Gen(r) has finite index (i.e. the num-
ber of classes is finite).

5 For details, see ex. 6.8 at page 142 of [UAH74].



Uniform Derivation of Decision Procedures by Superposition 525

Proof. Simple and therefore omitted.

We are now in the position to give a finite representation for the equivalence
class of a rule r′ in Gen(r)

Definition 3. Let r be an f-rule r : f(hl1(c1), . . . , hln(cn)) = hln+1(cn+1) and
r′ : f(hj1(d1), . . . , hjn(dn)) = hjn+1(dn+1). Then, we define Cr,r′ = {r” ∈
Gen(r) | r′ ∼ r”}.
Let us compute Cr,r′ more explicitly. We introduce

Pr,r′ = (
⋂

1 ≤ m ≤ n + 1
dm ∈ J

Plm,cm,jm,dm) ∩ (
⋂

1 ≤ m ≤ n + 1
dm 	∈ J

Plm,cm, ,dm)

Let pr,r′ be the minimal element of Pr,r′ . Note that pr,r′ is computable since it
can be defined by a formula of Presburger arithmetic:

Pr,r′(x) ∧ (∀ y Pr,r′(y)⇒ x ≤ y)

We denote by n(p, l, c, d) the natural number n (when it exists) such that
hp(hl(c)) ↓Rh hn(d). Then

Cr,r′ = { f(ht1(d1), . . . , htn(dn)) = htn+1(dn+1) | for 1 ≤ m ≤ n + 1
tm = jm if dm 	∈ J and
tm = p′ − pr,r′ + n(pr,r′ , lm, cm, dm) if dm ∈ J where p′ ∈ Pr,r′}

We define the size of an h-rule ha(b) → hc(d) to be a + c. By reduction to
Presburger arithmetic, we can prove the following fact.

Lemma 16. Given two f-rules r1, r2, the minimal non-trivial critical pairs be-
tween rules in Gen(r1) and Gen(r2), are computable.

8.3 Completion Procedure

We now give the three inference rules defining the binary transition relation
over sets of equalities (denoted with !), which models our completion procedure
(modulo H). The first is the Deletion rule of Table 2. The second is the Simplifi-
cation rule, obtained as an instance for unit clauses of the Simplification rule of
Table 2 (i.e. E∪{l[s] = r, s = t} ! E∪{l[t] = r, s = t}, if l[s] � r and s � t). The
third is a special purpose inference which allows us to take into account finitely
many selected instances of the axioms in Ax(H) which suffices for correctness.

Homomorphism : E ∪ {r1, r2} ! E ∪ {r1, r2, h1, . . . , hk}

where the ri are f -rules and the hj are the minimal critical pairs of Gen(r1, Rh)
and Gen(r2, Rh). We recall that by Lemma 1, we assume that the initial set of
rules is flat , which means by definition that the arguments of the non-constant
symbols are constants.



526 Alessandro Armando, Silvio Ranise, and Michaël Rusinowitch

Lemma 17. When initially given a set of flat rules, inference rules Simplifica-
tion and Homomorphism only generate equations of type f(hi1(c1), ..., hin(cn)) =
hin+1(cn+1) or of type hi(c) = hi′

(c′).

Theorem 6. Completion with priority given to rule Simplification always ter-
minates.

Proof. Note that any sequence of Simplification applications always terminates.
Let E0, E1, E2 . . . be an infinite derivation such that Ei is the result of ap-
plying Homomorphism to Ei−1 followed by a maximal sequence of Simplifi-
cation applications. We assume that the set of constants is {c1, . . . , ck}. Let
Mj = (m

j
1, . . . ,m

j
k) be the exponents of h in the h-rules of Ej . That is, if there

is a rule in Ej with left-hand side hm(ci) then mj
i = m. Note that there are no

two rules of this type for the same constant ci (otherwise one simplifies another)
and therefore the vector Mj is well-defined. When no rule exists we put ∞ as a
coordinate with n <∞ for all integers.
The component-wise ordering on vectors Mj is well-founded and we always

have Mj ≤ Mj−1. Hence after some finite number of steps the left-hand sides
of h-rules remain the same. Also the right-hand sides of rules may be simplified
but only finitely many time (the reduction relation is well-founded too) Finally
after some finite number of steps the set of h-rules is constant. Note also that
this subset of rules is canonical. We shall denote it by Rh. In particular at most
one rule applies to an h-term hn(c).

Homomorphism generates only h-rules. Hence after a finite number of steps,
say K, it will not produce any new rule. Note that the arguments of left-hand
sides of f -rules are of type hi(cj) with i < MK(j) when cj is bounded. ��

Theorem 7. Let E be the final finite set of rules obtained by the terminating
completion procedure above. Let Rh be the final set of h rules in E. Then, E ∪H
is convergent where E is the union of all sets Gen(r,Rh) for all r in E.

Corollary 1. Given a set of ground equations E0, and the set E derived from
E0 by completion then E0 ∪H |= a = b iff a ↓E∪H= b ↓E∪H .

9 Conclusions and Future Work

We have shown how to apply a generic inference system to derive decision pro-
cedures for the theories of lists, arrays, arrays with extensionality, and combina-
tions of them. A decision procedure (based on superposition) for the theory of
homomorphism has been presented for the first time.
We envisage two main directions for future research. Firstly, our approach

might be extended using different automated deduction techniques from e.g.
[CP95,Lei90]. Secondly, we want to investigate possible cross-fertilizations with
techniques used in heuristic theorem provers to effectively incorporating decision
procedures, see e.g. [AR01].



Uniform Derivation of Decision Procedures by Superposition 527

References

AR01. A. Armando and S. Ranise. A Practical Extension Mechanism for Deci-
sion Procedures: the Case Study of Universal Presburger Arithmetic. J. of
Universal Computer Science, 7(2):124–140, February 2001.

BG94. L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. J. of Logic and Comp., 4(3):217–247, 1994.

BRTV00. L. Bachmair, I. V. Ramakrishnan, A. Tiwari, and L. Vigneron. Congru-
ence closure modulo associativity and commutativity. In Frontiers of Comb.
Sys.’s (FroCos’2000), LNCS 1794, pages 245–259, 2000.

BT00. L. Bachmair and A. Tiwari. Abstract congruence closure and specializations.
In D. A. McAllester, editor, 17th CADE, LNAI 1831, pages 64–78, 2000.

CP95. R. Caferra and Peltier. Decision procedures using model building techniques.
In CSL: 9th Workshop on Computer Science Logic. LNCS 1092, 1995.

DJ90. N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Hand. of Theoretical Comp. Science, pages 243–320. 1990.

End72. H. B. Enderton. A Mathematical Introduction to Logic. Academic Pr., 1972.
KB70. D. E. Knuth and P. E. Bendix. Simple word problems in universal algebra.

In J. Leech, editor, Computational Problems in Abstract Algebra, pages 263–
297, Oxford, 1970. Pergamon Press.

KR91. E. Kounalis and M. Rusinowitch. On Word Problems in Horn Theories.
JSC, 11(1&2):113–128, January/February 1991.

Lei90. A. Leitsch. Deciding horn classes by hyperresolution. In CSL: 3rd Workshop
on Computer Science Logic. LNCS, 1990.

Mar92. C. Marché. The word problem of ACD-ground theories is undecidable. In-
ternational Journal of Foundations of Computer Science, 3(1):81–92, 1992.

Nel81. G. Nelson. Techniques for Program Verification. Technical Report CSL-81-
10, Xerox Palo Alto Research Center, June 1981.

NO78. G. Nelson and D.C. Oppen. Simplification by Cooperating Decision Proce-
dures. Technical Report STAN-CS-78-652, Stanford CS Dept., April 1978.

NO80. Greg Nelson and Derek C. Oppen. Fast decision procedures based on con-
gruence closure. Journal of the ACM, 27(2):356–364, 1980.

NR91. P. Narendran and M. Rusinowitch. Any ground associative-commutative
theory has a finite canonical system. In 4th RTA Conf., Como (Italy), 1991.

NR01. R. Nieuwenhuis and A. Rubio. Paramodulation-based theorem proving. In
A. Robinson and A. Voronkov, editors, Hand. of Automated Reasoning. 2001.

Rus91. M. Rusinowitch. Theorem-proving with Resolution and Superposition. JSC,
11(1&2):21–50, January/February 1991.

SDBL01. A. Stump, D. L. Dill, C. W. Barrett, and J. Levitt. A Decision Procedure
for an Extensional Theory of Arrays. In LICS’01, 2001. To appear.

UAH74. J. D. Ullman, A. V. Aho, and J. E. Hopcroft. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, 1974.


	Introduction
	Preliminaries
	Our Approach
	A Decision Procedure �or the Quantifier-Free Theory of Equality

	A Decision Procedure for the Theory of Lists
	A Decision Procedure for the Theory of Arrays
	A Decision Procedure for the Theory of Arrays with Extensionality
	Combining Decision Procedures for Lists and Arrays
	A Decision Procedure for the Theory of Homomorphism
	Orientation
	Computation of Critical Pairs
	Completion Procedure

	Conclusions and Future Work

