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ABSTRACT
Consider a plane graph G, drawn with straight lines. For
every pair a, b of vertices of G, we compare the shortest-
path distance between a and b in G (with Euclidean edge
lengths) to their actual distance in the plane. The worst-case
ratio of these two values, for all pairs of points, is called the
dilation of G. All finite plane graphs of dilation 1 have been
classified. They are closely related to the following iterative
procedure. For a given point set P ⊆ R

2, we connect every
pair of points in P by a line segment and then add to P all
those points where two such line segments cross. Repeating
this process infinitely often, yields a limit point set P∞ ⊇ P .
This limit set P∞ is finite if and only if P is contained in
the vertex set of a triangulation of dilation 1.

The main result of this paper is the following gap theo-
rem: For any finite point set P in the plane for which P∞

is infinite, there exists a threshold λ > 1 such that P is
not contained in the vertex set of any finite plane graph of
dilation at most λ. As a first ingredient to our proof, we
show that such an infinite P∞ must lie dense in a certain
region of the plane. In the second, more difficult part, we
then construct a concrete point set P0 such that any planar
graph that contains this set amongst its vertices must have
a dilation larger than 1.0000047.
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1. INTRODUCTION
Let us consider the following scenario described by D. Epp-

stein in [10]. A typical university campus contains facilities
like lecture halls, dorms, library, mensa, and supermarkets,
which are connected by some path system. Students in a
hurry are tempted to walk straight across the lawn, if the
shortcut seems worth it. After a while, this causes new
paths to appear. Since their intersections are frequented by
many people, they attract coffee shops or other new facili-
ties. Now, people will walk across the lawn to get quickly
to a coffee shop, and so on. A natural question discussed
in [10] is:

(A) What happens if this process of forming intersections
and treading new paths continues?

Eppstein gives a qualitative answer by completely classifying
all those finite point sets in the plane for which this process
comes to a halt. In this paper we strengthen that result by
showing that, otherwise, not only will infinitely many new
intersections be created but these intersections will also lie
dense in a region of positive measure. So actually, part of
the lawn will completely be gone.

In the unfortunate case that the process would not come
to a halt for an initial set of sites, we now assume that stu-
dents could be convinced to stay on the official paths if the
resulting detours, as compared to straight-line walks, were
sufficiently small. In this paper we address this relaxation
of the exact problem above, which has been brought up re-
cently by Ebbers-Baumann et al. [8]:

(B) Could the original campus map be designed in such a
way that the process never starts because the advan-
tage of walking straight is always negligible?

The main result of this paper is a negative answer to Ques-
tion B. For a formal statement, a few precise definitions are
indispensable.

Definition 1. For a point set P ⊆ R
2 let L(P ) denote

the set of all line segments between pairs of points in P . We
define the complete intersection set Ṗ of P to be the union of
P with the set of crossings points of lines in L(P ); formally,



Ṗ = P ∪ S{`1 ∩ `2 | `1, `2 ∈ L(P ) and `1, `2 not parallel}.
Then define P k for all k ≥ 0 by P 0 = P and P k+1 = (P k )̇,
and finally let P∞ :=

S

k≥0 P k. We call a finite point set P

stable if Ṗ = P holds, and stabilizing if P∞ is finite.

We have to exclude intersections of parallel segments in
the above definition for the simple reason that such over-
laps would give one-dimensional intersections and not dis-
crete points. This choice corresponds well with our campus
scenario: four locations on a straight line should not create
any new “crossings” between them.

We can now make our strengthened answer to Question A
precise.

Theorem 1. For every non-stabilizing finite point set P ⊂
R

2, the limit set P∞ lies dense in some region of positive
measure.

In order to capture the relaxed version in Question B, we
need the concept of the dilation of a plane graph.

Definition 2. Let G = (V, E) be a plane graph, i.e., its
vertices are mapped to points in the plane and the edges
are mapped to connecting curves that pairwise do not cross.
The dilation of G is defined as

δ(G) := max
p6=q∈V

dG(p, q)

|pq| , (1)

where dG(p, q) denotes the length of a shortest path in G
connecting p and q, and |pq| is the Euclidean distance.

There are obvious connections between stable and stabi-
lizing point sets and the dilation of plane graphs.

Lemma 1. If a finite point set V is stable then there ex-
ists a unique maximal triangulation T of V and this T is a
graph of dilation 1. Converseley, every dilation-1 graph is a
triangulation and its vertex set is stable. Exactly the subsets
of finite stable sets are stabilizing.

The following definition provides the formal notion behind
Question B.

Definition 3. Let P be a finite set of points in the plane.
The dilation, ∆(P ), of P is defined as

∆(P ) := inf



δ(T )

˛

˛

˛

˛

T = (V, E) finite triangulation
with P ⊆ V

ff

.

We should remark that the dilation of a point set is in-
variant under scaling because the quotient in (1) is. Our
main result now reads:

Theorem 2. Every non-stabilizing finite point set in the
plane has dilation strictly greater than 1.

In other words, this gap theorem states that if a point set
P is not one of the few nicely behaved ones then there exists
a threshold λ > 1 such that P cannot be contained in any
finite plane graph of dilation smaller than λ.

1.1 Related work
The problem of how to connect a given point set by a net-

work of small dilation has been extensively studied in the
context of spanners, where the dilation of a graph is also
called its stretch factor or spanning ratio. There exists a
wealth of results on constructing spanners with a dilation
arbitrarily close to 1, that have other nice properties like,
e.g., linear size, a weight not much exceeding that of the
minimum spanning tree, or bounded degree; see the mono-
graphs [9] and [18]. But these spanners can contain many
edge crossings.

If crossings are not allowed (since bridges are too expen-
sive) one could ask for the plane graph of lowest possible
dilation over the given point set, P . Such a graph can be
assumed to be a triangulation of P , because curved edges
could be pulled taut and adding non-crossing edges cannot
increase the dilation. In his handbook chapter [9], Eppstein
has posed the following open problems.

• (Problem 8) Can the minimum dilation triangulation
of a given point set be computed in polynomial time?

• (Problem 9) How large a dilation can the minimum
dilation triangulation have, in the worst case?

In Problem 9, an upper bound is the dilation of the Delau-
nay triangulation, which has been shown to be less than 2.42
by Keil and Gutwin [14], while a tight bound of π/2 is con-
jectured. A lower bound is

√
2, attained by the vertices of

a square. A partial answer to Problem 8 was recently given
by Eppstein and Wortman [11] who provided a randomized
O(n log n) algorithm for computing an optimal star center
for n points in d-space.

The problem setting we consider in this paper can be seen
as the “Steiner point” variant of Problem 9 above: Instead of
looking for an optimal triangulation on just the given point
set, we allow ourselves the introduction of a finite number of
auxiliary “Steiner points” to help reduce the overall dilation.
The crucial point here is, of course, that dilation amongst
the new points, which we introduce to reduce detours for the
given vertices, also needs to be controlled. Theorem 2 shows
that essentially every point configuration has an intrinsic ir-
regularity that cannot be smoothed out. Ebbers-Baumann
et al. [8] have studied Problem 9 in this model. They pro-
vided an upper bound of 1.1247 but left open the question of
a non-trivial lower bound for finite point sets. The present
paper fills this gap.

We have already emphasized that a point set is stabilizing
if and only if it is contained in the vertex set of a triangula-
tion of dilation 1. Figure 1 shows the complete classification
of such triangulations from [10]. There are two infinite fam-
ilies and one exceptional case.

Quite recently, a related measure called geometric dila-
tion has been introduced, see [1, 3, 4, 5, 6, 7], where all
points of the graph, vertices and interior edge points alike,
are considered in computing the dilation. The small dif-
ference in definition leads to rather different results. For
example, plane graphs of minimum geometric dilation tend
to have curved edges. Yet, it is interesting to observe that
in this model non-trivial upper and lower bounds could be
established. Each finite point set can be embedded into a
plane graph of geometric dilation ≤ 1.678, and there are
point sets for which each plane graph containing them has



Figure 1: The triangulations of dilation 1.

a geometric dilation ≥ (1 + 10−11)π/2; see [3, 7]. These
results are based on methods from convex geometry that do
not apply here.

For a point set P in general position we can expect a bi-
quadratic number of crossings in the complete graph C(P ),
due to the Crossing-Number Theorem; see, e. g., Matoušek
[16]; but this result does not imply where the crossing points
are located. Bezdek and Pach [2] have studied iterated in-
tersections of unit circles. Ismailescu and Radoičić [12] have
recently shown that the iterated construction of the inter-
sections of all lines through the point pairs of a given set
P is dense in the whole plane, except for two special cases.
Since their methods heavily use intersection points that lie
outside the connecting line segments, we cannot adapt them
to our problem. In fact, we shall see that our Theorem 1 is
actually a stronger statement and implies the result of [12].

1.2 Overview
The rest of this paper is organized as follows. In Section 2

we prove that for each set P of five points in convex position,
their limit set P∞ lies dense in the convex hull of P 1; see
Figure 2. This result has independently been shown by Ka-
mali [13] by different methods. As a consequence, we obtain
the density result stated in Theorem 1. This also yields, as
a byproduct, a new simple proof for the density result on
iterated line intersections from [12].

In Section 3 we consider triangulations whose dilation is
almost equal to 1, and show that they contain good ap-
proximations of the complete intersection sets P k, for any
finite subset P of vertices, and for each fixed order k. Those
results form the bridge between Theorem 1 about dense it-
erated intersections and Theorem 2 about point sets with
dilation greater than 1. The concept of “approximations” of
point sets will be required frequently throughout this paper,
so let us introduce a formal notion.

Definition 4. We say that a set Q ⊆ R
2 is an ε-cover of a

set P ⊆ R
2 if the (closed) ε-neighborhood of every point of

P contains a point of Q.

In other words, Q is an ε-cover for P if the (directed)
Hausdorff distance from P to Q is at most ε.

In Section 4 we provide a lower bound to the Steiner-
point version of Problem 9 above by constructing a point set
of dilation larger than 1.0000047. Precisely, the set of 200
points evenly placed on the boundary B of the unit square
turns out to have this property (Theorem 5 and Corollary 1).

Our construction uses the following novel technique. We
show that if some set V is an ε-cover for B (for some suffi-
ciently small ε) then the point set V 2 approximates a scaled
copy B′ of B with a tolerance smaller than the scaling factor
times ε. If, in addition, V is the vertex set of a triangulation
of sufficiently small dilation, then, by the result obtained in
Section 3, the set V 2, and therefore B′, are closely approx-
imated by vertices in V . By infinite descent, this argument
shows that V cannot be finite.

Finally, we combine the above results to prove that for
each point set P that is not contained in the vertex set of
one of the triangulations in Figure 1, there exists a bound
λ > 1 such that each finite plane graph containing P in its
vertex set has dilation at least λ. We conclude with some
open problems and suggestions for further research.

2. THE DENSITY OF THE SET OF
ITERATED CROSSING POINTS

We begin with the density results for dilation 1. Any set
of four points in the plane is easily seen to be stabilizing.
So let us consider five points in convex position and show
that their limit is dense. The generalization to arbitrary
non-stabilizing point sets will be easy.

Theorem 3. For any set P of five points in convex posi-
tion, the limit P∞ lies dense in the region A = conv(P 1\P ).
(See Figure 2.) By compactness, this means that for every
ε > 0, there exists an index k such that the ε-neighborhood
of every point in A contains a point from P k, i.e., P k is an
ε-cover for A.

Figure 2: Five points in convex position with their
dense limit shaded.

Proof. We show that some P k is an ε-cover for the bound-
ary of the region A. Then the claim for the interior of A
immediately follows.

Therefore consider the configuration in Figure 3. We as-
sume that the two points x and y there lie in some P j and
so x̄ and ȳ, their projections onto the boundary line ab, lie
in P j+1. Starting from these four points, we now perform a
sequence of line intersections to create a new point z̄ on the
boundary ab, between x̄ and ȳ, that shall split the segment
x̄ȳ approximately in half.

As shown in the figure, we form pairs of intersection points
xi, yi along the lines xx̄ and yȳ by zig-zagging between v and
w. This way we can obtain a pair xt, yt that lies arbitrarily
close to the line ab so that the line segments x̄ȳ and xtyt are
almost parallel and also, the distances |xtx̄| and |ytȳ| are
much smaller than |x̄ȳ| and |xtyt|.



v w

u

a b

x
y

x1

y1

x2

y2

x̄ ȳ
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Figure 3: Zig-zagging towards the boundary seg-
ment ab.

For the resulting elongated quadrangle x̄ȳytxt we form
the intersection z of the diagonals xtȳ and ytx̄, as shown in
Figure 4. The projection of z (along the segment zu) onto
the line ab yields the desired point z̄ between x̄ and ȳ on the
boundary ab.

x̄ ȳz̄

z

xt

yt

Figure 4: Constructing the splitting point z̄ between
x̄ and ȳ.

Since the pair xt, yt could be pressed arbitrarily close to-
wards the line ab, the point z̄ can be placed arbitrarily close
to the exact center of the segment x̄ȳ. The clue here is that
the actual slopes of the segments ux, uy, and uz become ir-
relevant for the position of z̄ when we make the quadrangle
thin enough.

In order to cover the whole segment ab, we first apply
the above construction with the corner points x̄ = a and
ȳ = b, using the P 1-points c and d as x and y, respectively.
This yields a pair z̄, z collinear with u such that z̄ splits
the segment ab almost exactly in half. Then we repeat the
construction on the two segments az̄ and z̄b and recurse on
subsegments. Note that each step of this process needs the
inner points x and y in order to create the subdivision z̄ of
the segment x̄ȳ. But since the point z̄ is created together
with its interior partner z, those points are always available.

Eventually, after having subdivided the whole boundary
of A to a sufficiently fine resolution, we easily cover the inte-
rior of A by intersections of connections between boundary
points.

Now the general density result of Theorem 1 follows from
the easily verified fact that for any non-stabilizing point set
P , the set P 4 must contain five points in convex position.

2.1 A related concept: exterior intersections
If the definition of the intersection set Ṗ was modified

to include all intersections of infinite lines through pairs

of points (instead of connecting segments, only), we would
be able to create new points outside the convex hull of the
initial set P . This setting was investigated by Ismailescu
and Radoičić in [12]. They proved that except for two ex-
ceptional cases, all point sets grow densely into the whole
plane.

Theorem 4 (Ismailescu and Radoičić, 2004). The
limit set of line intersections of a point set that contains
four points, one of them in the interior of the convex hull of
the others, is everywhere dense in the whole plane.

We remark that our Theorem 3 directly implies this re-
sult, simply because the dense region A in the pentagon can
be used to shoot at any point in the plane with arbitrary
precision. (The initial five-point configuration required for
our result is easily obtained from the four points of Theo-
rem 4 in a few steps.) This gives a very simple new proof
for Theorem 4, which in [12] requires almost ten pages of
geometric construction and algebraic argument.

3. APPROXIMATING EXACT
INTERSECTIONS

The above density results rely crucially on knowing the
exact intersection points as they are guaranteed by dilation
1. Next we show that if we allow for only slightly larger
dilation, we can still get arbitrarily good approximations of
the exact results.

This fact is based on the following observation. Let T =
(V, E) denote a triangulation of dilation δ. By definition,
each pair of vertices p, q ∈ V is connected by a path π(p, q)
in T whose length does not exceed δ · |pq|. In particular, for
each vertex t on π, we know that

|pt| + |tq|
|pq| ≤ δ

holds. Thus, path π is contained in the ellipse of diameter
δ|pq|, whose foci are p and q; see Figure 5.1

The width of this ellipse is equal to w = |pq|
√

δ2 − 1; it
tends to zero as the dilation tends to 1. This has a useful
consequence.

Suppose that vertices p, w, q, v of T are in convex position,
and that dilation δ is sufficiently small. Then two shortest
paths π(p, q) and π(v, w) in T must cross at some vertex t
that is contained in the intersection of the ellipses. Clearly,
the smaller dilation δ is, the closer must vertex t be to the
crossing point, z, of the segments pq and vw.

Lemma 2. For every finite point set P ⊆ R
2, every nat-

ural number k, and any ε > 0, there exists a bound δ > 1
such that the following holds. If T = (V, E) is a triangula-
tion of dilation δ(T ) ≤ δ such that V contains P , then V is
an ε-cover for P k.

Proof. Otherwise, there would be a sequence of trian-
gulations Tn = (Vn, En) of dilation δ(Tn) ≤ 1 + 1

n
such

that each vertex set Vn contains P but none of them is an
ε-cover for P k. For each crossing point ai, 1 ≤ i ≤ t, of
P 1 we can find a sequence (ai,n)n, where ai,n ∈ Vn, such
that limn→∞ ai,n = ai, by the ellipse argument from above.

1The diameter of an ellipse with focal points p, q denotes
the constant sum |pb| + |bq|, where b is any point on the
boundary.
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Figure 5: In a triangulation of dilation δ, the short-
est path between vertices p and q is contained in an
ellipse of width |pq|

√
δ2 − 1.

Now, let bj be a crossing point in P 2; we can find in each
complete intersection set of the set {ai,n; 1 ≤ i ≤ t} ⊆ Vn an
element b′j,n such that limn→∞ b′j,n = bj . By the same argu-
ment as before, each set Vn contains some vertex bj,n near
b′j,n such that limn→∞ bj,n = bj holds, too. Since the total

number of points in
Sk

i=1 P i = P k is finite, this argument,
repeated k times, shows that some set Vn, of large enough
index n, will contain a subset that is an ε-cover for P k—a
contradiction.

4. CONSTRUCTING POINT SETS OF
DILATION LARGER THAN 1

Let us quickly recall the central definitions from the pre-
ceding sections. The dilation, ∆(P ), of a finite point set
P is the infimum of the dilations of all finite triangulations
containing P amongst their vertices. We say that a set Q is
an ε-cover for some point set P if each point of P has a point
of Q in its ε-neighborhood. Finally, P k denotes the set of all
crossing points that result from iterating the construction of
the complete set of intersections k times, starting with point
set P .

The goal of this section is to provide concrete point sets
Q whose dilation ∆(Q) can be bounded away from 1. In
principle, it could be quite conceivable that by adding an
astronomical number of points to a given point set P , we
could embed P in a triangulation with dilation arbitrarily
close to 1. Adding more and more points could help to
reduce the dilation arbitrarily.

Consider, for example, the 10-point triangulation for the
corners of a regular 5-gon in Figure 4. This graph, due to
Lorenz [15], is the best known embedding for five points in
regular position and yields a dilation of 1.02046. Could it be
possible to produce arbitrarily better constructions by using
arbitrarily many additional points?

Figure 6: An embedding of five points in regular
position into a triangulation of dilation 1.02046, due
to Lorenz [15].

Think of the construction of such a low-dilation a trian-
gulation T = (V, E) with V ⊇ P for a given point set P as
an iterative process, similar to the construction of intersec-
tion sets P k. In order to satisfy a given upper bound on
the dilation of T , we would have to introduce a new “inter-
section point” x for every quadruple of the point that are
already verices of T . However, in contrast to the dilation-1
case, we have some freedom in choosing the exact position
of this point x, as characterized by the ellipse construction
from the preceeding section. It could be possible that a care-
ful choice of all those “near intersection points” eventually,
after finitely many steps, produces a stable set of points.

Our approach to showing that such refinements are not
possible, is to provide a set B that exerts a certain stiffness
with respect to the above process; in the sense that if the
vertex set of a low-dilation triangulation covers B sufficiently
closely, then it must also cover a smaller copy of B.

Lemma 3. There are values 0 < a < A, 0 < ε < a/2, and
1 < δ, such that the following holds. Let V be a point set
such that

1. V is an ε-cover for the boundary B of a square of side
length A + a and

2. V is vertex set of some triangulation T of dilation ≤ δ.

Then V is an A−a
A+a

· ε-cover for the boundary B′ of a smaller
square of side length A − a, centered in B.

The crucial point about Lemma 3 is that, relatively to
the sidelength of the respective box, the precision at which
the smaller box B′ is covered by V , is no worse than the
precision at which the big box B is covered. This will allow
us to apply the lemma recursively to smaller and smaller
boxes, producing infinitely many points in V .

Proof of Lemma 3 (sketch). Here we present the ideas
behind the proof; the technical details are given in the Ap-
pendix.

Let v be a point on the lower horizontal edge, e, of the
smaller square B′, and let w denote the point on B below v;
see Figure 7. Since V is an ε-cover for B, the ε-neighborhood
of w contains some point p of V . As we move a point t from
left to right along the upper edge of B, there is a position
where the closure of t’s ε-neighborhood contains two points,
q and r, of V such that segment pq crosses edge e to the left
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Figure 7: Including point v in a wedge of segments
that connect points of V .

of v, whereas pr crosses to the right. By the law of rays, the
distance ` between these crossing points, i and j, roughly
equals

` ≈ a

A + a
|qr| ≤ a

A + a
2ε. (2)

The crucial fact is that by choosing the parameters a and A
appropriately, we can make sure that the factor 2a

A+a
in (1)

is smaller than the scaling factor A−a
A+a

of B′.
This observation is put to work in the following way. First,

we include each of the four corners of square B′ in both a
vertical and a horizontal wedge. The crossings of the wedge
boundaries are points of V 1 and approximate v to an error
of—roughly—a constant times `, which is even more accu-
rate than claimed in the lemma. This gives us some slack for
approximating these crossing points by points of V , using
precondition 2 of Lemma 3 and Lemma 2 with k = 1. If the
value, δ, of the dilation is chosen sufficiently small, we obtain
four points a, b, c, d of V that approximate the corners of B ′

to an error still smaller than the bound A−a
A+a

· ε we need. We

draw the edges of the square (a, b, c, d), and use them, in-
stead of the ideal edges of B′, to form intersections with the
wedge boundaries depicted in Figure 7. Again, the resulting
crossing points are in V 2 and can thus be approximated by
points of V by the same argument as before. This shows
that V does indeed contain a set that is an A−a

A+a
· ε-cover for

B′, as desired.

We observe that the values of a, A, ε, δ, for which Lemma 3
is valid, allow for simultaneous scaling of a, A, and ε, while
the dilation δ remains fixed.

Theorem 5. Let ε and δ be values such that Lemma 3
is valid for a, A, ε, δ. If point set Q is an ε-cover for the
boundary of a square of side length A + a then Q must have
a dilation ∆(Q) > δ.

Proof. If ∆(Q) were less than δ then there would be a
triangulation T with finite vertex set V containing Q such
that δ(T ) ≤ δ. By Lemma 3, V approximates, with greater
precision A−a

A+a
· ε, the boundary B′ of a square scaled down

by the factor A−a
A+a

, that is symmetrically included in B. The

condition ε < a/2 implies that the points of V approximat-
ing B′ are different from those that approximate B. Since
Lemma 3 can be applied ad infinitum, V must be an infinite
set—a contradiction.

After working out the details of the proof of Lemma 3—
which we do in the Appendix—one can easily verify that its
claim is true for the values a = 1, A = 15, ε = 0.16, and
δ = 1.0000047. Clearly, the condition on Q in Theorem 5

can be easily met by the set of
˚

4(A+a)
2ε

ˇ

points evenly spaced
along the boundary of a square of side length A + a. Thus,
we obtain concrete examples like the following.

Corollary 1. The set Q of 200 points evenly spaced on
the boundary of a square is of dilation ∆(Q) > 1.0000047.

5. LOWER DILATION BOUNDS FOR
GENERAL POINT SETS

Now we are ready to prove our main result that was stated
as Theorem 2 in the introduction.

Theorem 2 (Gap Theorem). Every non-stabilizing finite
point set in the plane has dilation strictly greater than 1.

Proof. Let P be a non-stabilizing point set. By The-
orem 1, the limit P∞ of P lies dense in some region R of
the plane. For some L, we can inscribe, in R, the boundary
B of a square of edge length L. Now let a, A, ε, δ1, where
L = A + a, be values for which Lemma 3 holds. There ex-
ists a finite order k such that P k is an ε/2-cover for B. By
Lemma 2, there exists a δ2 such that for each triangulation
T of dilation δ(T ) ≤ δ2, whose vertex set V contains P , this
set V is actually an ε/2-cover for P k. Consequently, V is
also an ε-cover for the boundary B, and Theorem 5 implies

δ1 < ∆(V ) ≤ δ(T ) ≤ δ2.

Hence, there cannot be a triangulation T of dilation less
or equal min(δ1, δ2) whose vertex set contains P . In other
words, ∆(P ) > min(δ1, δ2).

6. OPEN PROBLEMS
We have shown that, with the exception of some special

cases, finite point sets have a dilation strictly larger than 1,
and we have provided an example set whose dilation is at
least 1.0000047. How to compute the dilation ∆(P ) of a
given point set P , remains an open problem. Even for the
simplest non-trivial case, the vertices of a regular 5-gon, the
precise value is not known. The best embedding known is
the one from Figure 4.

Another interesting question is whether the the value ∆(P )
is always attained by some triangulation or whether there
are cases where ∆(P ) can only be obtained as a limit. If so,
are there upper bounds on the weight of the approximating
triangulations? Finally, it would be nice to have results on
constructing good spanners, with or without Steiner points,
if the number of crossings is bounded. Such results would
not only be of theoretical interest; they would also be very
useful for the design of real transportation networks.
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APPENDIX
Here we provide the technical details of the proof of Lemma 3.
They are necessary for computing concrete values of the pa-
rameters a, A, ε, δ for which this lemma holds and thus, for
obtaining Corollary 1.

Proof of Lemma 3. Let v be a point on the lower hor-
izontal edge, e, of B′, and let w be the point on B below
v, as shown in Figure 7. Since V is an ε-cover for B, there
is a point p ∈ V in the ε-neighborhood of w. Let t ∈ V be
a point on the upper horizontal edge of B whose (closed)
ε-neighborhood contains two points q, r of V such that seg-
ment pq passes to the left of v, and pr passes to the right
(as we move t from left to right along the upper edge of B ′

there must be a position where the switch occurs).

ξ

w

v

B B′

`

p

q

r

ε

A

a

t

ε

e

L1

L2

|η|

Figure 8: Considering bounding boxes.

We are interested in the maximum distance, `, between
the intersection points i, j of pq and pr with edge e, and in
the smallest possible angle, ξ, between pq, pr and the X-axis.
To simplify computations, we include the ε-neighborhoods
in their bounding boxes. Also, we move p to the left edge
of the lower box, we place q, r in extreme positions in the
upper box, and we move the upper box to the right until pq
passes through v; see Figure 8. This can only increase ` and
decrease ξ.

Let v be the origin. Then the lines L1, L2 through pq, pr
are given by the equations

L1(X) =
a − η

ε
X

L2(X) =
(a − η)(A + a − ε − η)

ε(A + 3a + ε − 3η)
X

−2(a − η)(a − ε − η)

A + 3a + ε − 3η
,

where η ∈ [−ε, ε] parametrizes the height of p in its box. It
turns out that the size of ` is maximized for η = −ε, which

leads to

` =
2ε(a + 2ε)

A + a
,

whereas the angle ξ is minimized for p in the upper left
corner of its box, which results in

tan ξ =
(a − ε)(A + a − 2ε)

ε(A + 3a − 2ε)
.

Next, we consider the pair of points p, r of V . By precon-
dition 2 of Lemma 3, there is a path of length ≤ δ · |pr| in
triangulation T that connects p and r. This path must be
completely contained in the ellipse of diameter δ|pr| with foci
p and r. Since p, r are at distance at most (A+a+2ε)/ sin ξ,
the ellipse is of width at most

2 · b =
A + a + 2ε

sin ξ

p

δ2 − 1;

see Figure 9.

ε

r

p

A + a

b

ξ

Figure 9: The ellipse with foci p and r and diameter
δ|pr|.

Now let v denote the lower left corner of B′ and consider
the vertical wedge including v. Arguing very generously,
we know that within distance ` of v, an edge connecting
two points of V (namely p, r) of angle at least ξ is passing
through the lower edge of B′. Symmetrically, we can con-
sider the horizontal wedge containing v; see Figure 10. If
we surround each of these two segments by a strip of width
2b, we can be sure that the closest point to v in V can-
not be further away from v than the furthest point, m, in
the intersection of the strips. Applying the law of sines to
the triangle with vertices v, c, m depicted in Figure 10, we
obtain for D = |vm|:

D

sin ξ
=

` + b
sin ξ

sin(ξ − π
4
)
, hence

D = (` +
b

sin ξ
)

√
2

1 − cot ξ
.

Thus, we have obtained the following intermediate result.
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Figure 10: The closest point to v in V is at most
distance D = |vm| away from v.

Lemma 4. V is a D-cover for the four corners of the
small square with boundary B′, where D is given by the above
expression.

Finally, we approximate an arbitrary point v on the lower
edge of B′ in the following way. By Lemma 4 there exist
points d, d′ ∈ V that approximate the lower corner of B′ to
an error of D. Clearly, |dd′| ≤ A−a+2D, so that the ellipse
with foci d, d′ of diameter δ|dd′| is of width at most

2b′ = (A − a + 2D)
p

δ2 − 1.

We consider the intersection of the segment dd′ with the
least steepest edge, pr, of the vertical wedge depicted in
Figure 8. Again, a point of V must be contained in the
intersection of the box of width 2b′ around segment dd′ with
the box of width 2b centered at pr; see Figure 11.
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Figure 11: The distance from v to the closest point
in V is at most |vy|.

Let y denote the furthest point to v in the strip intersec-
tion. Its vertical height over edge e equals H := D + b′;
hence, |zy| = H/ sin ξ, and from the law of cosine we obtain

F := |vy|

≤
s

(` +
b

sin ξ
)2 + (

H

sin ξ
)2 + 2(` +

b

sin ξ
)(

H

sin ξ
) cos ξ.

Using the previous equations, the values of F can now be
numerically evaluated, and shown to be less than ε′ := A−a

A+a
ε

for suitably chosen parameters. For example, for a = 1, A =
15, ε = 0.16 and δ = 1.0000047 we obtain F = 0.139904,
which is less than ε′ = 0.14. This completes the proof of
Lemma 3.


