
ScrewBox: a Randomized Certifying

Graph-Non-Isomorphism Algorithm ∗

Martin Kutz Pascal Schweitzer

Max-Planck-Institut für Informatik

Saarbrücken, Germany

{mkutz,pascal}@mpi-inf.mpg.de

September 28, 2006

Abstract

We present a novel randomized approach to the graph isomorphism problem. Our algorithm
aims at solving difficult instances by producing randomized certificates for non-isomorphism.
We compare our implementation to the de facto standard nauty. On many of the hardest known
instances, the incidence graphs of finite projective planes, our program is considerably faster than
nauty. However, it is inherent to our approach that it performs better on pairs of non-isomorphic
graphs than on isomorphic instances.

Our algorithm randomly samples substructures in the given graphs in order to detect dissimi-
larities between them. The choice of the sought-after structures as well as the tuning of the search
process is dynamically adapted during the sampling. Eventually, a randomized certificate is pro-
duced by which the user can verify the non-isomorphism of the input graphs. As a byproduct of
our approach, we introduce a new concept of regularity for graphs which is meant to capture the
computational hardness of isomorphism problems on graphs.

1 Introduction

The computational complexity of graph isomorphism remains unresolved for over thirty years now.
No polynomial-time algorithm deciding whether two given graphs are isomorphic is known; neither
could this problem be shown to be NP-complete. Graph isomorphism is one of the two remain-
ing open problems from Garey and Johnson’s famous list [5] of computational problems with this
unsettled complexity status.

For several special classes of graphs, polynomial-time algorithms are known, the most prominent
being planar graphs [13, 6], random graphs [1], graphs with bounded eigenvalue multiplicity [2],
graphs of bounded genus [4], and graphs of bounded degree [8].

In contrast to typical problems known to be NP-complete, it is not easy to devise truly difficult
graph isomorphism instances. The leading graph-isomorphism solver nauty [9, 10] easily maps most
graphs with several thousand vertices. Only highly regular graphs pose a real challenge for this
program. The hardest known instances are point-line incidence graphs of finite projective planes.

In this paper, we present a new algorithmic approach to graph isomorphism. Our algorithm
computes randomized certificates for non-isomorphism of pairs of graphs. This might come as a
surprise as graph isomorphism is not even known to lie in co-NP. Based on heuristic sampling rules, we

∗This work will be presented at ALENEX ’07.

1

search for substructures in pairs of given graphs to find statistical evidence for non-isomorphism. As
a typical application of our algorithm we see the search for new combinatorial objects like projective
planes and other designs.

Our implementation, called ScrewBox, aims at difficult instances. Experiments on projective
planes show that our program can compete with the unrivaled and widely used standard nauty on
such graphs and even outperforms it in many cases. We present collections of graphs that are simply
intractable for nauty but can be solved by our algorithm in several minutes.

We emphasize that our algorithm does not try to compute isomorphisms. Its performance de-
pends on the “degree of non-isomorphism” between the given graphs. Strong similarity makes
non-isomorphism verification difficult. On isomorphic pairs, our algorithm might not even termi-
nate. There is, however, a generic way to turn an isomorphism test into an isomorphism finder. This
method can also be applied to our randomized one-sided non-isomorphism test. This feature is not
implemented, yet, but ScrewBox can already produce isomorphisms as a side-effect of the sampling
process.

A central aspect of our approach is that the output provides the user with a certificate that allows
them to verify a positive non-isomorphism result by running a statistical test. This is in contrast to
backtracking approaches like nauty, which produce very simple certificates for isomorphic graphs,
namely an isomorphism, but do not provide certificates for non-isomorphism.

Motivated by our sampling mechanism, we develop a new regularity notion for graphs which
is meant to capture the computational hardness of isomorphism problems on graphs. This new
concept of screw regularity defines a refined hierarchy of graph properties stretching from standard
(degree-)regularity to (vertex-)transitivity.

2 Background

We work with simple undirected graphs G = (V,E) without self-loops. The size of a graph is
denoted by n = |V |. An isomorphism between two graphs G = (V,E) and G′ = (V ′, E′) is a bijection
ϕ : V → V ′ with ϕ(u)ϕ(v) ∈ E ′ ⇔ uv ∈ E for all u, v ∈ V . A graph automorphism is an isomorphism
from a graph to itself. The automorphism group of a graph G is the set of all automorphisms of G

with composition as group operation. It is well-known that computing automorphism groups and
finding isomorphisms between graphs are polynomially reducible to each other. The orbit of a vertex
v in G is the set of all v-images under automorphisms of G. A standard approach to computing
graph isomorphisms is to identify the orbits of a graph, which is also polynomially equivalent to
graph isomorphism.

A canonical labeling is a function χ on all graphs that assigns labels 1, . . . , n to the vertices of
an n-vertex graph such that χ−1

G (i) 7→ χ−1

G′ (i) is an isomorphism for any pair (G,G′) of isomorphic
graphs. Computationally, this implies that as soon as we know the canonical labelings of two graphs,
we can trivially check whether they are isomorphic or not. Brendan McKay’s graph-isomorphism
solver nauty uses this approach (see the nauty user’s guide on [9]).

3 The Algorithm

A standard approach to detect whether two given graphs are non-isomorphic is via graph predicates.
A (graph) predicate is a function on graphs that is invariant under graph isomorphisms. Simple
examples of such predicates are the (multi-)set of node degrees or the set of degree sums of all
neighbors of all nodes. A possibly more expressive predicate might compute the maximum flow
between all pairs of vertices in a graph. If such a predicate yields different values on two graphs,
they cannot be isomorphic.

2

On highly regular graphs, like the incidence graphs of finite projective planes, however (see Sec-
tion 7 for a definition), such simple predicates are bound to fail hopelessly. On the other hand,
sufficiently strong predicates appear computationally far too expensive. The idea behind our algo-
rithm is to dynamically construct predicates that can be evaluated through statistical tests.

The algorithm tries to find certain patterns in the graph by sequentially sampling nodes from
the graphs in a randomized fashion. The goal is to observe significantly different behavior of this
sampling process on the two given graphs.

A single sample run draws nodes v1, v2, . . . , vn, one after another, where each single vt has to
fulfill a certain set of rules. Such a rule determining the admissibility of a sample node vt is called
a screw. By tightening and loosening a screw the sampling process can be steered. Specifically, at
each step t, a set of screws determines the set At of admissible nodes, from which vt is drawn at
random. After that, the sampling proceeds to vertex vt+1. If At is empty, the sample terminates
and we record the depth t at which this happened. If, after running this process many times, the
frequencies of these termination depths differ significantly for samples on two given graphs, we may
conclude (with high probability) that the graphs are not isomorphic.

The collection of all screws for all levels t ∈ {1, . . . , n} is called the screw box. The construction
of the screw box and the selection and tuning of the screws is a complex dynamic process that forms
the core of our algorithm. Part of the construction process is the continuing evaluation of its quality.
Insertions, deletions, and modifications of screws are meant to increase the statistical significance of
the sampling and its speed. See Section 6 for details of our statistical analysis.

Construction of the screw box. In principle, a screw in the screw box can be an arbitrary
predicate that determines whether some vertex vt is a valid extension of the sample v1, . . . , vt−1 in
G. In order to obtain useful screws, our algorithm begins by fixing a pattern p1, . . . , pn of distinct
vertices in one of the graphs, G1. It then inserts a basic screw S

t,0
G1

into each level t of the screw
box. Such a screw compares the adjacencies of pt with p1, . . . , pt−1 to those of a candidate vt with
the current sample v1, . . . , vt−1.

With this basic setup, the screw box, in principle, already achieves its full functionality. Namely,
if a complete sample is found under these conditions (in G1 or G2), the correspondence vi 7→ pi is an
isomorphism. This implies that, if G1 is not isomorphic to G2, there cannot be samples of length n

in G2 (while, of course, length-n samples will be found in G1 with positive probability). This effect
will eventually become visible in the statistics and thus prove the graphs non-isomorphic.

With highly regular graphs, this basic screw box will, however, lead to unacceptably long running
times. The point of our approach is to install more powerful screws that guide the sampling process
much more effectively. Such higher-level screws do not only consider the correctness of the sample
itself but take its relative position within the whole graph into account. As a result, the average
sample length increases. This should, however, be seen only as a side effect since our main goal is
to increase statistical significance.

Usually, we have to deal with a trade-off between more expensive screws and sampling signifi-
cance. This means that for an efficient sampling, the selection and placement of screws has to be
done with great care. A main feature of our algorithm is the self-adaptive behavior of the screw-box’s
construction process. Screws are not placed by the user but they are tested for effectiveness during
the sampling. On an easy instance, for example, no expensive screws will get installed, whereas a
highly regular graph will induce very few expensive screws at crucial positions of the pattern. There
is no need for the user to specify in advance the difficulty or special properties of the input graphs.

We want to emphasize that sampling for a pattern does not mean that we are implicitly computing
subgraph isomorphism. The main goal of the screw box is not to find very long samples but to create
significant deviation in the termination levels on the two graphs.

3

4 The Randomized Certification Model

A typical graph-isomorphism algorithm takes two graphs and either returns an isomorphism between
them or simply returns “non-isomorphic.” While in the former situation, the user can verify the
correctness of the output by simply checking the isomorphism, in the latter, he is bound to trust
the algorithm, which might not be very satisfying. This is typical for an NP-problem not known to
be in co-NP: A positive answer is easy to verify, while the correctness of a negative outcome can
usually only be recognized through verification of the algorithm itself.

Our algorithm creates the exactly opposite situation. When it terminates, it has found with high
probability a screw box that can be used to establish a difference between the input graphs. In order
to verify the correctness of the predicate, the user need not understand or even know anything about
the construction process of the screw box. He only needs to convince himself that sampling with
the screw box is invariant under graph isomorphism. For the screws we use, this is quite an obvious
property. The user employs the screw box to repeat the statistical test from the construction phase
with his desired error probability to confirm the non-isomorphism claim.

Note that the algorithm will almost surely terminate. It either outputs a screw box that separates
two non-isomorphic graphs or will produce an isomorphism. In any case it will produce a certified
answer. Of course, this two-sided termination guaranty is a theoretical concept. The aim of the
screw-box approach is to identify non-isomorphism. (There are general ways to turn a one-sided
non-isomorphism test into an isomorphism finder with O(n2) overhead, but we cannot go into detail
here.)

We should mention that we do not claim that our algorithm shows graph isomorphism to lie in
co-NP. We do not expect our algorithm to have polynomial running time. Constructing such an
algorithm—if possible—seems to require much deeper structural insight. We shall come back to this
issue later in Section 7.

5 Screws

Let S be a function on pairs (G, v̄), where G is a graph and v̄ = (v1, . . . , vt) is a sequence of
vertices of G. Such an S is called a screw if it is invariant under graph isomorphism, i.e., for any
isomorphism ϕ : G → G′ we have S(G, v̄) = S(G′, ϕ(v̄)) for all v̄. The sequence v̄ is called the
sample as it corresponds to the vertex sequences that are generated during the sampling process of
our algorithm.

The simplest screws used by our algorithm consider only adjacencies among the vertices within
the sample. It completely encodes how the last sample vertex vt is connected to the other sample
vertices. For a formal definition we need a “characteristic function” λ of E. For any pair (u, v) of
distinct vertices we define λ(u, v) = 1 if {u, v} ∈ E and λ(u, v) = 0 otherwise. On the diagonal we
let λ(u, u) = −1. The basic screw St,0 is then defined by

St,0(G, v̄) =
(

λ(v1, vt), . . . , λ(vt−1, vt)
)

. (1)

Consider the pattern p1, . . . , pn in the graph G1 which the algorithm fixes in the beginning.
During the sampling process on graph Gi, when the next vertex vt is to be selected, we compare the
screw value of the sample to that of the pattern. The candidate vt is admissible (w.r.t. St,0) if

St,0
(

Gi, (v1, . . . , vt)
)

= St,0
(

G1, (p1, . . . , pt)
)

.

Using this basic screw as a building block, we construct stronger ones, S t,1, by taking the whole
graph into account, and not just adjacencies within the sample. We look at all possible ways of
extending the sample (including the candidate vt) by one further node u ∈ G. For each u we

4

compute all adjacencies between v1, . . . , vt and u. The resulting values, for all u, are collected in
a multiset. Additionally, we add the adjacencies of the candidate vt with the rest of the sample.
Formally, we define

St,1(G, v̄) =
{

St+1,0
(

G, (v1, . . . , vt, u)
) ∣

∣ u ∈ G
}

∪
{

St,0
(

G, (v1, . . . , vt)
)}

,

This construction continues recursively. Again, we have a sample v̄ ending on candidate vt.
For each further node u ∈ G, consider all nodes w ∈ G and evaluate S t+2,0

(

G, (v1, . . . , vt, u, w)
)

.
Formally, we define, for all k > 0,

St,k(G, v̄) =
{

St+1,k−1
(

G, (v1, . . . , vt, u)
) ∣

∣ u ∈ G
}

∪
{

St,0
(

G, (v1, . . . , vt)
)}

.

We call such an St,k-screw a k-level screw (on a sample of length t). For completeness, we have to
define the trivial screw S0,0 ≡ ().

At this point the attentive reader might want to meditate over the fact that a k-level screw
does not simply list all k-tuples of G-vertices and record their adjacencies with the sample. Our
screws are much stronger because they filter the adjacency information of possible sample extensions
hierarchically. A more detailed discussion of the mechanics of our screws would be beyond the scope
of this exposition.

The k-level screws S0,k (on empty samples) form a hierarchy of graph-isomorphism invariants,
where on the highest level k = n we have S0,n(G, ()) = S0,n(G′, ()) if and only if G and G′ are
isomorphic. In other words, S0,n is a function that classifies the isomorphism types of n-vertex
graphs.

Computational Cost. The evaluation of a k-level screw takes O(t · nk) time since it entails k

nested loops over the vertices of the graph. In practice, we do not compute multisets of multisets,
of course, but instead hash them to single integers.

Naively evaluating screws repeatedly the way they are defined would soon become impractical,
already for 2-level screws. In our implementation, we perform a lot of optimization to strip the
screws of irrelevant node types (many nodes turn out to have no effect on the value of a screw) and
of superfluous adjacency tests. Eventually, we work with highly fine-tuned screws that have very
good separation properties at low cost. This screw tuning is an integral and complicated part of our
algorithm and is indispensable for achieving acceptable running times.

6 Stochastics

The data we collect during the sampling process consists of the termination levels of the samples.
A histogram is a map H : [n] × [2] → N. The empty histogram is the all-zero function. A single
sample run on graph Gi terminating on level t corresponds to the histogram with H(t, i) = 1 and 0
elsewhere. The histogram of a set of sample runs is the sum of the histograms of all samples in the
set. In particular, extending the sample set by one increases exactly one entry in the histogram.

If after equally many samples on both graphs, G1 and G2, the values H(t, 1) and H(t, 2) differ
significantly for some t ≤ n, we have discovered evidence that the graphs are not isomorphic.
However, the deviation on individual levels of the histogram is usually not significant enough for us
to be able to claim non-isomorphism of the graphs with sufficient confidence. Therefore, we filter
our histograms. A filter is a function F that maps a histogram to a pair (a, b) of integers in the
following way. Each filter is specified by coefficients σ1, . . . , σn ∈ {−1, 0,+1} and evaluates as

F (H) =
∑

t : σt = +1

(

H(t, 1),H(t, 2)
)

+
∑

t : σt = −1

(

H(t, 2),H(t, 1)
)

.

5

In words, the coefficients σt specify how a histogram level contributes to F (H): by direct addition,
by swapped addition, or not at all. Hence, a + b is at most N , the total number of sample runs.

A good filter will choose the coefficients in such a way that the sampling process produces two
integers with significant imbalance. (Allowing coefficients to be 0 is important. This way we can
filter out insignificant levels with large values that would otherwise weaken the result. For example,
(8, 17) is better than (108, 117).) In case the given graphs are isomorphic, of course, the expected
values of a and b coincide—irrespective of the filter we apply. Given a significance level α, the
algorithm can provide a test number N and a confidence interval in which a has to lie for the graphs
to be non-isomorphic with probability 1 − α.

During the construction of the screw box, various test filters are applied in order to estimate its
quality. Once we are sufficiently convinced of the suitability of the screw box, we freeze the screw
box and run further samples in order to determine a promising filter.

7 Highly Regular Graphs

When dealing with the graph isomorphism problem it is natural to ask how it is possible to measure
the hardness of a graph. A graph is hard to understand if it has vertices that appear the same but do
not lie in the same orbit. We introduce a new notion of regularity that aims to capture the hardness
for an algorithm to understand its structure and differentiate it from other graphs that are almost
isomorphic.

A graph is said to be regular if all its vertices have the same degree, and it is strongly regular
if in addition there exist two numbers µ and ν such that every adjacent pair of vertices has exactly
µ common neighbors and every non-adjacent pair of vertices has exactly ν common neighbors. It
seems, however, that these regularity notions are not strong enough to explain which graphs are
difficult in isomorphism testing.

Projective planes. In contrast to typical NP-complete problems, it appears very difficult to devise
hard instances for the graph isomorphism problem. It is generally accepted that the incidence graphs
of finite projective planes confront graph isomorphism algorithms with great challenges.

A (finite) projective plane is a bipartite graph satisfying the following conditions:

• each pair of vertices in one partition class has exactly one common neighbor,

• there exist at least four vertices in one partition class, no three of them with a common
neighbor.

The vertices in one bipartition class are called points and those in the other lines. A line ` and a
point p are called incident if {`, p} is an edge. It is an easy but insightful exercise to show that
projective planes are regular. The order of a projective plane is defined to be η = d − 1, where d

denotes the (uniform) vertex degree. It is easily verified that a projective plane of order η contains
exactly η2 + η + 1 points and the same number of lines.

Projective planes can be constructed as the containment graphs of the 1 and 2-dimensional sub-
spaces in 3-dimensional vector spaces over finite fields. The order of such a plane is, by construction,
the size of the underlying field. Projective planes arising this way are called algebraic. There exist
non-algebraic projective planes, all known ones being of prime-power order, too. It is a famous open
question whether there exist projective planes of non-prime-power order.

k-Screw regularity. The concept of strongly regular graphs does not seem to capture difficulty
for graph isomorphism, especially since projective planes do not have this property.

6

We propose new regularity conditions that aim to parameterize the computational hardness of
a graph in the context of isomorphism testing. The concept is based on our k-level screws, which
were designed to detect irregularities in graphs.

Definition 1. A graph G is called k-screw-regular if for any two vertices u, v of G we have

S1,k(G, u) = S1,k(G, v).

1-screw-regular graphs are exactly the regular graphs. Any strongly regular graph is also 2-
screw-regular. In fact, strongly regular graphs can be described exactly as those regular graphs for
which S2,0

(

G, (u, v)
)

= S2,0
(

G, (u′, v′)
)

implies S2,1
(

G, (u, v)
)

= S2,1
(

G, (u′, v′)
)

for all u, v, u′, v′ in
G. For further aspects of strongly regular graphs we refer to the survey [3].

Observe that S1,n−1-screws characterize orbits: Two vertices u, v lie in a common orbit if and
only if S1,n−1(G, u) = S1,n−1(G, v). Hence, the n-screw-regular graphs are exactly the transitive
graphs. This goes well with intuition because transitivity is a very strong regularity condition: all
vertices appear the same.

Regularity of colored graphs. A colored graph is a graph G = (V,E) together with a coloring
function χ : V → N. For colored graphs, we restrict our regularity notions to individual color classes.
That is, for example, a regular colored graph is a graph in which all vertices of the same color have
the same degree. (Formally, the characteristic function λ in Equation (1) now also has to respect
colors.)

A colored graph G is called k-screw-regular if for any two vertices u, v of G that have the same
color, i.e., χ(u) = χ(v), we have S1,k(G, u) = S1,k(G, v). By using colors, we are able to restrict the
concept of screw regularity to parts of a graph. This extends its applicability to a larger class of
graphs. For example, an orbit coloring makes any graph k-screw regular for arbitrary k.

Theorem 1. If there exists a k0 s.th. whenever a colored graph is k0-screw-regular it is also k-screw-
regular for all k > k0, then graph isomorphism is in P. Precisely, graph isomorphism can then be
solved in O(nk0+2) time.

This leads us to the following fundamental problem: Do there exist arbitrarily large k such that
there are (colored) graphs that are k-screw-regular but not (k + 1)-screw-regular? We have verified
that all projective planes are 7-screw regular but there exist examples that are not 8-screw regular.
Maybe large projective planes can yield an affirmative answer to the above question.

8 Computational Results

We implemented our algorithm in C++, without the use of special graph or matrix libraries, repre-
senting graphs as simple adjacency matrices. We gave our program the name ScrewBox.

We performed many tests on a 2.4 GHz AMD Opteron machine with one 1 GB cache, running
Linux. As a benchmark, we ran all test instances through nauty as well. Our test runs deal with
projective planes. These are the hardest known instances for nauty and as it turned out, they also
confront ScrewBox with the greatest challenges. On easier graphs our code is by orders of magnitudes
faster than on projective planes but still drastically slower than nauty. Yet, we emphasize that
ScrewBox is not specially tuned for projective planes, although we see possibilities to do so.

Direct comparison of ScrewBox to nauty is somewhat difficult because nauty detects isomorphism
(and also non-isomorphism, of course) via canonical labelings of single graphs, while our algorithm
always works on pairs of graphs. We only tested non-isomorphic pairs of graphs.

Figure 1 gives an overview of the results of our test. Since the deterministic running times of
nauty turned out to vary only slightly within the considered graph classes, we simply list their

7

proj-16 unions

alg n’alg 1 2 3 4 6 8 10

nauty avg. 0 s 2m 3m 79 m 368 m 441 m 1101 m 2096 m –

50 % 2 s 2m 1m 1 m 3 m 4m 25 m 30 m 19 m
ScrewBox

95 % 4 s 37 m 67 m 67 m 114 m 200 m > 4 h > 4 h > 4 h

proj-27 joins

alg n’alg flag 1 2 3 4 6 8 10

nauty avg. 4 s 421 m 64 h 1716 m – – – – – –

50 % 18 s 39 m 73 h 1m 1 m 2m 4m 9 m 24 m 23 m
ScrewBox

95 % 39 s 167 m – 52 m 58 m 85 m 146 m > 4 h > 4 h > 4 h

Figure 1: Running times for ScrewBox and nauty (dashes indicating that computations did not
finish within three days).

averages. For ScrewBox, we performed many runs on distinct pairs of graphs within the respective
class. We observed a large deviation between the running times even on the same pair of graphs.
Therefore, we list the time it took 50% respectively 95% of the runs to complete (successfully).1

Projective planes. We used all known projective planes of order 24 = 16 and 33 = 27, which we
took from Eric Moorhouse’s and Gordon Royle’s web pages [11, 12]. There are 13 known planes of
order 16 and 8 of order 27. (As geometric structures of points and lines, there are actually 22 and
13 known planes of these orders, respectively, but considered as incidence graphs, planes cannot be
distinguished from their duals.) Apart from the algebraic ones, we did not have access to any planes
of higher order. We performed 21 ScrewBox runs on each pair of non-isomorphic planes of the same
size.

For the planes of order 16 (proj-16), which have 546 vertices, the performance of our code is
comparable to that of nauty, while on the planes of order 27 (proj-27), with 1514 vertices, our
algorithm was considerably faster than nauty. It turned out that the difficulty of the planes varies.
For both, nauty and ScrewBox, algebraic planes (alg) are much easier to solve than the non-algebraic
ones (n’alg). Therefore we separated all computations that involved algebraic planes from the rest.
Two exceptionally difficult planes of order 27, called “flag4” and “flag6” on [11], are also listed
separately. To solve that pair, 50% of the SB runs took slightly longer than nauty needed for a
labeling of one graph. Be aware, though, that nauty has to label both graphs in order to detect
non-isomorphism.

Unions and joins. Unfortunately, we could not find any non-algebraic projective planes of order
32 and above on the web. In order to devise larger and more difficult instances, we combined several
projective planes into one graph by forming disjoint unions and joins. By r ·G we denote the disjoint

1Due to the lare number of experiments, we terminated all ScrewBox runs after 4 hours. The final version of this

paper will contain a completed table and provide further experimental data.

8

union of r copies of the graph G and G ∗ H denotes the join of graphs G and H, i.e., the disjoint
union of G and H together with all edges joining G and H.

We ran ScrewBox and nauty on the unions 1 ·P, . . . 10 ·P and the joins (1 ·P)∗F, . . . , (10 ·P)∗F

for four non-algebraic projective planes P of order 16. Here F denotes the fano plane, the unique
projective plane of order 2. The right sections in Figure 1 show the running times of ScrewBox and
nauty on these graphs.

ScrewBox proved very robust under the above graph operations. The running times range from
a few seconds for the small instances to several minutes for a typical run on the large graphs.
Combining several planes does obviously not lead to an explosion of running times. In particular,
joining an extra fano plane to the disjoint unions does not create any problems for our code. These
observations match well with our understanding of the sampling approach. The sampling tends to
invest most of its resources in the “interesting” regions of the graph. The fano plane in the above
examples does thus not interfere with the discrimination of the base graphs P .

It turns out that for nauty, already the smallest instances of this collection are prohibitively
difficult. The large disjoint unions take several hours to compute. For one of the planes, the 9-fold
union did not finish within a week. Joining the fano plane to the unions had a negative effect on
nauty’s performance. The smallest graphs 1 · P ∗ F with non-algebraic P took several hours to
compute and the 2 · P ∗ F cases did not finish within three days. In principle, this does not come
as surprise. In order to obtain canonical labelings, nauty has to establish isomorphisms between all
components. The extra fano plane seems to complicate this task.

We remark that nauty offers a number of configurations to adapt it to different classes of graphs.
On each instance, we tried nauty with and without the “cellfano2” option, which is recommended
for computation of projective planes. The table only considers the faster run for each graph. It
should be said that it might be possible that experts could further tune nauty for the specific types
of graphs we considered. But this is true for ScrewBox, too.

Variation of running times. Figure 2 shows the distribution of running times for ScrewBox on
projective planes of orders 16 and 27 in more detail. The curves depict the portions of completed
tasks after a given time. The thick lines represent the 21 runs on all pairs (except those involving
the algebraic planes) and the dotted and dashed lines show the behavior of ScrewBox on a few
selected pairs of graphs, indicating the variation of difficulty amongst different instances. Future
work on ScrewBox will include the integration of mechanisms that decrease the variation by avoiding
exceptionally long runs.

9 Technical Details

When approaching the isomorphism problem, it is reasonable to extract obvious information one can
gain from a graph in a preprocessing step. One such step could be to color vertices that are already
known not to lie in the same orbit differently. For example, nodes with different degrees or nodes
with different neighborhoods should be separated this way. A more sophisticated step is to mark
orbits for pairs of vertices. We call a matrix which has one entry for every ordered pair of vertices
such that the entries are invariant under graph isomorphism a pairlabel matrix. It corresponds to an
edge coloring of the complete graph on n vertices.

The adjacency matrix of a graph itself is such a pairlabel matrix. To richen the information in
this matrix, our algorithm applies several deterministic manipulation steps to it. Repeated squaring
is one of these steps, it is the most expensive and powerful one. It implicitly encodes distance
information into the matrix.

Since our algorithm aims at very difficult graph instances, the time consumption of this extra
computation is negligible. The algorithm could dispense with this preprocessing, but that would

9

0%

50 %

100 %

5 10 15 20 25 30[min]

0%

50 %

100 %

1 2 3 4[h]

Figure 2: Termination times of our algorithm on projective planes of order 16 (left) and 27 (right);
shown as portion of non-completed tasks after given time (thick line: all pairs; dashed and dotted
lines: selected pairs).

result in a significant increase of running time during the sampling process since each sample has to
detect otherwise obvious differences among the nodes every single time from scratch.

The choice of the pattern has turned out to play a significant role. Since there is no need to
generate the whole pattern in advance, it is produced on demand. Whenever the length of a sample
exceeds all lengths of previous samples, the pattern will be extended. There are different generic
ways of how to generate it. For example, simply randomly pick a vertex, or differentiate the nodes
into classes and picking such a class uniformly at random. What has turned out to be a very useful
generation method is to select a singleton class whenever possible and to pick a node in the largest
class otherwise. This way the sampling collects obvious information very cheaply and can determine
erring choices faster.

10 Conclusion and Outlook

Our approach of solving the graph isomorphism problem by randomized search for non-isomorphism
predicates has proven competitive with the current standard and is even able to outperform it on
large difficult instances, without being specially tuned for them.

Our implementation, ScrewBox, still offers vast room for improvement. Apart from low-level
optimization, significant speed-up should be possible through the integration of some natural exten-
sions. These include k-level screws for k > 2, randomized screws, dynamic editing of the pattern
(which is currently fixed once generated) and parallel evaluation of several patterns. User-specified
patterns could allow to tune the algorithm towards special classes of graphs.

By building screw boxes in advance, our approach offers the possibility to prepare a library
of graphs for non-isomorphism tests against a large collection of unclassified graphs. This might
be a very effective strategy in computer-assisted searches for new combinatorial objects—like non-
algebraic projective planes of large orders.

One of the most important extension of ScrewBox will certainly be the development of an iso-
morphism finder. There exist two natural ways to achieve this goal. The more standard solution
would use our non-isomorphism certificates to identify orbits. Another approach would be to devise
stronger screws to directly steer the sampling process towards an isomorphism. At the current state
the algorithm already finds isomorphisms this way, for all easy graphs and even for most projective
planes of orders 16 and some of order 27.

10

References

[1] Laszlo Babai, Paul Erdös, and Stanley M. Selkow. Random graph isomorphism. SIAM Journal
on Computing, 9:628–635, 1980.

[2] László Babai, D. Yu. Grigoryev, and David M. Mount. Isomorphism of graphs with bounded
eigenvalue multiplicity. In Proceedings of STOC, pages 310–324, 1982.

[3] Peter J. Cameron. Topics in Algebraic Graph Theory, chapter Strongly regular graphs. Cam-
bridge Univ. Press, 2004.

[4] I. S. Filotti and Jack N. Mayer. A polynomial-time algorithm for determining the isomorphism
of graphs of fixed genus. In Proceedings of STOC, pages 236–243, 1980.

[5] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, New York, 1979.

[6] John E. Hopcroft and J. K. Wong. Linear time algorithm for isomorphism of planar graphs. In
Proceedings of STOC, pages 310–324, 1974.

[7] Johannes Köbler, Uwe Schöning, and Jacobo Torán. The Graph Isomorphism Problem.
Birkhäuser, 1993.

[8] Eugene M. Luks. Isomorphism of graphs of bounded valence can be tested in polynomial time.
Journal of Computer and System Sciences, 25(1):42–65, 1982.

[9] Brendan D. McKay. The nauty page. http://cs.anu.edu.au/∼bdm/nauty.

[10] Brendan D. McKay. Practical graph isomorphism. Congressus Numerantium, 30:45–87, 1981.

[11] Eric Moorhouse. Projective planes of order 27. http://www.uwyo.edu/moorhouse/pub/

planes27.

[12] Gordon Royle. Projective planes of order 16. http://www.csse.uwa.edu.au/∼gordon/remote/
planes16.

[13] Robert Endre Tarjan. A V 2 algorithm for determining isomorphism of planar graphs. Informa-
tion Processing Letters, 1(1):32–34, 1971.

11

