Computing Geometric Minimum-Dilation Graphs is NP-hard

Martin Kutz

Max-Planck Institut für Informatik Saarbrücken Germany

Rolf Klein

University of Bonn Germany

$$\delta(G) := \max_{p,q \in V} \frac{\mathsf{dist}_G(p,q)}{|pq|}$$

$$\delta(G) := \max_{p,q \in V} \frac{\mathsf{dist}_G(p,q)}{|pq|} \quad \begin{array}{c} \longleftarrow & \text{in } G \\ \longleftarrow & \text{Euclidian distance} \end{array}$$

$$\delta(G) := \max_{p,q \in V} \frac{\text{dist}_G(p,q)}{|pq|} \quad \begin{array}{c} \longleftarrow & \text{in } G \\ \longleftarrow & \text{Euclidian distance} \end{array}$$

$$\delta = \frac{1 + 2 + 1}{2} = 2$$

$$\delta(G) := \max_{p,q \in V} \frac{\text{dist}_G(p,q)}{|pq|} \quad \begin{array}{c} \longleftarrow & \text{in } G \\ \longleftarrow & \text{Euclidian distance} \end{array}$$

$$\delta = \frac{1 + 2 + 1}{2} = 2$$

$$\delta = \frac{1+2}{\sqrt{1^2+2^2}} = \frac{3}{\sqrt{5}} \approx 1.34$$

Def. The *dilation* of a graph G = (V, E) in the plane:

$$\delta(G) := \max_{p,q \in V} \frac{\operatorname{dist}_{G}(p,q)}{|pq|} \quad \begin{array}{c} \longleftarrow & \text{in } G \\ \longleftarrow & \text{Euclidian distance} \end{array}$$

$$\delta = \frac{1 + 2 + 1}{2} = 2$$

$$\delta = \frac{1+2}{\sqrt{1^2+2^2}} = \frac{3}{\sqrt{5}} \approx 1.34$$

Note: A complete graph has dilation 1.

Finding Min-Dilation Graphs on Given Point Sets

Task: Given point set $P \subset \mathbb{R}^2$,

find (straight-line) graph G = (P, E) with small $\delta(G)$.

Finding Min-Dilation Graphs on Given Point Sets

Task: Given point set $P \subset \mathbb{R}^2$, find (straight-line) graph G = (P, E) with small $\delta(G)$.

Trivial if edges unlimited: complete graph gives $\delta = 1$. We are interested in networks (graphs) with few connections.

Finding Min-Dilation Graphs on Given Point Sets

Task: Given point set $P \subset \mathbb{R}^2$, find (straight-line) graph G = (P, E) with small $\delta(G)$.

Trivial if edges unlimited: complete graph gives $\delta = 1$.

We are interested in networks (graphs) with few connections.

Aronov, de Berg, Cheong (2005):

For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.

Optimization Problem:

Given point set $P \subset \mathbb{R}^2$ and $m \ge |P| - 1$, find minimum-dilation graph G = (P, E) with |E| = m.

Optimization Problem: Given point set $P \subset \mathbb{R}^2$ and $m \geq |P| - 1$,

find minimum-dilation graph G = (P, E)

with |E| = m.

Decision Version: Given a dilation threshold $\delta > 1$, too, does exist

graph G = (P, E) with |E| = m and $\delta(G) \le \delta$?

Optimization Problem: Given point set $P \subset \mathbb{R}^2$ and $m \geq |P| - 1$,

find minimum-dilation graph G = (P, E)

with |E| = m.

Decision Version: Given a dilation threshold $\delta > 1$, too, does exist

graph G = (P, E) with |E| = m and $\delta(G) \le \delta$?

Additional restriction: allowing only plane graphs.

(Could actually make a difference.)

Optimization Problem: Given point set $P \subset \mathbb{R}^2$ and $m \geq |P| - 1$,

find minimum-dilation graph G = (P, E)

with |E| = m.

Decision Version: Given a dilation threshold $\delta > 1$, too, does exist

graph G = (P, E) with |E| = m and $\delta(G) \le \delta$?

Additional restriction: allowing only plane graphs.

(Could actually make a difference.)

Main Result. These problems are NP-hard.

Optimization Problem: Given point set $P \subset \mathbb{R}^2$ and $m \geq |P| - 1$,

find minimum-dilation graph G = (P, E)

with |E| = m.

Decision Version: Given a dilation threshold $\delta > 1$, too, does exist

graph G = (P, E) with |E| = m and $\delta(G) \le \delta$?

Additional restriction: allowing only plane graphs.

(Could actually make a difference.)

Main Result. These problems are NP-hard.

(NP-Completeness unclear because of sums of square roots...)

Aronov, de Berg, Cheong (2005):

■ For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.
- but: With n 1 + k edges $(0 \le k < n)$, $\delta \in O(n/(k+1))$ possible (and optimal).

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.
- but: With n 1 + k edges $(0 \le k < n)$, $\delta \in O(n/(k+1))$ possible (and optimal).

Allowing just a few more edges than a tree makes a great difference!

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.
- but: With n 1 + k edges $(0 \le k < n)$, $\delta \in O(n/(k+1))$ possible (and optimal).

Allowing just a few more edges than a tree makes a great difference!

Brandes & Handke (1998):

For weighted graph G and given $\delta \geq 4$, it's NP-complete to decide whether G contains planar subgraph H with total weight below some threshold W such that $dist_H(\mathfrak{u}, \mathfrak{v}) \leq \delta \cdot dist_G(\mathfrak{u}, \mathfrak{v})$ for all $\mathfrak{u}, \mathfrak{v}$.

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.
- but: With n 1 + k edges $(0 \le k < n)$, $\delta \in O(n/(k+1))$ possible (and optimal).

Allowing just a few more edges than a tree makes a great difference!

Brandes & Handke (1998):

For weighted graph G and given $\delta \geq 4$, it's NP-complete to decide whether G contains planar subgraph H with total weight below some threshold W such that $dist_H(\mathfrak{u}, \mathfrak{v}) \leq \delta \cdot dist_G(\mathfrak{u}, \mathfrak{v})$ for all $\mathfrak{u}, \mathfrak{v}$.

We consider restriction to geometric case with $G = K_n$.

Result

Theorem.

Given point set $P \subset \mathbb{R}^2$, $m \ge |P|-1$, and a threshold $\delta > 1$, it is NP-hard to decide whether there exists a (plane) graph G = (P, E) with |E| = m and $\delta(G) \le \delta$.

Connections on a Line

Lemma.

- A point set P and a dilation threshold δ given.
- Consider δ -ellipse around adjacent point pair α , b.
- If all P-points in this ellipse on one line...

Connections on a Line

Lemma.

- A point set P and a dilation threshold δ given.
- Consider δ -ellipse around adjacent point pair α , b.
- If all P-points in this ellipse on one line...
- then min-weight graph G (of dilation $\leq \delta$) contains edge ab.

■ There is only one dilation-7 tree on these points.

■ There is only one dilation-7 tree on these points.

■ There is only one dilation-7 tree on these points.

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant . . .

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant . . .

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant . . .

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant . . .

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant . . .
- ...but only one of them!

Many Gadgets

Many Gadgets

Total number of edges: m = (|P| - 1) + (# gadgets - 1)

A Reduction from . . .

We have a reduction from Partition:

- Given: set S of k integers
- Wanted: subset $T \subset S$ such that $\sum_{r \in T} r = \sum_{r \in S \setminus T} r$

A Reduction from . . .

We have a reduction from Partition:

- Given: set S of k integers
- Wanted: subset $T \subset S$ such that $\sum_{r \in T} r = \sum_{r \in S \setminus T} r$

For each number r in S we build one gadget, which can decide to give a short cut of $\epsilon \cdot r$ to the left or to the right.

The two long red paths will only attain a dilation of 7 if the short cuts are distributed absolutely fair.

A Reduction from . . .

We have a reduction from Partition:

- Given: set S of k integers
- Wanted: subset $T \subset S$ such that $\sum_{r \in T} r = \sum_{r \in S \setminus T} r$

For each number r in S we build one gadget, which can decide to give a short cut of $\epsilon \cdot r$ to the left or to the right.

The two long red paths will only attain a dilation of 7 if the short cuts are distributed absolutely fair.

Remark:

Even for large numbers, polynomial-size reduction easily possible.

Conclusion

Theorem.

Given point set $P \subset \mathbb{R}^2$, $m \ge |P|-1$, and a threshold $\delta > 1$, it is NP-hard to decide whether there exists a (plane) graph G = (P, E) with |E| = m and $\delta(G) \le \delta$.

Conclusion

Theorem.

Given point set $P \subset \mathbb{R}^2$, $m \ge |P| - 1$, and a threshold $\delta > 1$, it is NP-hard to decide whether there exists a (plane) graph G = (P, E) with |E| = m and $\delta(G) \le \delta$.

Open Problem:

Is this problem already NP-hard for trees (m = |P| - 1)?

Conclusion

Theorem.

Given point set $P \subset \mathbb{R}^2$, $m \ge |P| - 1$, and a threshold $\delta > 1$, it is NP-hard to decide whether there exists a (plane) graph G = (P, E) with |E| = m and $\delta(G) \le \delta$.

Open Problem:

Is this problem already NP-hard for trees (m = |P| - 1)?

Cheong, Haverkort, Lee (unpub.): Yes!

