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Iterated Intersections

given: finite point set P in the plane

form pairwise intersections of connecting line segments
−→ intersection set P ′ = { ’s} ∪ { ’s} ⊇ P

iterate process: P ′ −→ P ′′ −→ P ′′′ −→ · · · −→ P∞
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Stable Sets

In general, P∞ is infinite. (Process does not terminate.)

All exceptions are classified [Eppstein, Geometry Junkyard ]:

Theorem. For any other set P, the limit P∞ is dense in some
region of positive measure.
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The Pentagon is Everywhere

For any non-stable P, the set P ′′′′ contains 5 points in convex position.
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Allowing small Detours

???

Could we embed the initial point set in a finite network
such that only small detours occur?

[Ebbers-Baumann
et. al., 2005]
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Dilation

G = (V, E) plane graph (without crossings).

Define the dilation of G:

δ(G) := max
p,q∈V

distG(p, q)

|pq|

←− in G

←− Euklidian distance

Theorem. [Keil & Gutwin, 1992]
The dilation of any Dilaunay triangulation is bounded by 2.42.
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Intersections and Dilation

iterated intersections dilation-1 graphs

P = P ′ (P stable) exists triangulation G = (P, E)

with δ(G) = 1
⇐⇒

Def. For a point set P, define its dilation :

∆(P) := inf

{
δ(G)

∣

∣

∣

∣

G = (V, E) triangulation with V ⊇ P

}
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Main Result

Question: Do there exist point sets P with dilation ∆(P) > 1?

Answer: Yes! Actually all but the “perfect sets” are like that.

Theorem. Every point set P with #P∞ =∞ has dilation ∆(P) > 1.

The dilation of any triangulation T that contains P as vertices
is bounded away from 1 by some γP. There’s a “gap!”
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Overview

Density Theorem.

If P∞ is infinite then it is dense in some region.

↓
Approximation Lemma. (from exact intersections to dilation > 1)

↓
Gap Theorem.

Every point set P with #P∞ =∞ has dilation ∆(P) > 1.
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Filling the Pentagon

Theorem. If P∞ is infinite then it is dense in some region.

Cor. [Ismailescu & Radoičić, 2004]
If whole lines instead of segments, then the process on 4 pt’s in
non-convex position densely covers the whole plane.
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If whole lines instead of segments, then the process on 4 pt’s in
non-convex position densely covers the whole plane.

Martin Kutz: Iterated crossing points and a gap result for triangulations – p. 10



max planck institut
informatik

Filling the Pentagon

Theorem. If P∞ is infinite then it is dense in some region.

Cor. [Ismailescu & Radoičić, 2004]
If whole lines instead of segments, then the process on 4 pt’s in
non-convex position densely covers the whole plane.

Martin Kutz: Iterated crossing points and a gap result for triangulations – p. 10



max planck institut
informatik

Filling the Pentagon

Theorem. If P∞ is infinite then it is dense in some region.

Cor. [Ismailescu & Radoičić, 2004]
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Approximating P∞

Def. Point set Q is an ε-cover for point set P if the (closed) ε-ball
around every point p ∈ P contains a point q ∈ Q.
(⇔ directed Hausdorff distance ≤ ε)

Lemma. Given finite point set P and parameters k ∈ N and ε > 0.
Then there exists δ > 1 such that:
for any triangulation T = (V, E) with V ⊇ P and dilation ≤ δ,
the set V is an ε-cover for Pk.

Pentagon Density Theorem
+ ε-Cover Lemma

=⇒ can force approximations
of any set we want
(and in arbitrary quality)
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A Self-Replicating Square
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A Self-Replicating Square

ε

ε
′
< ε

=⇒ dilation δ(�) > 1.0000047
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Conclusion

Theorem. If P∞ is infinite then it is dense in some region.

Theorem. Every point set P with #P∞ =∞ has dilation ∆(P) > 1.

Open Problems:

What is the dilation of the regular pentagon?

Is the infimum in ∆(P) always attained by some triangulation?
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