Computing Geometric Minimum-Dilation Graphs is NP-hard

Martin Kutz
Max-Planck Institut für Informatik Saarbrücken
Germany

Rolf Klein

University of Bonn
Germany

Geometric Dilation of a Plane Graph

Def. The dilation of a graph $G=(V, E)$ in the plane:

$$
\delta(G):=\max _{p, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{G}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|}
$$

Geometric Dilation of a Plane Graph

Def. The dilation of a graph $G=(V, E)$ in the plane:

$$
\begin{array}{lll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} & \longleftarrow & \text { in } G \\
& \longleftarrow & \text { Euclidian distance }
\end{array}
$$

Geometric Dilation of a Plane Graph

Def. The dilation of a graph $G=(V, E)$ in the plane:

$$
\begin{array}{lll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} & \longleftarrow & \text { in } G \\
& \longleftarrow & \text { Euclidian distance }
\end{array}
$$

$$
\delta=\frac{1+2+1}{2}=2
$$

Geometric Dilation of a Plane Graph

Def. The dilation of a graph $G=(V, E)$ in the plane:

$$
\begin{array}{ll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} \quad \longleftarrow \text { in } G \\
\text { Euclidian distance }
\end{array}
$$

$$
\delta=\frac{1+2+1}{2}=2
$$

$$
\delta=\frac{1+2}{\sqrt{1^{2}+2^{2}}}=\frac{3}{\sqrt{5}} \approx 1.34
$$

Geometric Dilation of a Plane Graph

Def. The dilation of a graph $G=(V, E)$ in the plane:

$$
\begin{array}{ll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} & \longleftarrow \quad \text { in } \mathrm{G} \\
\text { Euclidian distance }
\end{array}
$$

Note: A complete graph has dilation 1.

Finding Min－Dilation Graphs on Given Point Sets

Task：Given point set $\mathrm{P} \subset \mathbb{R}^{2}$ ， find（straight－line）graph $G=(P, E)$ with small $\delta(G)$ ．

Finding Min-Dilation Graphs on Given Point Sets

Task: Given point set $\mathrm{P} \subset \mathbb{R}^{2}$, find (straight-line) graph $G=(P, E)$ with small $\delta(G)$.

Trivial if edges unlimited: complete graph gives $\delta=1$.
We are interested in networks (graphs) with few connections.

Finding Min-Dilation Graphs on Given Point Sets

Task: Given point set $\mathrm{P} \subset \mathbb{R}^{2}$, find (straight-line) graph $G=(P, E)$ with small $\delta(G)$.

Trivial if edges unlimited: complete graph gives $\delta=1$.
We are interested in networks (graphs) with few connections.

Computational Complexity

$$
\begin{array}{ll}
\text { Optimization Problem: } & \text { Given point set } P \subset \mathbb{R}^{2} \text { and } m \geq|P|-1, \\
& \text { find minimum-dilation graph } G=(P, E) \\
& \text { with }|E|=m .
\end{array}
$$

Computational Complexity
$\begin{array}{ll}\text { Optimization Problem: } & \text { Given point set } P \subset \mathbb{R}^{2} \text { and } m \geq|P|-1, \\ & \text { find minimum-dilation graph } G=(P, E) \\ & \text { with }|E|=m .\end{array}$
Decision Version: Given a dilation threshold $\delta>1$, too, does exist graph $G=(P, E)$ with $|E|=m$ and $\delta(G) \leq \delta$?

Computational Complexity
$\begin{array}{ll}\text { Optimization Problem: } & \text { Given point set } P \subset \mathbb{R}^{2} \text { and } m \geq|P|-1, \\ & \text { find minimum-dilation graph } G=(P, E) \\ & \text { with }|E|=m .\end{array}$
Decision Version: Given a dilation threshold $\delta>1$, too, does exist graph $G=(P, E)$ with $|E|=m$ and $\delta(G) \leq \delta$?

Additional restriction: allowing only plane graphs.
(Could actually make a difference.)

Computational Complexity

Optimization Problem: Given point set $P \subset \mathbb{R}^{2}$ and $m \geq|P|-1$, find minimum-dilation graph $G=(P, E)$ with $|E|=m$.

Decision Version: Given a dilation threshold $\delta>1$, too, does exist graph $G=(P, E)$ with $|E|=m$ and $\delta(G) \leq \delta$?

Additional restriction: allowing only plane graphs.
(Could actually make a difference.)

Main Result. These problems are NP-hard.

Computational Complexity

Optimization Problem: Given point set $P \subset \mathbb{R}^{2}$ and $m \geq|P|-1$, find minimum-dilation graph $G=(P, E)$ with $|E|=m$.

Decision Version: Given a dilation threshold $\delta>1$, too, does exist graph $G=(P, E)$ with $|E|=m$ and $\delta(G) \leq \delta$?

Additional restriction: allowing only plane graphs.
(Could actually make a difference.)

Main Result. These problems are NP-hard.
(NP-Completeness unclear because of sums of square roots...)

Related Results

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.
- but: With $n-1+k$ edges $(0 \leq k<n)$, $\delta \in O(n /(k+1))$ possible (and optimal).

Related Results

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.
- but: With $n-1+k$ edges $(0 \leq k<n)$, $\delta \in O(n /(k+1))$ possible (and optimal).

Allowing just a few more edges than a tree makes a great difference!

Related Results

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.
- but: With $n-1+k$ edges $(0 \leq k<n)$, $\delta \in O(n /(k+1))$ possible (and optimal).

Allowing just a few more edges than a tree makes a great difference!

Brandes \& Handke (1998):

For weighted graph G and given $\delta \geq 4$, it's NP-complete to decide whether G contains planar subgraph H with total weight below some threshold W such that $\operatorname{dist}_{\mathrm{H}}(u, v) \leq \delta \cdot \operatorname{dist}_{G}(u, v)$ for all \mathfrak{u}, v.

Related Results

Aronov, de Berg, Cheong (2005):

- For the vertices P of a regular n-gon, any (Steiner) tree on P has dilation $\geq \frac{n}{\pi} \in \Theta(n)$.
- but: With $n-1+k$ edges $(0 \leq k<n)$, $\delta \in O(n /(k+1))$ possible (and optimal).

Allowing just a few more edges than a tree makes a great difference!

Brandes \& Handke (1998):

For weighted graph G and given $\delta \geq 4$, it's NP-complete to decide whether G contains planar subgraph H with total weight below some threshold W such that $\operatorname{dist}_{\mathrm{H}}(u, v) \leq \delta \cdot \operatorname{dist}_{G}(u, v)$ for all \mathfrak{u}, v.

We consider restriction to geometric case with $G=K_{n}$.

Result

Theorem.

Given point set $P \subset \mathbb{R}^{2}, m \geq|P|-1$, and a threshold $\delta>1$, it is NP-hard to decide whether there exists a (plane) graph $G=(P, E)$ with $|\mathrm{E}|=\mathrm{m}$ and $\delta(\mathrm{G}) \leq \delta$.

Connections on a Line

Lemma.

- A point set P and a dilation threshold δ given.
- Consider δ-ellipse around adjacent point pair a, b.
- If all P-points in this ellipse on one line...

Connections on a Line

Lemma.

- A point set P and a dilation threshold δ given.
- Consider δ-ellipse around adjacent point pair a, b.
- If all P-points in this ellipse on one line...
- then min-weight graph G (of dilation $\leq \delta$) contains edge ab .

A Tree on Two Rails

A Tree on Two Rails

- There is only one dilation-7 tree on these points.

A Tree on Two Rails

－There is only one dilation－7 tree on these points．

A Tree on Two Rails

- There is only one dilation-7 tree on these points.

A Tree on Two Rails

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.

A Tree on Two Rails

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant...

A Tree on Two Rails

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant...

A Tree on Two Rails

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant...

A Tree on Two Rails

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant...

A Tree on Two Rails

- There is only one dilation-7 tree on these points.
- Move the red points slightly apart.
- Now the vertical edges may slightly slant...
- ... but only one of them!

Many Gadgets

Many Gadgets

Many Gadgets

Many Gadgets

Many Gadgets

Many Gadgets

Total number of edges：$\quad \mathrm{m}=(|\mathrm{P}|-1)+(\#$ gadgets -1$)$

A Reduction from...

We have a reduction from Partition:

- Given: set S of k integers
- Wanted: subset $T \subset S$ such that $\sum_{r \in T} r=\sum_{r \in S \backslash T r}$

A Reduction from．．．

We have a reduction from Partition：

－Given：set S of k integers
－Wanted：subset $T \subset S$ such that $\sum_{r \in T} r=\sum_{r \in S \backslash T r}$

For each number r in S we build one gadget， which can decide to give a short cut of $\epsilon \cdot r$ to the left or to the right．

The two long red paths will only attain a dilation of 7 if the short cuts are distributed absolutely fair．

A Reduction from...

We have a reduction from Partition:

- Given: set S of k integers
- Wanted: subset $T \subset S$ such that $\sum_{r \in T} r=\sum_{r \in S \backslash T} r$

For each number r in S we build one gadget, which can decide to give a short cut of $\epsilon \cdot r$ to the left or to the right.

The two long red paths will only attain a dilation of 7 if the short cuts are distributed absolutely fair.

Remark:
Even for large numbers, polynomial-size reduction easily possible.

Conclusion

Theorem.

Given point set $P \subset \mathbb{R}^{2}, m \geq|P|-1$, and a threshold $\delta>1$, it is NP-hard to decide whether there exists a (plane) graph $G=(P, E)$ with $|E|=m$ and $\delta(G) \leq \delta$.

Conclusion

Theorem.

Given point set $P \subset \mathbb{R}^{2}, m \geq|P|-1$, and a threshold $\delta>1$, it is NP-hard to decide whether there exists a (plane) graph $G=(P, E)$ with $|E|=m$ and $\delta(G) \leq \delta$.

Open Problem:

Is this problem already NP-hard for trees $(\mathrm{m}=|\mathrm{P}|-1)$?

Conclusion

Theorem.

Given point set $P \subset \mathbb{R}^{2}, m \geq|P|-1$, and a threshold $\delta>1$, it is NP-hard to decide whether there exists a (plane) graph $G=(P, E)$ with $|\mathrm{E}|=\mathrm{m}$ and $\delta(\mathrm{G}) \leq \delta$.

Open Problem:

Is this problem already NP-hard for trees $(m=|P|-1)$?
Cheong, Haverkort, Lee (unpub.): Yes!

Epilog — Crossings in a Min-Dilation Tree

