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Abstract. We present an efficient algorithm that checks the consistency
of partial descriptions of ordered trees. The constraint language of these
descriptions was introduced by Cornell in computational linguistics; the
constraints specify for pairs of nodes sets of admissible relative positions
in an ordered tree. Cornell asked for an algorithm to find a tree structure
satisfying such constraints. This computational problem generalizes the
common-supertree problem studied in phylogenetic analysis. We present
the first polynomial time algorithm for Cornell’s problem, which runs in
time O(nm), where m is the number of constraints and n the number of
variables.
keywords: tree descriptions, constraint satisfaction, graph al-

gorithms

1 Introduction

Tree description languages became an important tool in computational linguis-
tics over the last twenty years. Grammar formalisms have been proposed that
derive logical descriptions of trees representing the syntax of a string [8, 13, 15].
Membership in a language is then equivalent to the satisfiability of the cor-
responding logical formula. In computational semantics, the paradigm of un-
derspecification aims at manipulating the partial description of tree-structured
semantic representations of a sentence rather than at manipulating the rep-
resentations themselves [9, 14]. One of the key issues in both constraint-based
grammar and constraint-based semantic formalisms is to collect partial descrip-
tions of trees and to solve them, i.e., to find a tree structure that satisfies all
constraints.

Cornell [6] introduced a simple but powerful tree description language, which
contains constraints for dominance, precedence, and equality between nodes, and
disjunctive combinations of these (a formal definition is given is Section 2).
Cornell also gave a saturation algorithm based on local propagations, which
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turned out to be incomplete. For an example of a tree description that shows
this see Section 3.4 in [3].

In this article we present an efficient algorithm that tests satisfiability of a
tree description from Cornell’s tree description language and directly constructs
a solution to the problem instance. A predecessor of this algorithm, which applies
to a restricted language, was presented in [4]. The present algorithm, which solves
the general problem of Cornell’s full tree description language, runs in time
O(nm), where n is the number of variables and m the number of constraints
in the input. The performance is achieved by a recursive strategy that works
directly on the constraint graph, and avoids saturation techniques as in [7, 10]
that are traditionally used in constraint satisfaction.

Another field in computer science where we have to deal with partial infor-
mation about trees is phylogenetic analysis in computational biology. An evolu-
tionary tree for a set of species is a rooted tree, where the leaves are bijectively
labeled with the species from the set. Constructing evolutionary trees from bi-
ological data is a difficult problem for a variety of reasons (see [11]). Many
approaches assume that the evolutionary tree is built from a set of taxa based
on the comparison of a single protein or a single position in aligned protein se-
quences, but very often the resulting tree will be different depending on which
particular protein or position is used. Now several trees, each from a different
protein or position, must be built and be shown to be “generally consistent”
before the implied evolutionary history is considered reliable.

This is the motivation to study the following problem, called the common-
supertree problem [11]. Given is a set S of trees with common leaf set L. The
computational talk is to decide whether there is a tree T on the leaf set L
such that every tree in S is a refinement of T , i.e., can be obtained by a se-
ries of contractions of edges from T . In Section 3, we reduce this problem to a
tree-description problem in a fragment of Cornell’s language and therefore the
algorithm presented here also yields a new algorithm for the common-supertree
problem.

2 Tree Descriptions

The trees considered here are always rooted and we consider the edges as di-
rected, pointing away from the root. The height of a tree is the length of a
longest directed path. By an ordered tree we mean a rooted tree with a linear
order on the children of each vertex. We use the terms left and right to compare
the children of each vertex.

We follow the notation of [2]. The vertices of a tree are denoted by u, v, w.
The expression u ⊳ v means that u is the father of v and u ⊳∗ v (and v ∗⊲ u)
means that u dominates v, i.e., u is an ancestor of v in the tree (including u = v).
We write u ⊳+ v (and v +⊲ u) if u ⊳∗ v and u 6= v. If for two vertices u and v
neither u ⊳∗ v nor v ⊳∗ u, we say that u and v are disjoint, in symbols u ⊥ v. In
this situation we distinguish two cases: either u precedes or succeeds v. A vertex
u precedes a vertex v (and v succeeds u), in symbols u ≺+ v (or v +≻ u), if there
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is a common ancestor of u and v in the tree that has two children w1 and w2

with w1 ⊳∗ u and w2 ⊳∗ v and such that w1 is to the left of w2. We write u ≺∗ v
if either u ≺+ v or u = v. Altogether, in an ordered tree, for every pair u, v of
vertices exactly one of the following relations holds:

u ⊳+ v, u +⊲ v, u ≺+ v, u +≻ v, u = v.

It is important to note that the union of the relations ⊳+ and ≺+ forms a strict
linear order on the set of all vertices of an ordered tree, which is easily seen to
be the “pre-order” that results from a (recursive) tree traversal that lists each
node before its descendants.

We now define partial tree descriptions, due to Cornell [6], that allow to
partially describe the structure of an ordered tree using arbitrary disjunctions
of these five cases. To distinguish clearly between equality in this language and
the common usage of the symbol ‘=’, we denote the former relation by ‘≡’.

Definition 1. A partial tree description (V, C) consists of a set of variables
V and a set C of binary constraints of the form xRy, where x, y ∈ V and
R ⊆ {⊳+, +⊲,≺+,+≻,≡}. A constraint xRy is satisfied by a pair (T, α), where T
is an ordered tree and α : V → T is a mapping from the variables to the vertices
of the tree, if α(x)Rα(y) holds in the tree for some relation R ∈ R. A pair (T, α)
that satisfies all the constraints in C is called a solution for C.

Note that the mapping α in the above definition is not required to be surjec-
tive. In particular, the induced graph on the image of α need not be connected
but can be a forest. An instance that has a solution is called satisfiable or consis-
tent. Figure 1 shows an unsatisfiable instance. Solid arcs stand for the constraint
{⊳+} and dashed arcs for the constraint {≺+,+≻}.

Fig. 1. A constraint graph with no solution.

If the nodes in a tree are the intervals over the real line, we can translate tree
descriptions into a fragment of Allen’s interval algebra [1]. For this, the set of
intervals of the tree is required to be laminar : for any pair of intervals that is not
disjoint, one interval must completely contain the other. In other words, intervals
must not overlap. Dominance between nodes then corresponds to containment
of intervals and disjointness of nodes corresponds to disjointness of intervals.
Allen’s full interval constraint logic is NP-complete in its unrestricted form,
but there are tractable fragments of this logic [5, 12]. The constraint language
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with dominance, disjointness, and non-overlap constraints does not belong to
those tractable fragments. Thus we cannot use the known algorithms for interval
constraints to efficiently solve our problem.

3 An Algorithm for a Restricted Signature

We want to present an algorithm that decides in polynomial time whether a
partial tree description has a solution. In this section we illustrate the idea of our
algorithm for a small fragment of the tree description language. However, as we
shall see below, this fragment is already expressive enough to cover the common-
supertree problem from phylogenetic analysis mentioned in the introduction. In
this reduced constraint language we only allow constraints of the types

x {⊳+} y and x {≺+,+≻} y.

The first constraint is called (strict) dominance and the second disjointness, and
we use the shorthands x ⊳+ y and x ⊥ y, respectively, for these two types of
literals. Thus, such a set of constraints can be viewed as a graph (V ; ⊳+,⊥) with
two types of edges, namely directed edges ⊳+ and undirected edges ⊥. Observe
that the binary relations ⊳+ and ⊥ are now defined as well on the vertices of
a tree as on the nodes of an instance. The reference, however, should always
be clear. In pictures we draw this constraint graph with two different types of
arcs. For a dominance edge x ⊳+ y we draw a directed arc from x to y, for a
disjointness edge x ⊥ y we draw a dashed line without direction. Figure 1 on
the preceding page, for instance, shows such a constraint graph. We emphasize
that the two constraints do not allow for equality, i.e., x ⊳+ y means that in any
solution, x must lie strictly above y.

The basic idea behind our algorithm for solving a constraint graph (V ; ⊳+,⊥)
is to pick a node x of V as the root of our solution, then to decompose the
remainder of V and to recurse on these components, which will become the
subtrees below x. In this view, the following definition comes naturally.

Definition 2. A node x in a set of constraints C is free if C has a solution
(T, α) in which α(x) is the root of T .

By definition, a constraint with a free node is satisfiable. We shall soon see
that under a simple connectivity condition, the converse is also true: a “con-
nected” satisfiable constraint must have a free node, i.e., a node that dominates
all others.

The crucial point here is, of course, in what sense the constraint graph, which
contains directed and undirected edges, should be connected. Let us briefly recall
some conventions. An undirected path in a directed graph may use arcs in any
direction, ignoring their orientation. A digraph D = (V ; E) is strongly (weakly)
connected if there is a directed (an undirected) path from a to b for any two
vertices a, b ∈ V . The subgraph of D induced by a subset S of its vertices is
denoted by D[S]. A strongly (weakly) connected component of D is a maximal
strongly (weakly) connected induced subgraph of D.
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Now, we say that a constraint graph (V ; ⊳+,⊥) is dominance connected if the
digraph (V ; ⊳+) is weakly connected. This notion of connectivity is exactly the
right thing for our desired characterization of free nodes. The following lemma
marks the first step.

Lemma 1. Let C be a set of constraints with a dominance-connected constraint
graph G = (V ; ⊳+,⊥) and let y and y′ be variables in C. In every solution (T, α)
of C there exists a variable x ∈ V such that α(x) ⊳∗ α(y) and α(x) ⊳∗ α(y′)
in T .

Proof. Since the vertices y and y′ are weakly connected in (V ; ⊳+) there exists
a chain of nodes (y1, y2, . . . , yr) that starts at y = y1, ends at y′ = yr, and is
linked by edges (yi, yi+1) ∈ ⊳+∪ +⊲. We prove by induction on r that for every
solution (T, α) of C there exists an index j ∈ {0, . . . , r} with α(yj) ⊳+ α(y0)
and α(yj) ⊳+ α(yr) in T . If r = 0 or r = 1 then we can choose x to be either
α(y0) or α(yr). Otherwise, we can apply the induction hypothesis to the chain
(y1, . . . , yr−1). Thus, there exists a j, 0 ≤ j ≤ r−1, such that α(yj) is a common
ancestor of α(y1) and α(yr−1) in T . If α(yr−1) ⊳+ α(yr) then α(yj) is also
a common ancestor of α(y1) and α(yr), so we can choose x = yj . Otherwise,
α(yr) ⊳+ α(yr−1) in T . Thus, both α(y0) and α(yr) are ancestors of yr−1 in T .
Since T is a tree, it follows that α(yr) ⊳∗ α(yj) or α(yj) ⊳∗ α(yr) in T . In the first
case, we choose x = yr, and in the second one x = yj . ⊓⊔

As promised, we now show that under dominance connectedness, solvability
implies the existence of a free node.

Proposition 1. A satisfiable set of constraints C with a dominance-connected
constraint graph has a free node.

Proof. Assume there is a solution (T, α) for C and consider the nodes of C
whose interpretations are topmost in T with respect to ⊳+. If there is only one,
say x, then the subtree rooted at α(x) is a solution of C, thus contradicting the
assumption that x was not free. If there are at least two topmost nodes x, x′

then α(x) and α(x′) are disjoint in T . Since the constraint graph is dominance-
connected, we can apply Lemma 1. This contradicts the assumption that the
interpretations of x and x′ lie highest in T . ⊓⊔

For our intended algorithm we need a concise graph-theoretic characteriza-
tion of free nodes that can be checked efficiently.

Proposition 2. Let G = (V ; ⊳+,⊥) be the constraint graph of a satisfiable set
of constraints C. Then a node x of C is free if and only if

(C1) there is no arc y ⊳+ x in G and
(C2) there is no edge x ⊥ y in G.

Proof. If there is another y such that y⊳+x, then the vertex x cannot be topmost
in any solution of C, and thus can not be free. If the vertex x is involved in a
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disjointness constraint it can also not be free, since the root of a tree is not
disjoint to the other nodes in the tree.

Conversely, assume that the node x of a satisfiable set of constraints sat-
isfies (C1) and (C2). The dominance-connected components of G[V − {x}] are
also satisfiable and must by Proposition 1 have free nodes. Then we have the
following solution for C: introduce a tree node x and let the solutions of the
dominance-connected components become the subtrees of this node. The dis-
jointness constraints between the different dominance-connected components are
thus satisfied by construction and it is clear from (C1) and (C2) that all the con-
straints on x are also satisfied. ⊓⊔

Solve
`

G = (V ; ⊳+,⊥)
´

// receives a dominance-connected constraint graph G

// and constructs a tree T with mapping α : V → T

pick a node x of G satisfying (C1) and (C2);
if no such free node exists then return “problem has no solution”;
create a new tree node r and let α(x) := r;
compute the dominance-connected components C1, . . . , Ck of G − {x};
for i = 1 to k do

call Solve(G[Ci]) and make the returned root a new child of r;
od

return root r;

Fig. 2. The function Solve for constraints of the type ⊳+ and ⊥.

Figure 2 shows the algorithm for the restricted constraint language with the
two relations ⊳+,⊥. For a dominance-connected constraint graph, the function
Solve first selects a free node x as root and then links the recursively com-
puted solutions to the dominance-connected components Ci of the remainder
G − {x} below the α-image r of x in the correct order. Restricting Solve itself
to dominance-connected inputs is a merely technical convenience. For a non-
connected instance, we can first introduce a dummy node z together with a
⊳+-arc from z to each other node to make the graph connected. This z will then
become the root of the output and since α is not required to be onto, the solution
will be valid also for the original graph without z.

Theorem 1. Let n be the number of nodes and m the number of constraints
in a set of constraints C. In O(nm) time, the algorithm Solve in Figure 2 com-
putes a solution for C if C is satisfiable, and outputs “problem has no solution”
otherwise.

Proof. If the algorithm detects a weakly connected component without a free
node, we know by Proposition 1 that the constraints do not have a solution.
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Otherwise Proposition 2 guarantees that we can proceed and make the node x
satisfying (C1) and (C2) the root of our solution. The running time is dominated
by the repeated computations of the connected components of constraint graphs.
We can use depth first search to compute the connected components in time
O(n + m), and this will be done at most n times. We can assume that n is
smaller than m− 1, otherwise the first call of the algorithm divides the problem
into instances where the assumption holds. Hence the algorithm runs in time
O(nm). ⊓⊔

We finally return to the common-supertree problem from the introduction.
It can be easily formulated with tree description in the restricted language of
⊳+ and ⊥. Let S be a set of trees over a common leaf set L. The variables of
the tree description are the vertices of the trees in S, where the inner nodes
of all the trees become different variables but the leaves are represented by the
same set of variables for all trees. Tree-edges translate to dominance constraints.
Siblings x, y in a tree from S will be related via a x ⊥ y constraint. The size
of the resulting tree-description is clearly O(∆2n), where n is the total number
of nodes in S and ∆ denotes the maximum degree in any tree of S. It has a
solution if and only if there is a common supertree for the trees from S.

4 Reduction to Four Basic Constraints

We now turn to the general problem of solving a set of constraints with the full
power of Cornell’s tree description language. The basic recursive idea for the
algorithm of picking free nodes remains, but the new constraint types lead to
more complicated details.

In order to get control over the 25 potential subsets of the relation set R ⊆
{⊳+, +⊲,≺+,+≻,≡}, we first show how to express each of them by a smaller
language which contains the following four different constraint types only:

x {⊳+, =} y, x {≺+, =} y, (1)

x {⊳+, +⊲,≺+,+≻} y, x {≺+,+≻, =} y.

We reduce each of the 32 original sets either directly to an intersection of con-
straints from (1) or build small gadgets with new dummy variables that can
simulate the original constraint.

The constraints {+⊲, =} and {+≻, =} are simply the first and second con-
straint of (1) flipped, and the singletons {⊳+}, {≺+}, and {=} can be written as
intersections of these. The two extremal sets {+⊲, ⊳+,≺+,+≻, =} and ∅ are not
needed since the former imposes no restrictions on the tree and the latter is, by
definition, unsatisfiable. If we show how to express the constraints

x {⊳+, +⊲, =} y, x {⊳+,≺+,+≻, =} y, (2)

x {⊳+,≺+, =} y, x {⊳+,+≻, =} y

with those in (1) we are done, since the remaining constraints are easily repre-
sentable as intersections of constraints from (1) and (2).
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For each constraint x {⊳+, +⊲, =} y, we introduce a new variable z and replace
it by the two constraints x {⊳+, =} z and y {⊳+, =} z. By the properties of a
tree, these two constraints imply x {⊳+, +⊲, =} y. Conversely, every solution for
the original constraints can be modified to satisfy also the new constraints.

Constraints of the form x {⊳+,≺+, =} y are replaced by the two constraints
x {⊳+, =} z and z {≺+, =} y, where z is a new variable. Similarly, we can replace
x {⊳+,+≻, =} y by the two constraints x {⊳+, =} z and z {+≻, =} y. Finally,
we replace x {⊳+,≺+,+≻, =} y by x {⊳+, =} y and z {≺+,+≻, =} y, where z is
again a new variable.

Thus we can express all constraints in Cornell’s language with the four basic
binary relations from (1). Our algorithm works on tree descriptions consisting of
such basic constraints only. We therefore introduce special names and notation
for these four types:

– x {⊳+, =} y: the dominance constraint x ⊳∗ y,
– x {≺+, =} y: the precedence constraint x ≺∗ y,
– x {≺+,+≻, =} y: the disjoint-or-equal constraint x  y,
– x {⊳+, +⊲,≺+,+≻} y: the inequality constraint x 6≡ y.

Note that from now on, the notions of dominance and precedence relation are to
be considered non-strict, i.e., they stand for reflexive relations.

5 Constraint Graphs and Freeness

Our algorithm for the general language will be similar to the one we discussed
for the restricted setting. Like there, we will recursively construct a solution by
selecting root by root and decomposing remainders into components that become
subtrees. The first important difference is that now several variables may map
to the same tree node. Hence, we shall need a generalized notion of freeness.

Definition 3. A subset S of nodes in a set of constraints C is called free if
there is a solution (T, α) such that S = α−1(r), where r is the root of T .

Like in the restricted setting, we want to show that under a certain connect-
edness condition free sets must exists and further have to find practical char-
acteristics of free sets to identify them algorithmically. To this end, we adapt
the concept of the constraint graph to the changed situation. The simple idea
of weak connectedness with respect to dominance edges must be replaced by a
more complex definition based on an auxiliary graph that contains dominance
and precedence arcs. We define the directed P -graph (V, P ) on V with arc set

P := {xy | C contains x ≺∗ y or x ⊳∗ y or y ⊳∗ x}

and call a set of constraints C dominance connected if its P -graph is strongly
connected.

The following proposition is the analog of Proposition 1 for the restricted
case.
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Proposition 3. Any satisfiable set of constraints with strongly connected P -
graph contains a free set.

Proof. Suppose (T, α) is a solution of C. We consider the set S of nodes in C
that map to the minimum of the linear order ⊳+ ∪ ≺+ in T , i.e., the nodes
that map to the leftmost and topmost vertex u in T . If the vertex u dominates
all vertices in α(V ) then S is actually a free set. We claim that this must al-
ways be the case. So assume for contradiction that there is a variable y ∈ V
such that α(y) is not dominated by u. Since the P -graph of C is strongly con-
nected it contains a path y, x1, x2, . . . , xk from y /∈ S to some xk ∈ S. The
path α(y), α(x1), α(x2), . . . , α(xk) must eventually enter the subtree rooted at
u, with α(xj), say. Then α(xj−1) comes before u in ⊳+ ∪ ≺+, contradicting the
minimality of u. ⊓⊔

For the analogy to Proposition 2, the graph-theoretic characterization of free
sets, we define a directed graph (V, D) (called the D-graph) that is based on the
⊳∗ relation but in addition also takes precedences into account. Precisely, we let

D := {xy | C contains x ⊳∗ y or x  y or x ≺∗ y or y ≺∗ x}.

We remark that the digraphs (V, D) and (P, D) have an interesting symme-
try: D is based on dominance constraints and contains bidirected precedence
constraints, while P is the union of the precedence constraints and all bidirected
dominance constraints. However, a deeper reason for this similarity is elusive.
The purposes of the two digraphs are very different in nature.

The characterization of Proposition 2 now becomes a similar statement about
this D-graph, with the old conditions (C1) and (C2) merged into one, (C). On
the other hand, inequality now has to be handled explicitly, which gives a second
condition, (I), again.

Proposition 4. Let C be a satisfiable constraint. Then S is a free set of nodes
if and only if the following two conditions hold:

(C) there is no edge xy ∈ D such that x /∈ S and y ∈ S and
(I) there is no pair x, y ∈ S such that x 6≡ y.

Proof. The two conditions are clearly necessary because a free set denotes the
root of a tree, which dominates all other vertices, and because a constraint x 6≡ y
explicitly forbids to map x and y to the same tree node.

For the other implication, let S be a set of nodes that satisfies conditions (C)
and (I). Fix an arbitrary linear extension of the acyclic structure on the strongly
connected components of the P -graph without S. Because C is satisfiable, each
of the subgraphs of C induced by these components has a solution. Introduce
a new vertex and add these solutions as subtrees according to this linear order.
The resulting tree satisfies all constraints in the subgraphs and in S and all
dominance, precedence, and inequality constraints between the subgraphs and
between the subgraphs and S. ⊓⊔
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6 The Algorithm

We now turn the Propositions 4 and 3 on free sets of nodes into an algorithm for
Cornell’s full language. From a given input with constraints ⊳∗, ≺∗, , and 6≡, we
first create the D-graph and P -graph and then recursively create a tree by de-
composing the vertex set into dominance-connected components and extracting
free sets as roots.

Figure 3 shows the algorithm, which consists of two procedures, Solve and
Solve con. Initially, for a given instance C, we call Solve(C), which partitions the
variable set into the strongly connected components of P -graph. If the P -graph
of C is strongly connected, the procedure Solve con can be applied to C. The
algorithm contains a statement choose, that influences which free set of nodes is
selected for the solution. We discuss the issue of how to find such a free set in
the running-time analysis below.

Solve(C):

Compute the scc’s of the P -graph of C,
and let C1, . . . , Ck be a linear extension of their acyclic structure
create a new vertex r with children
Solve con(C[Ci]), for 1 ≤ i ≤ k, in this order
return r

Solve con(C):

precondition: The P -graph of C is strongly connected
if no set of nodes satisfying (C) and (I) exists
then return “problem has no solution”
else choose a set of nodes S satisfying (C) and (I)
let r be the root of the tree Solve(C[V − S]) and set α(S) to r

return r

Fig. 3. The function Solve for the full tree description language.

Proposition 5. For a given tree description C the algorithm Solve con of Fig-
ure 3 returns in time O(nm) either a solution of C, if it exists, or it returns
“problem has no solution”.

Proof. The procedure Solve con requires that the P -graph of the input is strongly
connected. Thus, if it returns “problem has no solution,” the constraints were
really unsatisfiable by Proposition 3 on the preceding page. Otherwise, Proposi-
tion 4 guarantees that we can construct a solution by selecting a free set as root.
Because of (C), a free set must be the union of strongly connected components
of the D-graph into which no D-arcs enter. Any strongly connected component
contained in a free set is a free set as well. These strongly connected components
can easily be found by depth-first search in time O(n + m).
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In Solve, the strongly connected components of the precedence graph can be
computed in linear time in the input size as well. These computations have to
be performed on each level of the recursive procedure. Since we take out at least
one vertex in each call of Solve con and since in all calls of Solve con (except
possibly the first call) the overall running time is in O(nm). ⊓⊔
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