The Density of Iterated Crossing Points and a Gap Result for Triangulations of Finite Point Sets

Martin Kutz

Max-Planck Institut für Informatik
Saarbrücken, Germany

Rolf Klein

University of Bonn
Germany

Iterated Intersections

－given：finite point set P in the plane

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments \longrightarrow intersection set $\mathrm{P}^{\prime}=\{\bullet \cdot \mathbf{s}\} \cup\{\bullet \mathbf{\bullet}\} \supseteq P$

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments \longrightarrow intersection set $\mathrm{P}^{\prime}=\{\bullet \mathbf{\bullet} \mathbf{s}\} \cup\{\bullet \mathbf{\bullet}\} \supseteq P$

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments \longrightarrow intersection set $\mathrm{P}^{\prime}=\{\bullet \cdot \mathbf{\bullet}\} \cup\{\bullet \mathbf{\bullet}\} \supseteq P$
- iterate process: $\mathrm{P}^{\prime} \longrightarrow \mathrm{P}^{\prime \prime}$

max planck institut

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments \longrightarrow intersection set $\mathrm{P}^{\prime}=\{\bullet \mathbf{\bullet} \mathbf{\prime}\} \cup\{\bullet \mathbf{\bullet}\} \supseteq P$
- iterate process: $\mathrm{P}^{\prime} \longrightarrow \mathrm{P}^{\prime \prime} \longrightarrow \mathrm{P}^{\prime \prime \prime}$

max planck institut

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments \longrightarrow intersection set $\mathrm{P}^{\prime}=\{\bullet \mathbf{\bullet} \mathbf{\prime}\} \cup\{\bullet \mathbf{\bullet}\} \supseteq \mathrm{P}$
- iterate process: $\mathrm{P}^{\prime} \longrightarrow \mathrm{P}^{\prime \prime} \longrightarrow \mathrm{P}^{\prime \prime \prime} \longrightarrow \cdots \longrightarrow \mathrm{P}^{\infty}$

max planck institut

Stable Sets

In general， P^{∞} is infinite．（Process does not terminate．）

Stable Sets

In general, P^{∞} is infinite. (Process does not terminate.)
All exceptions are classified [Eppstein, Geometry Junkyard]:

Stable Sets

In general, P^{∞} is infinite. (Process does not terminate.)
All exceptions are classified [Eppstein, Geometry Junkyard]:

Theorem. For any other set P, the limit P^{∞} is dense in some region of positive measure.

The Pentagon is Everywhere

For any non-stable P, the set $P^{\prime \prime \prime \prime}$ contains 5 points in convex position.

The Pentagon is Everywhere

For any non-stable P, the set $P^{\prime \prime \prime \prime}$ contains 5 points in convex position.

Allowing small Detours

Could we embed the initial point set in a finite network such that only small detours occur?

Allowing small Detours

Could we embed the initial point set in a finite network such that only small detours occur?

Allowing small Detours

Could we embed the initial point set in a finite network such that only small detours occur?

Allowing small Detours

Could we embed the initial point set in a finite network such that only small detours occur?
[Ebbers-Baumann et. al., 2005]

Dilation

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ plane graph (without crossings).
Define the dilation of G:

$$
\delta(G):=\max _{p, q \in V} \frac{\operatorname{dist}_{G}(p, q)}{|p q|}
$$

Dilation

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ plane graph (without crossings).
Define the dilation of G:

$$
\begin{array}{rll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} & \longleftarrow & \text { in } G \\
& \longleftarrow & \text { Euklidian distance }
\end{array}
$$

Dilation

$G=(V, E)$ plane graph (without crossings).
Define the dilation of G :

$$
\begin{array}{lll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} & \longleftarrow & \text { in } G \\
& \longleftarrow & \text { Euklidian distance }
\end{array}
$$

$$
\delta=1
$$

$\delta=3$

Dilation

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ plane graph (without crossings).
Define the dilation of G :

$$
\begin{array}{lll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} & \longleftarrow & \text { in } G \\
& \longleftarrow & \text { Euklidian distance }
\end{array}
$$

$\delta=1$

$\delta=\sqrt{2}$

Dilation

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ plane graph (without crossings).
Define the dilation of G :

$$
\begin{array}{lll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} & \longleftarrow & \text { in } \mathrm{G} \\
& \longleftarrow & \text { Euklidian distance }
\end{array}
$$

$\delta=1$

$\delta=\sqrt{2}$

Dilation

$\mathrm{G}=(\mathrm{V}, \mathrm{E})$ plane graph (without crossings).
Define the dilation of G:

$$
\begin{array}{lll}
\delta(\mathrm{G}):=\max _{\mathrm{p}, \mathrm{q} \in \mathrm{~V}} \frac{\operatorname{dist}_{\mathrm{G}}(\mathrm{p}, \mathrm{q})}{|\mathrm{pq}|} & \longleftarrow & \text { in } G \\
\text { Euklidian distance }
\end{array}
$$

$$
\delta=1
$$

$\delta=\sqrt{2}$

Theorem. [Keil \& Gutwin, 1992]
The dilation of any Dilaunay triangulation is bounded by 2.42.
iterated intersections
$\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P}$ stable $)$

dilation-1 graphs

exists triangulation $G=(P, E)$
with $\delta(G)=1$
iterated intersections

$$
\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P} \text { stable }) \quad \Longleftrightarrow
$$

dilation-1 graphs

exists triangulation $G=(P, E)$
with $\delta(G)=1$

iterated intersections
$\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P}$ stable $)$

dilation-1 graphs

exists triangulation $G=(P, E)$
with $\delta(G)=1$
iterated intersections
$\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P}$ stable $)$

dilation-1 graphs

exists triangulation $G=(P, E)$ with $\delta(G)=1$

Def. For a point set P, define its dilation:

$$
\Delta(P):=\inf \{\delta(G) \mid G=(V, E) \text { triangulation with } V \supseteq P\}
$$

iterated intersections
$\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P}$ stable $)$

dilation-1 graphs

exists triangulation $G=(P, E)$ with $\delta(G)=1$

Def. For a point set P, define its dilation:

$$
\Delta(P):=\inf \{\delta(G) \mid G=(V, E) \text { triangulation with } V \supseteq P\}
$$

iterated intersections
$\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P}$ stable $)$

dilation-1 graphs

exists triangulation $G=(P, E)$ with $\delta(G)=1$

Def. For a point set P, define its dilation:

$$
\Delta(P):=\inf \{\delta(G) \mid G=(V, E) \text { triangulation with } V \supseteq P\}
$$

Intersections and Dilation

iterated intersections

dilation-1 graphs

$\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P}$ stable $)$

exists triangulation $G=(P, E)$ with $\delta(G)=1$

Def. For a point set P, define its dilation:

$$
\Delta(\mathrm{P}):=\inf \{\delta(\mathrm{G}) \mid \mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { triangulation with } \mathrm{V} \supseteq \mathrm{P}\}
$$

$$
\Delta=1
$$

Intersections and Dilation

iterated intersections

dilation-1 graphs

$\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P}$ stable $)$
exists triangulation $G=(P, E)$
with $\delta(G)=1$
Def. For a point set P, define its dilation:

$$
\Delta(\mathrm{P}):=\inf \{\delta(\mathrm{G}) \mid \mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { triangulation with } \mathrm{V} \supseteq \mathrm{P}\}
$$

$$
\Delta=1
$$

Intersections and Dilation

iterated intersections

dilation-1 graphs

$\mathrm{P}=\mathrm{P}^{\prime} \quad(\mathrm{P}$ stable $)$
\Longleftrightarrow
exists triangulation $G=(P, E)$ with $\delta(G)=1$

Def. For a point set P, define its dilation:

$$
\Delta(\mathrm{P}):=\inf \{\delta(\mathrm{G}) \mid \mathrm{G}=(\mathrm{V}, \mathrm{E}) \text { triangulation with } \mathrm{V} \supseteq \mathrm{P}\}
$$

$\Delta=1$

$\Delta<1.02$
[Lorenz, 2004]

Main Result

Question: Do there exist point sets P with dilation $\Delta(\mathrm{P})>1$?

Main Result

Question: Do there exist point sets P with dilation $\Delta(\mathrm{P})>1$?
Answer: Yes! Actually all but the "perfect sets" are like that.

Theorem. Every point set P with $\# \mathrm{P}^{\infty}=\infty$ has dilation $\Delta(\mathrm{P})>1$.

Main Result

Question: Do there exist point sets P with dilation $\Delta(\mathrm{P})>1$?
Answer: Yes! Actually all but the "perfect sets" are like that.

Theorem. Every point set P with $\# \mathrm{P}^{\infty}=\infty$ has dilation $\Delta(\mathrm{P})>1$.

The dilation of any triangulation T that contains P as vertices is bounded away from 1 by some γ_{p}. There's a "gap!"

Overview

Density Theorem.

If P^{∞} is infinite then it is dense in some region.

$$
\downarrow
$$

Approximation Lemma. (from exact intersections to dilation >1)

$$
\downarrow
$$

Gap Theorem.

Every point set P with $\# \mathrm{P}^{\infty}=\infty$ has dilation $\Delta(\mathrm{P})>1$.

Filling the Pentagon

Theorem. If P^{∞} is infinite then it is dense in some region.

Filling the Pentagon

Theorem. If P^{∞} is infinite then it is dense in some region.

Filling the Pentagon

Theorem. If P^{∞} is infinite then it is dense in some region.

Filling the Pentagon

Theorem. If P^{∞} is infinite then it is dense in some region.

Filling the Pentagon

Theorem. If P^{∞} is infinite then it is dense in some region.

Filling the Pentagon

Theorem. If P^{∞} is infinite then it is dense in some region.

Filling the Pentagon

Theorem. If P^{∞} is infinite then it is dense in some region.

Filling the Pentagon

Theorem. If P^{∞} is infinite then it is dense in some region.

Cor. [Ismailescu \& Radoičić, 2004] If whole lines instead of segments, then the process on 4 pt's in non-convex position densely covers the whole plane.

Overview

Density Theorem.

If P^{∞} is infinite then it is dense in some region.

$$
\downarrow
$$

Approximation Lemma. (from exact intersections to dilation >1)

$$
\downarrow
$$

Gap Theorem.
Every point set P with $\# \mathrm{P}^{\prime}=\infty$ has dilation $\Delta(\mathrm{P})>1$.

Approximating P^{∞}

Def. Point set Q is an ϵ-cover for point set P if the (closed) ϵ-ball around every point $p \in P$ contains a point $q \in Q$.
(\Leftrightarrow directed Hausdorff distance $\leq \epsilon$)

Approximating P^{∞}

Def．Point set Q is an ϵ－cover for point set P if the（closed）ϵ－ball around every point $p \in P$ contains a point $q \in Q$ ．
（ \Leftrightarrow directed Hausdorff distance $\leq \epsilon$ ）
Lemma．Given finite point set P and parameters $k \in \mathbb{N}$ and $\epsilon>0$ ． Then there exists $\delta>1$ such that： for any triangulation $T=(\mathrm{V}, \mathrm{E})$ with $\mathrm{V} \supseteq \mathrm{P}$ and dilation $\leq \delta$ ， the set V is an ϵ－cover for P^{k} ．

Approximating P^{∞}

Def. Point set Q is an ϵ-cover for point set P if the (closed) ϵ-ball around every point $p \in P$ contains a point $q \in Q$.
(\Leftrightarrow directed Hausdorff distance $\leq \epsilon$)
Lemma. Given finite point set P and parameters $k \in \mathbb{N}$ and $\epsilon>0$. Then there exists $\delta>1$ such that: for any triangulation $T=(\mathrm{V}, \mathrm{E})$ with $\mathrm{V} \supseteq \mathrm{P}$ and dilation $\leq \delta$, the set V is an ϵ-cover for P^{k}.

Approximating P^{∞}

Def. Point set Q is an ϵ-cover for point set P if the (closed) ϵ-ball around every point $p \in P$ contains a point $q \in Q$.
(\Leftrightarrow directed Hausdorff distance $\leq \epsilon$)
Lemma. Given finite point set P and parameters $k \in \mathbb{N}$ and $\epsilon>0$. Then there exists $\delta>1$ such that: for any triangulation $T=(V, E)$ with $V \supseteq P$ and dilation $\leq \delta$, the set V is an ϵ-cover for P^{k}.

Approximating P^{∞}

Def. Point set Q is an ϵ-cover for point set P if the (closed) ϵ-ball around every point $p \in P$ contains a point $q \in Q$.
(\Leftrightarrow directed Hausdorff distance $\leq \epsilon$)
Lemma. Given finite point set P and parameters $k \in \mathbb{N}$ and $\epsilon>0$. Then there exists $\delta>1$ such that: for any triangulation $T=(\mathrm{V}, \mathrm{E})$ with $\mathrm{V} \supseteq \mathrm{P}$ and dilation $\leq \delta$, the set V is an ϵ-cover for P^{k}.

Approximating P^{∞}

Def. Point set Q is an ϵ-cover for point set P if the (closed) ϵ-ball around every point $p \in P$ contains a point $q \in Q$.
(\Leftrightarrow directed Hausdorff distance $\leq \epsilon$)
Lemma. Given finite point set P and parameters $k \in \mathbb{N}$ and $\epsilon>0$. Then there exists $\delta>1$ such that: for any triangulation $T=(V, E)$ with $V \supseteq P$ and dilation $\leq \delta$, the set V is an ϵ-cover for P^{k}.

Pentagon Density Theorem $+\varepsilon$-Cover Lemma
\Longrightarrow can force approximations of any set we want (and in arbitrary quality)

Approximating P^{∞}

Def. Point set Q is an ϵ-cover for point set P if the (closed) ϵ-ball around every point $p \in P$ contains a point $q \in Q$.
(\Leftrightarrow directed Hausdorff distance $\leq \epsilon$)
Lemma. Given finite point set P and parameters $k \in \mathbb{N}$ and $\epsilon>0$. Then there exists $\delta>1$ such that: for any triangulation $T=(V, E)$ with $V \supseteq P$ and dilation $\leq \delta$, the set V is an ϵ-cover for P^{k}.

Pentagon Density Theorem
$+\epsilon$-Cover Lemma
\Longrightarrow can force approximations of any set we want (and in arbitrary quality)

Overview

Density Theorem.

If P^{∞} is infinite then it is dense in some region.

$$
\downarrow
$$

Approximation Lemma. (from exact intersections to dilation >1)

$$
\downarrow
$$

Gap Theorem.

Every point set P with $\# \mathrm{P}^{\prime}=\infty$ has dilation $\Delta(\mathrm{P})>1$.

A Self－Replicating Square

A Self-Replicating Square

A Self-Replicating Square

A Self-Replicating Square

A Self-Replicating Square

A Self-Replicating Square

A Self-Replicating Square

A Self-Replicating Square

A Self-Replicating Square

Conclusion

Theorem．Every point set P with $\# \mathrm{P}^{\infty}=\infty$ has dilation $\Delta(\mathrm{P})>1$ ．

Conclusion

Theorem. If P^{∞} is infinite then it is dense in some region.

Theorem. Every point set P with $\# \mathrm{P}^{\infty}=\infty$ has dilation $\Delta(\mathrm{P})>1$.

Theorem. If P^{∞} is infinite then it is dense in some region.

Theorem. Every point set P with $\#^{\infty}{ }^{\infty}=\infty$ has dilation $\Delta(\mathrm{P})>1$.

Open Problems:

- What is the dilation of the regular pentagon?
- Is the infimum in $\Delta(\mathrm{P})$ always attained by some triangulation?

