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Abstract. Consider a geometric graph G, drawn with straight lines in
the plane. For every pair a, b of vertices of G, we compare the shortest-
path distance between a and b in G (with Euclidean edge lengths) to their
actual Euclidean distance in the plane. The worst-case ratio of these two
values, for all pairs of vertices, is called the vertex-to-vertex dilation of G.
We prove that computing a minimum-dilation graph that connects a
given n-point set in the plane, using not more than a given number m
of edges, is an NP-hard problem, no matter if edge crossings are allowed
or forbidden. In addition, we show that the minimum dilation tree over
a given point set may in fact contain edge crossings.
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1 Introduction

Given a set P of n points in R2, one of the basic problems is to find a geometric
network G = (P, E) that provides good connections between the points in P , at
low cost.

Often, the quality of connections is measured as follows. For any two points,
a and b, of P , let πG(a, b) be a shortest path from a to b in G, where the length
of a path is given by the sum of the Euclidean lengths |pipi+1| of its edges
ei = {pi, pi+1}. Then

δG(a, b) :=
|πG(a, b)|
|ab|

denotes the dilation of a, b in G, and

δ(G) := max
a 6=b∈P

δG(a, b)

is the vertex-to-vertex dilation of G. This value is also known as the stretch
factor or the spanning ratio of G; it should not be confused with the geometric
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dilation that takes all points of the network into account, vertices and interior
edge points. In this paper, the cost of a network G will be measured by the
number of its edges, |E|. Alternative cost measures would be the weight, i. e.,
the sum of all edge lengths, the diameter, the maximum degree, etc.

Clearly, the complete graph over P has optimal dilation 1 but its number of
edges is, in general, in Ω(n2).3 On the other hand, spanning trees realize the
minimum edge number n − 1, but they cannot offer good connections. In fact,
each tree T containing the vertex set of the regular n-gon has dilation δ(T ) > 1.57
for n = 5, while δ(T ) ∈ Ω(n) holds for larger n; see Ebbers-Baumann et al. [7]
and Aronov et al. [1].

In the framework of spanners it has been shown that one can (almost) com-
bine the merits of both solutions, and efficiently construct networks of dilation
1+ε that have only O(ε−2 ·n) many edges; for surveys, see the handbook chapter
by Eppstein [8] or the forthcoming monograph by Narasimhan and Smid [13].

In this paper we are interested in the computational complexity of construct-
ing good geometric spanners. More precisely, we study the following problems.

Definition 1. Given a finite point set P in the plane, a threshold δ > 1 and a
parameter m ≥ |P | − 1,

– the decision problem DilationGraph asks, whether there exists a geometric
graph with vertex set P , that has dilation at most δ and contains at most m
edges

– the decision problem PlaneDilationGraph asks if there exists a crossing-
free geometric graph with the same properties.

In this paper we prove that both DilationGraph and PlaneDilationGraph
are NP-hard. It is interesting to observe that the number |E| of edges we need,
in order to prove NP-hardness, is only slightly larger than the minimum number
|P | − 1. This fits nicely to a recent result by Aronov et al. [1], which also states,
in a different way, that few extra edges matter a lot in constructing spanners.
They proved that with n−1+k edges, where 0 ≤ k < n, a dilation of O(n/k + 1)
can be achieved, which is optimal.

A lot of work has been done on the complexity of finding spanners of low
dilation and weight in general graphs. Closely related to our work is a result
by Brandes and Handke [2]. Building on previous work by Cai [3], they proved
the following fact for weighted graphs. For each fixed rational number δ ≥ 4,
it is an NP-complete problem to decide if a given graph H contains a planar
subgraph G, whose weight does not exceed a given bound W , such that for any
two vertices v, w of H the relation |πH(v, w)| ≤ δ · |πG(v, w)| holds, where the
length of a path is given by the sum of its edge weights.

Our paper extends this result to the (more restrictive) geometric case where
H is the complete graph over n points and edge weights are Euclidean lengths.
It implies one of the recent results by Gudmundsson and Smid [11] that it is
NP-hard to find a δ-spanner with ≤ m edges in a given geometric graph.
3 If m points are collinear we need only m − 1 edges to build a connecting chain of

dilation 1.



Cai [3] and Cai and Corneil [4] have studied the problem of finding tree
spanners of dilation ≤ δ in weighted graphs. They proved that the decision
problem is NP-complete for any δ ≥ 4, but polynomially solvable for δ = 2,
while the case δ = 3 seems to be open. The corresponding geometric problem
appears to be rather complicated. This may be due to the surprising fact that
the minimum dilation tree over n points in the plane may contain edge crossings,
as we shall prove in Section 4, thus solving an open problem stated by Eppstein
in [8], p. 444.

While working on the revision of this paper we learned that this fact has
also been observed by Cheong et al. [6]. They can show that constructing the
minimum dilation tree is NP-hard, too. On the other hand, Eppstein and Wort-
man [9] showed how to compute, in expected time O(n log n), a star of minimum
dilation for n points.

The rest of this paper is organized as follows. In Section 2 we derive some
technical results that will be needed in the reduction; Section 3, the main part,
contains the reduction from Partition to DilationGraph; and Section 4 pro-
vides a point set whose minimum-dilation tree has a crossing. We close with
some open problems in Section 5.

2 Technical Lemmata

Throughout this section, P denotes a finite set of points in the plane.

Definition 2. (i) A geometric network G = (P, E) with dilation δ(G) ≤ δ will
be called a δ-graph for P . A δ-graph G = (P,E) with |E| ≤ m edges will be called
a (δ,m)-graph for P .
(ii) The δ-ellipse of two points a, b in the plane is the set of all points x satisfying
|ax|+ |bx| ≤ δ · |ab|.

Lemma 1. Each shortest path πG(a, b) in a δ-graph G for P is contained in the
δ-ellipse of a, b.

Proof. For each vertex v on πG(a, b) the inequality

δ ≥ |πG(a, b)|
|ab| ≥ |av|+ |vb|

|ab|
implies that v is contained in the δ-ellipse of a, b. ut

Now we show how to enforce that certain edges are contained in minimum-
weight (δ,m)-graphs for P , using geometric properties.

Lemma 2. Let a, b be two points in P such that all points of P that are contained
in the δ-ellipse around a, b, lie on the line L through a and b, but not between
a and b. Then the edge ab is contained in any (δ,m)-graph for P of minimum
weight.



Proof. Assume for contradiction that there is no edge between a and b in some
minimum-weight (δ,m)-graph G for P . Let π be a shortest path from a to b in
G. By Lemma 1 and by assumption, all vertices of π lie on L, but none of them
between a and b. Let q1, . . . , qt be the sequence of these vertices, sorted by their
order on L (which is not the order in which they occur on π; for example, q1

need not be equal to a or b!). Let G′ result from G by replacing the edges of π
with the edges (qi, qi+1) for 1 ≤ i ≤ t− 1. This transformation does not increase
the G-distance of any point pair in P because for each edge of π there exists a
concatenation of collinear edges in G′. Thus, G′ is a (δ,m)-graph for P . On the
other hand, it is clearly of smaller weight than G—a contradiction. ut

3 The Reduction

We shall prove the NP-hardness of DilationGraph and PlaneDilation-
Graph by a reduction from the Partition problem:

Given a set S of n positive integers with
∑

r∈S r even, decide whether there
exists a subset T ⊆ S such that

∑
r∈T r =

∑
r∈S\T r.

Presented with an instance of Partition involving n integers, we are going
to construct a planar point set P of size 5919 · n− 4214. Roughly, this point set
P results from densely sampling a plane straight line drawing that consists of
O(n) segments, as shown in Figure 6. It takes |P |−n− 2 small edges to connect
adjacent sample points on the long segments. If a partition exists for the given
instance, we can carefully add 2n further edges, two in each of the n bubbles
depicted in Figure 6, to ensure that the resulting graph is of dilation ≤ 7.

Conversely, suppose that the class of (7, |P | + n − 2)-graphs for P is not
empty; then it contains a graph of minimum weight. By Lemma 2, |P | − n − 2
of its edges are forced to form the long segments. Since the dilation is ≤ 7, the
remaining 2n edges must be placed inside the bubbles, and their positions must
correspond to a partition of the integer set S. In particular, the graph must be
plane. These properties will become evident below.

Our construction depends on n and on the size of the maximum element rmax

of S, and it uses some scaling factors that will be stated as negative powers of
10. Let λ be the smallest integer greater than or equal to 8 for which

max(105rmax, 2nr2
max) < 10λ

holds. In particular, this ensures r · 10−λ < 10−5 for all r ∈ S. Observe that
exponent λ depends linearly on the bit length of the partition instance (which
is bigger than n and the bit length of rmax).

The basic idea behind our reduction is to arrange points along two long
U-shaped paths like in Figure 1.

The vertical baselines of the two U’s will be interrupted by horizontal gadgets—
the bubbles depicted in Figure 6, one for each element r ∈ S. Each gadget will
stretch horizontally over both U’s. It can offer a short cut of ≈ r · 10−λ to either
the left U, or to the right U—but not to both, since this would cause the inner
part of the gadget to have a dilation > 7.



Fig. 1. A double U of intended dilation 7.

Consequently, both U’s can receive the same total short cut, approximately

P :=
1
2

∑

r∈S

r · 10−λ,

if and only if set S admits a partition. After carefully adjusting the lengths of
the horizontal edges of the U’s, this will become equivalent to both U ′s having
a dilation ≤ 7 at their respective endpoints.

3.1 The choice gadget

The core part of our reduction is the choice gadget, which realizes the selection of
an element r ∈ S for the subset T from the given Partition instance. Basically,
such a gadget consists simply of two horizontal densely sampled lines, with a
larger gap in the upper row. Figure 2 shows the relative lengths and distances
of the respective parts. The three segments au, vc, and bd are sampled with a
regular spacing of 10−2, giving a total of 1703 points.

1

3 1 1 1

a

b

c

d

3

u vx y

x′ y′

Fig. 2. The choice gadget (with lengths annotated).

Assume we want to connect this point set to a tree, i.e., with |P | − 1 edges
so that the dilation is exactly 7—the same threshold as is intended on the global
scale. By Lemma 2, we know that, because the three line segments are very
densely sampled, in a minimum weight graph we must have an edge between
any pair of direct neighbors on those segments. This leaves just two more edges
for connecting the segments.

There must be at least one edge from top to bottom, so let’s assume that
there is such an edge, e, incident to a point on the line between a and u. Then
the second edge cannot touch segment au, too, because otherwise the resulting
path from c to d would be more than 10 units long. Hence, there must also be
an edge f between the upper right segment vc and the bottom segment bd.



Taking the dilation of the points u and v into consideration, too, we see that
a dilation of 7 can only be achieved if the edges e and f connect the points x, x′

and y, y′, respectively. Shifting these links to the left or right would impair the
dilation between one of the pairs {a, b}, {c, d}, or {u, v}. Tilting e or f would
have a similar effect because slanted edges are longer than vertical ones.

However, allowing only one solution is not what we desire. For the config-
uration to work as a choice gadget, we apply two minor modifications to leave
some very restricted room for the precise placement of the links e and f . On the
bottom line we introduce two extra points: a point x̂ exactly r · 10−λ to the left
of x′, where r is the given integer from the set S that we want to encode into
this gadget, and a point ŷ located r · 10−λ to the right of y′.4

Moreover, we shift the middle points u and v on the upper line slightly
outwards, each by a distance of r ·10−λ−1, so that the width of the gap increases
by 2r · 10−λ−1. See Figure 3 for a close-up on the relevant parts of the modified
point set.

a

b

x

x′x̂

u v y

ŷy′

c

d

3 3

r · 10
−λ r · 10

−λ

1 − r · 10
−λ−1

1 − r · 10
−λ−1

3

Fig. 3. A non-proportional drawing of the crucial parts of the final choice gadget.

What is the effect of these modifications? First of all, it is easy to see that a
dilation-7 tree on the new point set cannot deviate much from the optimum that
we have determined for the original set above. There still have to be all edges
between direct neighbors along the three segments and there have to be the two
edges e and f somewhere around x, x′, y, and y′. Increasing the distance from u
to v by 2r ·10−λ−1 does not give us enough room to fix e or f to any upper vertex
other than the designated x and y, respectively, since any shift of these edges
would immediately increase one of the relevant distances by 10−2. Moving the
upper endpoint of e some k points to the left while moving the lower endpoint
k steps to the right would not work either because it would increase the edge
length to at least

√
12 + .022 ≈ 1.0002, which yields an increase in the distance

that cannot be compensated by the comparatively small shift of u and v.
It turns out that the only freedom for placing the connections e and f lies

in choosing x′ or x̂, respectively y′ or ŷ, as their lower endpoints. What if we

4 Just for the record: we have now used 1705 points per choice gadget.



connect e to x̂ but f to y′, i.e., the left connection tilts slightly to the left, while
the right one stays perfectly vertical? The resulting dilation of u and v would
then be

7− 2r · 10−λ−1 + r · 10−λ +
√

1 + (r · 10−λ)2 − 1
1 + 2r · 10−λ−1

.

The square root, which is due to the slope of the edge e, minus 1 is smaller than
the 2r · 10−λ−1 term so that this expression is smaller than

7 + r · 10−λ

1 + 1
5r · 10−λ

= 7 · 7 + r · 10−λ

7 + 7
5r · 10−λ

< 7

for such r.
Thus we see that slanting one of the two edges e and f outward does not

create a dilation of more than 7 in the gadget. (It is obvious that the vertices u
and v form the dilation-critical pair in this configuration, all other pairs having
better dilation.)

But if we slanted both edges outward, connecting them to x̂ and ŷ, we would
get a dilation of

7− 2r · 10−λ−1 + 2r · 10−λ + 2
√

1 + (r · 10−λ)2 − 2
1 + 2r · 10−λ−1

,

which is lower bounded by 7, as straightforward calculation shows. Therefore it
is not possible to slant both edges outward without raising the dilation above 7.

This concludes the construction of our choice gadget. For a given integer r,
we built it in such a way that either the path from a to b or that from c to d
can be reduced by

1 + r · 10−λ −
√

1 + r2 · 10−2λ ≥ r · 10−λ − r2 · 10−2λ.

We will now insert such gadgets into the big picture of Figure 1 by connecting
their left endpoints a, b to the left U there and the right endpoints c, d to the
right U.

3.2 Linking the choice gadgets

For a Partition instance S of size n, we have to build n individual choice
gadgets, one for each r ∈ S. We arrange all these gadgets vertically, one below the
other, forcing their left and right endpoints to get connected by paths. Figure 4
shows two choice gadgets linked at their endpoints.

The vertical distance between two choice gadgets is three on each side, left
and right, we bridge this gap by a column of points with a regular spacing of
10−2. The highest of these points is placed exactly 1/10 below the endpoint of the
upper gadget and symmetrically, the lowest point sits 1/10 above the endpoint
of the bottom gadget.

Since the internal spacing of such a link is by a factor of 10 smaller than
the gaps to the endpoints, Lemma 2 applies and tells us that any dilation-7
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Fig. 4. Two choice gadgets linked at their endpoints.

graph must connect these 281 points by the canonical 280 length-10−2 edges.
The only question that remains is, how such a vertical segment connects to the
gadgets above and below. It clearly has to establish connections there to avoid
extremely large dilation between the endpoint of the gadget and the endpoint
of the vertical link, which are only 1/10 apart.

Globally, only a connection that minimizes the length of the resulting path
along the vertical link and through the gadgets can lead to a dilation ≤ 7 of
the corresponding U . Such connections will look roughly like the one shown in
Figure 5. The further away the slanted edge is from the endpoints c and w,
the better the short cut. However, the diagonal is also restricted by the dilation
between c and w.

1

10

1

100

c

w

Fig. 5. Efficiently connecting around a corner.

It is not hard to find out that an almost perfect 45◦-connection yields the
optimal tradeoff between short-cut effect and c-w dilation. One verifies that
connecting the 23th point to the right (counting c as the first) with the 15th on
the left (counting w as the first) yields the best5 short cut, giving a c-w dilation

5 One could as well connect the 25th point to the 13th point and obtain the same
values for dilation and shortcut; minimum dilation graphs need not be unique.



of (
22
100

+
14
100

+

√( 22
100

)2 +
( 14
100

+
1
10

)2
)

/
1
10

≈ 6.856 < 7.

On path length we save at each corner
(

22
100

+
14
100

+
1
10
−

√( 22
100

)2 +
( 14
100

+
1
10

)2
)

=
23
50
−
√

265
50

≈ 0.134.

3.3 Putting everything together

We are now prepared to assemble all n choice gadgets and the two big U’s into
one big point set, as shown in Figure 6.

ℓ ℓ

Fig. 6. The whole reduction in one picture; n choice gadgets are marked with bubbles.

Let us consider again how many edges we are going to allow for this point set,
in order to enforce a dilation very close to 7. Each of the segments in Figure 6
shall form a long path. Taken alone, every choice gadget shall form a tree, with
all its points connected but without any internal cycles. Cycles are only created
by the links between gadgets. Precisely, every pair of link paths induces exactly
one cycle. For a total number of |P | points, we thus fix the number of edges to

m = |P | − 1 + (n− 1) = |P |+ n− 2,

where n again denotes the number of gadgets.
It remains to calibrate the length ` of the horizontal segments of the two U’s

in such a way that only a fair split of the total “short cut potential”

P =
∑

r∈S

r · 10−λ,

can result in a dilation ≤ 7 between the endpoints of each U .
First, let us assume that a partition S = T ∪ (S \ T ) is possible such that

the sum of the elements of T equals the sum over the elements of S \ T . In the



choice gadgets associated with T the left edges are slanted, whereas in the other
gadgets the right edges are slanted. By the results of Subsections 3.1 and 3.2,
the path through the left U has total length

≤ 2 ` + n7−
∑

r∈T

(r · 10−λ − r2 · 10−2λ) + (n− 1)
(

3− 2(
23
50
−
√

265
50

)
)

(1)

≤ 2 ` + (n− 1)
(

10− 23−√265
25

)
+ 7− 1

2
P + nr2

max10−2λ (2)

Exactly the same upper bound applies to the length of the path through the
right U. We want the value of (2) to be at most 7 times the Euclidean distance
of the endpoints of a U, which equals n ·1+(n−1) ·3 = 4n−3, by construction.
This can be achieved by letting

` ≤ (n− 1)
(

9 +
23−√265

50

)
+

1
4
P − 1

2
nr2

max10−2λ. (3)

Now let us assume that no partition of S is possible. Let L denote the set of
all gadgets whose left edges are slanted, and let R be the set of choice gadgets
with a slanted right edge. If a gadget lies in both, L and R, it causes a dilation
> 7. So assume that L and R are disjoint. For one of these sets—say: L— must∑

r∈L r < 1
2

∑
r∈S r hold. Then the total length of the path through the left U

is at least

2 ` + n7−
∑

r∈L

(r · 10−λ −
√

1 + r2 · 10−2λ) + (n− 1)
(

3− 23−√265
25

)
(4)

≥ 2 ` + n7− 1
2
P + 1 · 10−λ + (n− 1)

(
3− 23−√265

25

)
(5)

≥ 2 ` + (n− 1)
(

10− 23−√265
25

)
+ 7− 1

2
P + 10−λ. (6)

The left U will give a dilation > 7 if the value of (6) exceeds 7 times the
distance of its endpoints, that is, if

` > (n− 1)
(

9 +
23−√265

50

)
+

1
4
P − 1

2
10−λ. (7)

In order to fulfill conditions (3) and (7) we use Newton’s method to approx-
imate

√
265, the only irrational number involved, by a rational number q to an

error smaller than

10−(2λ+2) <
10−(λ+2)

2n
<

10−λ − nr2
max10−2λ

100n
;

these estimates hold due to the choice of λ. This takes a number of iterations
logarithmic in λ. Then, we compute ` from (3), read as an equality, after substi-
tuting the root by q.



Observe that the coefficient of n− 1 in (3) is ≈ 9.1344, and that the additive
terms are bounded. If we split ` into 913(n− 1) equal pieces, each of them has a
(rational) length close enough to 10−2 to make Lemma 2 work for the horizontal
segments of the big U. This takes 4 · 913 · (n − 1) additional points. Now the
definition of point set P is complete.

It is clear that that the description complexity of the constructed point set P
is polynomial in the size of the Partition instance S, and that all computations
can be carried out by a Turing machine. Moreover, S admits a partition if and
only if there exists a graph of dilation ≤ 7 over P with |P | + n − 2 edges; and
each such graph of minimum weight must be plane. Thus, we have shown the
following.

Theorem 1. The decision problems DilationGraph and PlaneDilation-
Graph are NP-hard.

By counting the numbers of points and edges introduced in our construction,
one verifies that even the following problem is NP-hard. Given a set of k points,
is there a plane graph of dilation ≤ 7 over these points that contains at most
5920
5919 · k − 7624

5919 many edges?

4 Crossings in the Minimum Dilation Tree

It is well-known that a (Euclidian) minimum spanning tree on a point set in the
plane cannot have any edge crossings. In [8, p. 444], Eppstein asks whether this
is also the case for minimum-dilation trees.

We give a negative answer to this question. In fact, it is not too hard to verify
that any spanning tree on the 7-point set in Figure 7 has a dilation of at least 2
and that the two trees that attain this value both contain an edge crossing.

11
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a b
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Fig. 7. A 7-point set whose minimum-dilation trees have a crossing.

The reason for the inevitable crossing in our example lies in the overlay of two
structures on different scales, that is, of a large U on acvdb and a tiny hook on
xyv. However, we could easily draw a crossing-free tree on the points of Figure 7
if we were allowed to produce a slightly suboptimal dilation.



5 Open Problems

Is there a constant c > 1 such that for every point set P , there exists a
crossing-free spanning tree on P whose dilation is no more than c times that
of a minimum-dilation tree? How fast can such tree be computed?

In view of the recent result by Mulzer and Rote [12] on the minimum weight
triangulation, is it also NP-hard to construct the minimum dilation triangulation
of a given point set?
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