Meta-Complexity Theorems for Bottom-up Logic Programs

Harald Ganzinger
Max-Planck-Institut für Informatik

David McAllester
ATT Bell-Labs Research
Introduction

- **logic programming of efficient algorithms**
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis: type inference system = algorithm
- recent papers: McAllester [SAS99], Ganzinger/McAllester [IJCAR01]
- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
Introduction

- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis: type inference system = algorithm
- recent papers: McAllester [SAS99], Ganzinger/McAllester [IJCAR01]
- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
Introduction

• logic programming of efficient algorithms
• complexity analysis through general meta-complexity theorems
• guaranteed execution time
• logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
• application to program analysis: type inference system = algorithm
• recent papers: McAllester [SAS99], Ganzinger/McAllester [IJCAR01]
• related work: efficient fixpoint iteration by Nielson/Seidl [2001]
Introduction

- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis:
 type inference system = algorithm
- recent papers:
 McAllester [SAS99], Ganzinger/McAllester [IJCAR01]
- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
Introduction

- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis:
 type inference system = algorithm
- recent papers:
 McAllester [SAS99], Ganzinger/McAllester [IJCAR01]
- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
Introduction

• logic programming of efficient algorithms
• complexity analysis through general meta-complexity theorems
• guaranteed execution time
• logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
• application to program analysis:
 type inference system = algorithm

• recent papers:
 McAllester [SAS99], Ganzinger/McAllester [IJCAR01]

• related work: efficient fixpoint iteration by Nielson/Seidl [2001]
Introduction

- logic programming of efficient algorithms
- complexity analysis through general meta-complexity theorems
- guaranteed execution time
- logical aspects of fundamental algorithmic paradigms (dynamic programming, union-find, congruence closure, priority queues)
- application to program analysis: type inference system = algorithm
- recent papers: McAllester [SAS99], Ganzinger/McAllester [IJCAR01]
- related work: efficient fixpoint iteration by Nielson/Seidl [2001]
Contents

1st meta-complexity theorem
Language: bottom-up logic programs
Algorithmic ingredients: dynamic programming, indexing
Examples: (interprocedural) reachability

2nd meta-complexity theorem
Language: logic programs with deletion and priorities
Logical basis: saturation up to redundancy
Examples: union-find, congruence closure, Henglein’s subtype analysis

3rd meta-complexity theorem
Language: logic programs with deletion and instance priorities
Algorithmic ingredients: priority queues
Examples: shortest paths, minimal spanning trees
1st meta-complexity theorem
Language: bottom-up logic programs
Algorithmic ingredients: dynamic programming, indexing
Examples: (interprocedural) reachability

2nd meta-complexity theorem
Language: logic programs with deletion and priorities
Logical basis: saturation up to redundancy
Examples: union-find, congruence closure, Henglein’s subtype analysis

3rd meta-complexity theorem
Language: logic programs with deletion and instance priorities
Algorithmic ingredients: priority queues
Examples: shortest paths, minimal spanning trees
1st meta-complexity theorem
Language: bottom-up logic programs
Algorithmic ingredients: dynamic programming, indexing
Examples: (interprocedural) reachability

2nd meta-complexity theorem
Language: logic programs with deletion and priorities
Logical basis: saturation up to redundancy
Examples: union-find, congruence closure, Henglein’s subtype analysis

3rd meta-complexity theorem
Language: logic programs with deletion and instance priorities
Algorithmic ingredients: priority queues
Examples: shortest paths, minimal spanning trees
database of facts D

inference system R

closure $R^*(D)$

this talk
Paradigm

input

pre-processor

database of facts D

inference system R

closure $R^*(D)$

post-processor

output

this talk
Paradigm

- **Input**
 - Pre-processor
 - Database of facts D
 - Inference system R
 - Closure $R^*(D)$
 - Post-processor
 - Output

- Paige, Yang 1997
Database:

\[D = \{ e(u, v) \mid (u, v) \in E \} \cup \{ s(u) \mid u \text{ a source node} \} \]
Reachability in Graphs

Database:

\[D = \{ e(u, v) \mid (u, v) \in E \} \cup \{ s(u) \mid u \text{ a source node} \} \]

Inference system:

\[
\begin{align*}
 s(u) & \quad r(u) \\
 e(u, v) & \quad r(v)
\end{align*}
\]
Reachability in Graphs

Database:

\[D = \{ e(u, v) \mid (u, v) \in E \} \cup \{ s(u) \mid u \text{ a source node} \} \]

Inference system:

\[
\begin{align*}
\frac{s(u) \quad e(u, v)}{r(u) \quad r(v)} \quad \frac{r(u)}{r(u)}
\end{align*}
\]

Clause notation: \(s(u) \supset r(u) \quad r(u), e(u, v) \supset r(v) \)
Database:

\[D = \{ e(u, v) \mid (u, v) \in E \} \cup \{ s(u) \mid u \text{ a source node} \} \]

Inference system:

\[
\begin{align*}
 s(u) & \quad r(u) \\
 \frac{s(u)}{r(u)} & \quad \frac{r(u)}{e(u, v)} \\
 \frac{r(u)}{r(v)} &
\end{align*}
\]

Clause notation: \(s(u) \supset r(u) \) \(r(u), e(u, v) \supset r(v) \)

Closure:

\[R^*(D) = D \cup \{ r(u) \mid u \text{ reachable from a source} \} \]
Database
$s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3)$
Example

Database

$s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3), r(1)$
Database

\[s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3), r(1), r(3)\]
Database

s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3), r(1), r(3), r(4)
Example

Database

$s(1), e(1, 3), e(1, 4), e(2, 3), e(3, 4), e(4, 3), r(1), r(3), r(4)$

⇒ saturated.
Bottom-up computation: match prefixes of antecedents against database and fire conclusions
Bottom-up computation: match prefixes of antecedents against database and fire conclusions

prefix firings:

$$\pi_R(D) = | \{(r\sigma,i) \mid r = A_1 \land \ldots \land A_i \land \ldots \land A_n \supset A_0 \in R \land A_j \sigma \in D, \text{ for } 1 \leq j \leq i\} |$$
First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against database and fire conclusions

Prefix firings:

\[
\pi_R(D) = \left| \{(r\sigma, i) \mid r = A_1 \land \ldots \land A_i \land \ldots \land A_n \supset A_0 \in R \right.
\]

\[
A_j\sigma \in D, \text{ for } 1 \leq j \leq i \}
\]

Theorem [McAllester 1999] Let \(R \) be an inference system such that \(R^*(D) \) is finite. Then \(R^*(D) \) can be computed in time \(O(\|D\| + \pi_R(R^*(D))) \).
First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against database and fire conclusions

prefix firings:

$$
\pi_R(D) = | \{(r\sigma, i) \mid r = A_1 \land \ldots \land A_i \land \ldots \land A_n \supset A_0 \in R \\
A_j \sigma \in D, \text{ for } 1 \leq j \leq i\} |
$$

Theorem [McAllester 1999] Let R be an inference system such that $R^*(D)$ is finite. Then $R^*(D)$ can be computed in time $O(\|D\| + \pi_R(R^*(D)))$.

Corollary [Dowling, Gallier 1984] If R is ground, $R^*(D)$ can be computed in time $O(\|D\| + \|R\|)$.
First Meta-Complexity Theorem

Bottom-up computation: match prefixes of antecedents against database and fire conclusions

Prefix firings:

$$\pi_R(D) = | \{(r\sigma, i) \mid r = A_1 \wedge \ldots \wedge A_i \wedge \ldots \wedge A_n \supset A_0 \in R \wedge A_j\sigma \in D, \text{ for } 1 \leq j \leq i\} |$$

Theorem [McAllester 1999] Let R be an inference system such that $R^*(D)$ is finite. Then $R^*(D)$ can be computed in time $O(\|D\| + \pi_R(R^*(D)))$.

Corollary [Dowling, Gallier 1984] If R is ground, $R^*(D)$ can be computed in time $O(\|D\| + \|R\|)$.

Extension: constraints for which each solution can be computed in time $O(1)$.
Reachability in Graphs

\[
\begin{align*}
\text{s}(u) & \quad \text{r}(u) \\
\hline
\text{r}(u) & \\
\text{e}(u, v) & \\
\hline
\text{r}(v) &
\end{align*}
\]
Reachability in Graphs

\[
\begin{align*}
&\frac{s(u)}{r(u)} \quad O(|V|) \\
&\frac{r(u)}{r(v)} \quad O(|V|) \\
&\frac{e(u, v)}{r(v)}
\end{align*}
\]
Reachability in Graphs

\[
\begin{align*}
\frac{s(u)}{r(u)} & \quad O(|V|) & \quad \frac{r(u)}{r(v)} & \quad O(|V|) \\
\frac{e(u, v)}{r(v)} & + O(|E|)
\end{align*}
\]

Theorem Reachability can be decided in linear time.
Interprocedural Reachability: Database

program

1 procedure main
2 begin
3 declare x: int
4 read(x)
5 call p(x)
6 end

7 procedure p(a:int)
8 begin
9 if a>0 then
10 read(g)
11 a:=a-g
12 call p(a)
13 print(a)
14 fi
15 end

facts

proc(main,2,6)
next(main,2,5)
call(main,p,5,6)

proc(p,8,15)
next(p,8,12)
call(p,p,12,13)
next(p,13,15)
next(p,8,15)
Interprocedural Reachability: Rules

Read “$P \Rightarrow L$” as “in procedure P label L can be reached”.

\[
\text{proc}(P, B_P, E_P) \\
\hline
P \Rightarrow B_P
\]

\[
\text{next}(Q, L, L') \\
Q \Rightarrow L \\
\hline
Q \Rightarrow L'
\]

\[
\text{call}(Q, P, L_c, R_r) \\
\text{proc}(P, B_P, E_P) \\
P \Rightarrow E_P \\
Q \Rightarrow L_c \\
\hline
Q \Rightarrow L_r
\]
Interprocedural Reachability: Rules

Read “$P \Rightarrow L$” as “in procedure P label L can be reached”.

\[
\text{proc}(P, B_P, E_P) \quad O(n)
\]

\[
\overline{P \Rightarrow B_P}
\]

\[
\text{next}(Q, L, L') \quad Q \Rightarrow L
\]

\[
\overline{Q \Rightarrow L'}
\]

\[
\text{call}(Q, P, L_c, R_r) \quad \text{proc}(P, B_P, E_P) \quad P \Rightarrow E_P \quad Q \Rightarrow L_c
\]

\[
\overline{Q \Rightarrow L_r}
\]
Interprocedural Reachability: Rules

Read “\(P \Rightarrow L \)” as “in procedure \(P \) label \(L \) can be reached”.

\[
\begin{align*}
\text{proc}(P, B_P, E_P) & \quad O(n) \\
\hline
P & \Rightarrow B_P \\
\end{align*}
\]

\[
\begin{align*}
\text{next}(Q, L, L') & \quad O(n) \\
Q & \Rightarrow L \\
\hline
Q & \Rightarrow L' \\
\end{align*}
\]

\[
\begin{align*}
\text{call}(Q, P, L_c, R_r) & \\
\text{proc}(P, B_P, E_P) & \\
P & \Rightarrow E_P \\
Q & \Rightarrow L_c \\
\hline
Q & \Rightarrow L_r \\
\end{align*}
\]
Interprocedural Reachability: Rules

Read “\(P \Rightarrow L \)” as “in procedure \(P \) label \(L \) can be reached”.

\[
\begin{align*}
\text{proc}(P, B_P, E_P) & \quad O(n) \\
\hline
P \Rightarrow B_P
\end{align*}
\]

\[
\begin{align*}
\text{next}(Q, L, L') & \quad O(n) \\
Q \Rightarrow L & \quad \ast O(1) \\
\hline
Q \Rightarrow L'
\end{align*}
\]

\[
\begin{align*}
\text{call}(Q, P, L_c, R_r) & \\
\text{proc}(P, B_P, E_P) & \\
P \Rightarrow E_P & \\
Q \Rightarrow L_c & \\
\hline
Q \Rightarrow L_r
\end{align*}
\]
Interprocedural Reachability: Rules

Read “$P \Rightarrow L$” as “in procedure P label L can be reached”.

\[
\begin{align*}
\text{proc}(P, B_P, E_P) & \quad O(n) \\
P \Rightarrow B_P & \\
\text{next}(Q, L, L') & \quad O(n) \\
Q \Rightarrow L & \quad \ast O(1) \\
Q \Rightarrow L' & \\
\text{call}(Q, P, L_c, R_r) & \quad O(n) \\
\text{proc}(P, B_P, E_P) & \\
P \Rightarrow E_P & \\
Q \Rightarrow L_c & \\
Q \Rightarrow L_r & \\
\end{align*}
\]
Interprocedural Reachability: Rules

Read “$P \Rightarrow L$” as “in procedure P label L can be reached”.

\[
\begin{align*}
&\text{proc}(P, B_P, E_P) \quad O(n) \\
\hline
&P \Rightarrow B_P
\end{align*}
\]

\[
\begin{align*}
&\text{next}(Q, L, L') \quad O(n) \\
&Q \Rightarrow L \quad \ast O(1) \\
\hline
&Q \Rightarrow L'
\end{align*}
\]

\[
\begin{align*}
&\text{call}(Q, P, L_c, R_r) \quad O(n) \\
&\text{proc}(P, B_P, E_P) \quad \ast O(1) \\
&P \Rightarrow E_P \\
&Q \Rightarrow L_c \\
\hline
&Q \Rightarrow L_r
\end{align*}
\]

Theorem IPR D can be computed in time $O(n)$, with $n = |D|$.
Interprocedural Reachability: Rules

Read “$P \Rightarrow L$” as “in procedure P label L can be reached”.

\[
\begin{align*}
\text{proc}(P, B_P, E_P) & \quad O(n) \\
\hline
P \Rightarrow B_P \\
\end{align*}
\]

\[
\begin{align*}
\text{next}(Q, L, L') & \quad O(n) \\
Q \Rightarrow L \quad & \quad \ast O(1) \\
\hline
Q \Rightarrow L' \\
\end{align*}
\]

\[
\begin{align*}
\text{call}(Q, P, L_c, R_r) & \quad O(n) \\
\text{proc}(P, B_P, E_P) \quad & \quad \ast O(1) \\
P \Rightarrow E_P \quad & \quad \ast O(1) \\
Q \Rightarrow L_c \quad & \quad \ast O(1) \\
\hline
Q \Rightarrow L_r \\
\end{align*}
\]
Interprocedural Reachability: Rules

Read “$P \Rightarrow L$” as “in procedure P label L can be reached”.

\[
\text{proc}(P, B_P, E_P) \quad O(n)
\]

\[
P \Rightarrow B_P
\]

\[
\begin{align*}
\text{next}(Q, L, L') & \quad O(n) \\
Q \Rightarrow L & \quad \ast O(1)
\end{align*}
\]

\[
Q \Rightarrow L'
\]

\[
\begin{align*}
\text{call}(Q, P, L_c, R_r) & \quad O(n) \\
\text{proc}(P, B_P, E_P) & \quad \ast O(1) \\
P \Rightarrow E_P & \quad \ast O(1) \\
Q \Rightarrow L_c & \quad \ast O(1)
\end{align*}
\]

\[
Q \Rightarrow L_r
\]

Theorem $IPR^*(D)$ can be computed in time $O(n)$, with $n = \|D\|$.
Proof of the Meta-Complexity Theorem I

Assumption: all terms in fully shared form
Proof of the Meta-Complexity Theorem I

Assumption: all terms in fully shared form

Matching: in $O(1)$ (for atoms in rules against atoms in D)
Assumption: all terms in fully shared form

Matching: in $O(1)$ (for atoms in rules against atoms in D)

Unary Rules $A \supset B$: matching of A against each atom in $R(D)$, plus construction of B, costs total time $O(|R(D)|)$
Proof of the Meta-Complexity Theorem I

Assumption: all terms in fully shared form

Matching: in $O(1)$ (for atoms in rules against atoms in D)

Unary Rules $A \supset B$: matching of A against each atom in $R(D)$, plus construction of B, costs total time $O(|R(D)|)$

Note: programs not cons-free
Proof of the Meta-Complexity Theorem I

Assumption: all terms in fully shared form

Matching: in $O(1)$ (for atoms in rules against atoms in D)

Unary Rules $A \supset B$: matching of A against each atom in $R(D)$, plus construction of B, costs total time $O(|R(D)|)$

Note: programs not cons-free

Problem: avoiding $O(|R(D)|^k)$ for rules of length k
Data structure for rules ρ of the form $p(X, Y) \land q(Y, Z) \supset r(X, Y, Z)$
Data structure for rules ρ of the form $p(X, Y) \land q(Y, Z) \supset r(X, Y, Z)$
Proof of the Meta-Complexity Theorem II

Data structure for rules ρ of the form $p(X, Y) \land q(Y, Z) \supset r(X, Y, Z)$

Upon adding a fact $p(e, t)$, fire all $r(e, t, z)$, for z on the q-list of $A[t]$.
Data structure for rules ρ of the form $p(X, Y) \land q(Y, Z) \supset r(X, Y, Z)$

Upon adding a fact $p(e, t)$, fire all $r(e, t, z)$, for z on the q-list of $A[t]$. The inference system can be transformed (maintaining π) so that it contains only unary rules and binary rules of the form ρ.
- memory consumption often much smaller
Remarks

- memory consumption often much smaller
- if $R^*(D)$ infinite, consider $R^*(D) \cap \text{atoms} (\text{subterms}(D))$
 \Rightarrow concept of local inference systems (Givan, McAllester 1993)
Remarks

- memory consumption often much smaller
- if $R^*(D)$ infinite, consider $R^*(D) \cap \text{atoms(subterms}(D))$
 \Rightarrow concept of local inference systems (Givan, McAllester 1993)
- in the presence of transitivity laws, complexity is in $\Omega(n^3)$
II. Redundancy, Deletion, and Priorities
• redundant information causes inefficiency

\[D = \{\ldots, \text{dist}(x) \leq d, \text{dist}(x) \leq d', d' < d, \ldots\} \]

\(\Rightarrow \) delete \(\text{dist}(x) \leq d \)
Removal of Redundant Information

- redundant information causes inefficiency

\[D = \{ \ldots, \text{dist}(x) \leq d, \text{dist}(x) \leq d', d' < d, \ldots \} \]

\[\Rightarrow \text{delete dist}(x) \leq d \]

- Notation: antecedents to be deleted in parenthesis [\ldots]

\[\ldots, [A], \ldots, A', \ldots, [A''], \ldots \supset B \]
Removal of Redundant Information

- redundant information causes inefficiency

\[D = \{\ldots, \text{dist}(x) \leq d, \text{dist}(x) \leq d', d' < d, \ldots\} \]

\[\Rightarrow \text{delete } \text{dist}(x) \leq d \]

- Notation: antecedents to be deleted in parenthesis [\ldots]

\[\ldots, [A], \ldots, A', \ldots, [A''], \ldots \supset B \]

- in the presence of deletion, computations are nondeterministic:

\[P \supset Q \quad [Q] \supset S \quad [Q] \supset W \]

\[\Rightarrow \text{either } S \text{ or } W \text{ can be derived, but not both} \]
removal of redundant information causes inefficiency

\[D = \{\ldots, \text{dist}(x) \leq d, \text{dist}(x) \leq d', d' < d, \ldots \} \]

\[\Rightarrow \text{delete } \text{dist}(x) \leq d \]

- Notation: antecedents to be deleted in parenthesis \([\ldots]\)

\[\ldots, [A], \ldots, A', \ldots, [A''], \ldots \supset B \]

- in the presence of deletion, computations are nondeterministic:

\[P \supset Q \quad [Q] \supset S \quad [Q] \supset W \]

\[\Rightarrow \text{either } S \text{ or } W \text{ can be derived, but not both} \]

- non-determinism don’t-care and/or restricted by priorities
rules can have antecedents to be deleted after firing
• rules can have antecedents to be deleted after firing
• priorities assigned to rule schemes
Logic Programs with Priorities and Deletion

- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
Logic Programs with Priorities and Deletion

- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
 - A visible in S if $A \in S$ and $\neg A \not\in S$ (deletions are permanent)
• rules can have antecedents to be deleted after firing
• priorities assigned to rule schemes
• computation states S contain positive and negative (deleted) atoms
• A visible in S if $A \in S$ and $\neg A \notin S$ (deletions are permanent)
• $\Gamma \triangleright B$ applicable in S if
 – each atom in Γ is visible in S, and
 – rule application changes S (by adding B or some $\neg A$)
rules can have antecedents to be deleted after firing

- priorities assigned to rule schemes

- computation states \(S \) contain positive and negative (deleted) atoms

- \(A \) visible in \(S \) if \(A \in S \) and \(\neg A \notin S \) (deletions are permanent)

- \(\Gamma \supset B \) applicable in \(S \) if
 - each atom in \(\Gamma \) is visible in \(S \), and
 - rule application changes \(S \) (by adding \(B \) or some \(\neg A \))

- \(S \) visible to a rule if no higher-priority rule is applicable in \(S \)
- Rules can have antecedents to be deleted after firing.
- Priorities assigned to rule schemes.
- Computation states \(S \) contain positive and negative (deleted) atoms.
- \(A \) visible in \(S \) if \(A \in S \) and \(\neg A \notin S \) (deletions are permanent).
- \(\Gamma \supset B \) applicable in \(S \) if
 - each atom in \(\Gamma \) is visible in \(S \), and
 - rule application changes \(S \) (by adding \(B \) or some \(\neg A \)).
- \(S \) visible to a rule if no higher-priority rule is applicable in \(S \).
- Computations are maximal sequences of applications of visible rules.
- rules can have antecedents to be deleted after firing
- priorities assigned to rule schemes
- computation states S contain positive and negative (deleted) atoms
- A visible in S if $A \in S$ and $\neg A \not\in S$ (deletions are permanent)
- $\Gamma \supset B$ applicable in S if
 - each atom in Γ is visible in S, and
 - rule application changes S (by adding B or some $\neg A$)
- S visible to a rule if no higher-priority rule is applicable in S
- computations are maximal sequences of applications of visible rules
- the final state of a computation starting with D is called an (R)-saturation of D
Let $\mathcal{C} = S_0, S_1, \ldots, S_T$ be a computation.

Prefix firing in \mathcal{C}:

- Pair $(r \sigma, i)$ such that for some $0 \leq t < T$:
 - $r = A_1 \land \ldots \land A_i \land \ldots \land A_n \supset A_0 \in R$
 - S_t visible to r
 - $A_j \sigma$ visible in S_t, for $1 \leq j \leq i$
Let $\mathcal{C} = S_0, S_1, \ldots, S_T$ be a computation.

Prefix firing in \mathcal{C}: pair $(r\sigma, i)$ such that for some $0 \leq t < T$:
- $r = A_1 \land \ldots \land A_i \land \ldots \land A_n \supset A_0 \in R$
- S_t visible to r
- $A_j\sigma$ visible in S_t, for $1 \leq j \leq i$

Prefix count: $\pi_R(D) = \max\{|\text{p.f.}(\mathcal{C})| \mid \mathcal{C} \text{ a computation from } D\}$
Let $C = S_0, S_1, \ldots, S_T$ be a computation.

Prefix firing in C: pair $(r\sigma, i)$ such that for some $0 \leq t < T$:
- $r = A_1 \land \ldots \land A_i \land \ldots \land A_n \supset A_0 \in R$
- S_t visible to r
- $A_j\sigma$ visible in S_t, for $1 \leq j \leq i$

Prefix count: $\pi_R(D) = \max\{|\p.f.(C)| \mid C \text{ a computation from } D\}$

Theorem [Ganzinger/McAllester 2001] Let R be an inference system such that $R(D)$ is finite. Then some $R(D)$ can be computed in time $O(\|D\| + \pi_R(D))$.
Second Meta-Complexity Theorem

Let $\mathcal{C} = S_0, S_1, \ldots, S_T$ be a computation.

Prefix firing in \mathcal{C}: pair $(r\sigma, i)$ such that for some $0 \leq t < T$:
- $r = A_1 \land \ldots \land A_i \land \ldots \land A_n \supset A_0 \in R$
- S_t visible to r
- $A_j\sigma$ visible in S_t, for $1 \leq j \leq i$

Prefix count: $\pi_R(D) = \max\{|p.f.((C))| \mid \mathcal{C} \text{ a computation from } D\}$

THEOREM [Ganzinger/McAllester 2001] Let R be an inference system such that $R(D)$ is finite. Then some $R(D)$ can be computed in time $O(\|D\| + \pi_R(D))$.

Proof as before, but also using constant-length priority queues.
Second Meta-Complexity Theorem

Let $C = S_0, S_1, \ldots, S_T$ be a computation.

Prefix firing in C: pair $(r\sigma, i)$ such that for some $0 \leq t < T$:
- $r = A_1 \wedge \ldots \wedge A_i \wedge \ldots \wedge A_n \supset A_0 \in R$
- S_t visible to r
- $A_j \sigma$ visible in S_t, for $1 \leq j \leq i$

Prefix count: $\pi_R(D) = \max\{|p.f.(C)| \mid C \text{ a computation from } D\}$

Theorem [Ganzinger/McAllester 2001] Let R be an inference system such that $R(D)$ is finite. Then some $R(D)$ can be computed in time $O(\|D\| + \pi_R(D))$.

Proof as before, but also using constant-length priority queues

Note: again prefix firings count only once; priorities are for free
Union-Find

\[
\begin{align*}
\text{find}(x) & \quad x \Rightarrow! y & \quad x \Rightarrow y \\
(\text{Ref1}) & \quad y \Rightarrow z & \quad x \Rightarrow z \\
(\text{N}) & \quad x \Rightarrow! z & \quad (\text{Comm}) \quad \text{union}(y, z)
\end{align*}
\]
We are interested in $x \dot{=} y$ defined as $\exists z (x \Rightarrow! z \land y \Rightarrow! z)$
Union-Find

\[
\begin{align*}
\text{find}(x) & \quad x \Rightarrow! y \quad O(n^2) \\
(\text{Ref}) & \quad y \Rightarrow z \quad * \quad O(n) \\
\text{find}(y) & \quad x \Rightarrow y \quad O(n^2) \\
\text{(N)} & \quad x \Rightarrow z \quad * \quad O(n) \\
\text{find}(x), & \quad \text{union}(x, y) \\
\text{find}(y) & \quad \text{union}(y, z) \\
\end{align*}
\]

Naive Knuth/Bendix completion
Naive Knuth/Bendix completion
+ normalization (eager path compression)
Union-Find

\[
\begin{align*}
\text{find}(x) &
\quad \text{(Ref1)} \quad \text{[} x \Rightarrow ! y \text{]} \quad O(n \log n) \\
\quad x \Rightarrow ! x
\end{align*}
\]

\[
\begin{align*}
\text{weight}(x, 1) &
\quad \text{(N)} \quad \text{[} x \Rightarrow ! z \text{]} \quad \text{O}(1) \\
\quad x \Rightarrow ! z
\end{align*}
\]

\[
\begin{align*}
\text{union}(x, y) &
\quad \text{(Init)} \quad \text{[} \text{union}(x, y) \text{]} \\
\quad \text{find}(x), \text{find}(y)
\end{align*}
\]

\[
\begin{align*}
\text{union}(x, y) &
\quad \text{(Triv)} \quad \text{[} \text{union}(x, y) \text{]} \\
\quad x \Rightarrow ! z \\
\quad y \Rightarrow ! z
\end{align*}
\]

\[
\begin{align*}
\text{union}(x, y) &
\quad \text{(Comm)} \quad \text{union}(y, z)
\end{align*}
\]

\[
\begin{align*}
\text{union}(x, y) &
\quad \text{(Orient)} \quad \text{[} \text{union}(x, y) \text{]} \\
\quad z_1 \Rightarrow z_2 \\
\quad \text{weight}(z_2, w_1 + w_2)
\end{align*}
\]

\[
\begin{align*}
\text{Naive Knuth/Bendix completion} &
\quad + \text{ symmetric variant of (Orient)}
\end{align*}
\]

\[
\begin{align*}
\text{Naive Knuth/Bendix completion} &
\quad + \text{ normalization (eager path compression)} \quad + \text{ logarithmic merge}
\end{align*}
\]
Extension to congruence closure: 7 more rules, guaranteed optimal complexity $O(m + n \log n)$, where $m = |\text{union assertions}|$, $n = |(\text{sub})\text{terms}|$
Congruence Closure for Ground Horn Clauses

Extension to congruence closure: 7 more rules, guaranteed optimal complexity $O(m + n \log n)$, where $m = |\text{union assertions}|$, $n = |\text{(sub)terms}|$

Extension to ground Horn clauses with equality: 13 more rules
Extension to congruence closure: 7 more rules, guaranteed optimal complexity $O(m + n \log n)$, where $m = |\text{union assertions}|$, $n = |(\text{sub})\text{terms}|$

Extension to ground Horn clauses with equality: 13 more rules

Theorem [Ganzinger/McAllester 01] Satisfiability of a set D of ground Horn clauses with equality can be decided in time $O(\|D\| + n \log n + \min(m \log n, n^2))$ where m is the number of antecedents and input clauses and n is the number of terms. This is optimal ($= O(\|D\|)$) whenever m is in $\Omega(n^2)$.
Congruence Closure for Ground Horn Clauses

Extension to congruence closure: 7 more rules, guaranteed optimal complexity $O(m + n \log n)$, where $m = |\text{union assertions}|$, $n = |\text{(sub)terms}|$

Extension to ground Horn clauses with equality: 13 more rules

Theorem [Ganzinger/McAllester 01] Satisfiability of a set D of ground Horn clauses with equality can be decided in time $O(\|D\| + n \log n + \min(m \log n, n^2))$ where m is the number of antecedents and input clauses and n is the number of terms. This is optimal ($= O(\|D\|)$) whenever m is in $\Omega(n^2)$.

Logic View: We can (partly) deal with logic programs with equality
Congruence Closure for Ground Horn Clauses

Extension to congruence closure: 7 more rules, guaranteed optimal complexity $O(m + n \log n)$, where $m = |\text{union assertions}|$, $n = |\text{(sub)terms}|$

Extension to ground Horn clauses with equality: 13 more rules

Theorem [Ganzinger/McAllester 01] Satisfiability of a set D of ground Horn clauses with equality can be decided in time $O(\|D\| + n \log n + \min(m \log n, n^2))$ where m is the number of antecedents and input clauses and n is the number of terms. This is optimal ($= O(\|D\|)$) whenever m is in $\Omega(n^2)$.

Logic View: We can (partly) deal with logic programs with equality

Applications: several program analysis algorithms (Steensgaard, Henglein)
Let \succ a well-founded ordering on ground atoms.

Definition A is **redundant** in S (denoted $A \in Red(S)$) whenever $A_1, \ldots, A_n \models_R A$, with A_i in S such that $A_i \prec A$.
Let \succ a well-founded ordering on ground atoms.

Definition A is **redundant** in S (denoted $A \in \text{Red}(S)$) whenever $A_1, \ldots, A_n \models_R A$, with A_i in S such that $A_i \prec A$.

Properties stable under enrichments and under deletion of redundant atoms
Formal Notion of Redundancy

Let \succ a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted $A \in \text{Red}(S)$) whenever $A_1, \ldots, A_n \models R A$, with A_i in S such that $A_i \prec A$.

Properties stable under enrichments and under deletion of redundant atoms

Definition S is saturated up to redundancy wrt R if $R(S \setminus \text{Red}(S)) \subseteq S \cup \text{Red}(S)$.
Let \succ a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted $A \in Red(S)$) whenever $A_1, \ldots, A_n \models_R A$, with A_i in S such that $A_i \prec A$.

Properties stable under enrichments and under deletion of redundant atoms

Definition S is saturated up to redundancy wrt R if $R(S \setminus Red(S)) \subseteq S \cup Red(S)$.

Theorem If deletion is based on redundancy then the result of every computation is saturated wrt R up to redundancy.
Formal Notion of Redundancy

Let \succ a well-founded ordering on ground atoms.

Definition A is redundant in S (denoted $A \in Red(S)$) whenever $A_1, \ldots, A_n \models_R A$, with A_i in S such that $A_i \prec A$.

Properties stable under enrichments and under deletion of redundant atoms

Definition S is saturated up to redundancy wrt R if $R(S \setminus Red(S)) \subseteq S \cup Red(S)$.

Theorem If deletion is based on redundancy then the result of every computation is saturated wrt R up to redundancy.

Corollary Priorities are irrelevant logically \Rightarrow choose them so as to minimize prefix firings
Deletions based on Redundancy

Criterion: If

\[r = [A_1], \ldots, [A_k], B_1, \ldots, B_m \supset B \]

and if \(S \cup \{A_1\sigma, \ldots, A_k\sigma, B_1\sigma, \ldots, B_m\sigma\} \) is visible to \(r \) then

\[A_i\sigma \in Red(S \cup \{B_1\sigma, \ldots, B_m\sigma, B\sigma\}). \]
Deletions based on Redundancy

Criterion: If

\[r = [A_1], \ldots, [A_k], B_1, \ldots, B_m \supset B \]

and if \(S \cup \{A_1\sigma, \ldots, A_k\sigma, B_1\sigma, \ldots, B_m\sigma\} \) is visible to \(r \) then

\[A_i\sigma \in \text{Red}(S \cup \{B_1\sigma, \ldots, B_m\sigma, B\sigma\}). \]

Union-find example: not so easy to check, need proof orderings à la Bachmair and Dershowitz
Deletions based on Redundancy

Criterion: If

\[r = [A_1], \ldots, [A_k], B_1, \ldots, B_m \supset B \]

and if \(S \cup \{A_1\sigma, \ldots, A_k\sigma, B_1\sigma, \ldots, B_m\sigma\} \) is visible to \(r \) then

\[A_i\sigma \in \text{Red}(S \cup \{B_1\sigma, \ldots, B_m\sigma, B\sigma\}). \]

Union-find example: not so easy to check, need proof orderings à la Bachmair and Dershowitz

Note: redundancy should also be efficiently decidable
III. Instance-based Priorities
(Init) \[\text{dist(src)} \leq 0 \]

(Upd) \[\begin{align*}
\text{dist}(x) & \leq d' \\
\text{dist}(x) & \leq d' \\
d' & < d
\end{align*} \]

(Add) \[\text{dist}(y) \leq c + d \]

[dist(x) \leq d]

\[\text{dist}(x) \leq d \]

\[x \xrightarrow{c} y \]
Shortest Paths

(Init) \[\text{dist(src)} \leq 0 \]

(Upd) \[[\text{dist}(x) \leq d] \]
\[\text{dist}(x) \leq d' \]
\[d' < d \]
\[\text{dist}(x) \leq d \]
\[x \xrightarrow{c} y \]

(Add) \[\text{dist}(y) \leq c + d \]

Correctness: obvious; deletion is based on redundancy
Shortest Paths

\[
\begin{align*}
(\text{Init}) \quad \text{dist(src)} & \leq 0 \\
\text{(Upd)} \quad \text{dist}(x) & \leq d' \\
\text{(Add)} \quad \text{dist}(y) & \leq c + d
\end{align*}
\]

Correctness:

obvious; deletion is based on redundancy

Priorities (Dijkstra):
always choose an instance of (Add) where \(d\) is minimal \(\implies\) allow for instance-based rule priorities

\((\text{Init}) > (\text{Upd}) > (\text{Add})[n/d] > (\text{Add})[m/d]\), for \(m > n\)
Shortest Paths

Correctness: obvious; deletion is based on redundancy

Priorities (Dijkstra): always choose an instance of (Add) where d is minimal \Rightarrow allow for instance-based rule priorities

Prefix firing count: $O(|E|)$, but Dijkstra’s algorithm runs in time $O(|E| + |V| \log |V|)$ \Rightarrow one cannot expect a linear-time meta-complexity theorem for instance-based priorities
Minimum Spanning Tree

Basis: Union-find module
Minimum Spanning Tree

Basis: Union-find module

\[
\begin{align*}
[x \leftrightarrow y] \\
x & \rightarrow! z \\
y & \rightarrow! z \\
(T) & \overset{\text{(Del)}}{\longrightarrow} \\
\text{mst}(x, c, y) & \overset{\text{(Add)}}{\longrightarrow} \\
\text{union}(x, y)
\end{align*}
\]
Minimum Spanning Tree

Basis: Union-find module

\[
\begin{align*}
[x \leftrightarrow y] \\
x &\Rightarrow! z \\
y &\Rightarrow! z \\
(x \leftrightarrow y] &\text{(Add)} \\
T &\text{mst}(x, c, y) \\
T &\text{union}(x, y)
\end{align*}
\]

Priorities: (here needed for correctness)

\[
\text{union–find} > (\text{Del}) > (\text{Add})[n/c] > (\text{Add})[m/c], \text{ for } m > n
\]
Minimum Spanning Tree

Basis: Union-find module

\[
\begin{align*}
\{x \leftrightarrow y\} & \quad \text{(Add)} \quad \text{mst}(x, c, y) \\
\text{union}(x, y) & \quad \text{(Del)} \quad \text{mst}(x, c, y) \\
\end{align*}
\]

Priorities: (here needed for correctness)

union-find > (Del) > (Add)[n/c] > (Add)[m/c], for \(m > n \)

Prefix firing count: \(O(|E| + |V| \log |V|) \)
3rd Meta-Complexity Theorem

Programs: as before but priorities of rule instances depend on first atom in antecedent and can be computed from the atom in constant time
3rd Meta-Complexity Theorem

Programs: as before but priorities of rule instances depend on first atom in antecedent and can be computed from the atom in constant time

Theorem [in preparation] Let R be an inference system such that $R^*(D)$ is finite. Then some $R(D)$ can be computed in time $O(\|D\| + \pi_R(D) \log p)$ where p is the number of different priorities assigned to atoms in $R^*(D)$.
3rd Meta-Complexity Theorem

Programs: as before but priorities of rule instances depend on first atom in antecedent and can be computed from the atom in constant time

Theorem [in preparation] Let R be an inference system such that $R^*(D)$ is finite. Then some $R(D)$ can be computed in time $O(\|D\| + \pi_R(D) \log p)$ where p is the number of different priorities assigned to atoms in $R^*(D)$.

Corollary 2nd meta-complexity theorem is a special case
3rd Meta-Complexity Theorem

Programs: as before but priorities of rule instances depend on first atom in antecedent and can be computed from the atom in constant time

Theorem [in preparation] Let R be an inference system such that $R^*(D)$ is finite. Then some $R(D)$ can be computed in time $O(\|D\| + \pi_R(D) \log p)$ where p is the number of different priorities assigned to atoms in $R^*(D)$.

Corollary 2nd meta-complexity theorem is a special case

Proof technically involved; uses priority queues with log time operations; memory usage worse
Further Issues and Questions

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- “real equality” (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
Further Issues and Questions

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- “real equality” (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
Further Issues and Questions

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- “real equality” (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
Further Issues and Questions

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- “real equality” (on the meta-level)
- **how far do we get?**
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
Further Issues and Questions

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- “real equality” (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
Further Issues and Questions

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- “real equality” (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
Further Issues and Questions

- a concept for modules needed (cf. IJCAR paper)
- deletion not always based on redundancy
- “real equality” (on the meta-level)
- how far do we get?
- is deduction without deletion inherently less efficient?
- implementation of instance-based priorities with schematic priorities?
- bounds for memory consumption
- improved meta-complexity theorems
Further Issues and Questions

- A concept for modules needed (cf. IJCAR paper)
- Deletion not always based on redundancy
- "Real equality" (on the meta-level)
- How far do we get?
- Is deduction without deletion inherently less efficient?
- Implementation of instance-based priorities with schematic priorities?
- Bounds for memory consumption
- Improved meta-complexity theorems