The Density of Iterated Crossing Points and a Gap Result for Triangulations of Finite Point Sets

Martin Kutz

Max-Planck Institut für Informatik Saarbrücken, Germany

Rolf Klein

University of Bonn Germany

• given: finite point set P in the plane

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments
 → intersection set P' = {•'s} ∪ {•'s} ⊇ P

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments
 → intersection set P' = {•'s} ∪ {•'s} ⊇ P

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments
 → intersection set P' = {•'s} ∪ {•'s} ⊇ P
- iterate process: $P' \longrightarrow P''$

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments
 → intersection set P' = {•'s} ∪ {•'s} ⊇ P
- iterate process: $P' \longrightarrow P'' \longrightarrow P'''$

Iterated Intersections

- given: finite point set P in the plane
- form pairwise intersections of connecting line segments
 → intersection set P' = {•'s} ∪ {•'s} ⊇ P
- iterate process: $P' \longrightarrow P'' \longrightarrow P''' \longrightarrow \cdots \longrightarrow P^{\infty}$

In general, P^{∞} is infinite. (Process does not terminate.)

In general, P^{∞} is infinite. (Process does not terminate.)

All exceptions are classified [Eppstein, Geometry Junkyard]:

In general, P^{∞} is infinite. (Process does not terminate.)

All exceptions are classified [Eppstein, Geometry Junkyard]:

Theorem. For any other set P, the limit P^{∞} is dense in some region of positive measure.

For any non-stable P, the set P''' contains 5 points in convex position.

For any non-stable P, the set P''' contains 5 points in convex position.

G = (V, E) plane graph (without crossings).

```
Define the dilation of G:
```

 $\delta(G) := \max_{p,q \in V} \frac{\text{dist}_G(p,q)}{|pq|}$

G = (V, E) plane graph (without crossings).

Define the *dilation* of G:

$$\delta(G) := \max_{p,q \in V} \frac{\text{dist}_G(p,q)}{|pq|} \quad \begin{array}{ccc} \longleftarrow & \text{in } G \\ \leftarrow & \text{Euklidian distance} \end{array}$$

G = (V, E) plane graph (without crossings).

Define the *dilation* of G:

G = (V, E) plane graph (without crossings).

Define the *dilation* of G:

G = (V, E) plane graph (without crossings).

Define the *dilation* of G:

G = (V, E) plane graph (without crossings).

```
Define the dilation of G:
```


Theorem. [Keil & Gutwin, 1992] The dilation of any Dilaunay triangulation is bounded by 2.42.

iterated intersections

$$P = P'$$
 (P stable)

 \iff

dilation-1 graphs

exists triangulation G = (P, E)with $\delta(G) = 1$

$$P = P'$$
 (P stable)

 $\frac{\text{dilation-1 graphs}}{\text{exists triangulation }G = (P, E)}$ with $\delta(G) = 1$

 \iff

iterated intersections

$$P = P'$$
 (P stable)

 \iff

dilation-1 graphs

exists triangulation G = (P, E)with $\delta(G) = 1$

$$\Delta(\mathsf{P}) := \inf \left\{ \delta(\mathsf{G}) \ \middle| \ \mathsf{G} = (\mathsf{V},\mathsf{E}) \text{ triangulation with } \mathsf{V} \supseteq \mathsf{P} \right\}$$

$$\Delta(\mathsf{P}) := \inf \left\{ \delta(\mathsf{G}) \mid \mathsf{G} = (\mathsf{V},\mathsf{E}) \text{ triangulation with } \mathsf{V} \supseteq \mathsf{P} \right\}$$

$$\Delta(\mathsf{P}) := \inf \left\{ \delta(\mathsf{G}) \mid \mathsf{G} = (\mathsf{V},\mathsf{E}) \text{ triangulation with } \mathsf{V} \supseteq \mathsf{P} \right\}$$

$$\Delta(\mathsf{P}) := \inf \left\{ \delta(\mathsf{G}) \ \middle| \ \mathsf{G} = (\mathsf{V},\mathsf{E}) \text{ triangulation with } \mathsf{V} \supseteq \mathsf{P} \right\}$$

$$\Delta(P) := \inf \left\{ \delta(G) \ \middle| \ G = (V, E) \text{ triangulation with } V \supseteq P \right\}$$

[Lorenz, 2004] $\Delta < 1.02$

Question: Do there exist point sets P with dilation $\Delta(P) > 1$?

Question: Do there exist point sets P with dilation $\Delta(P) > 1$?

Answer: Yes! Actually all but the "perfect sets" are like that.

Theorem. Every point set P with $\#P^{\infty} = \infty$ has dilation $\Delta(P) > 1$.

Question: Do there exist point sets P with dilation $\Delta(P) > 1$?

Answer: Yes! Actually all but the "perfect sets" are like that.

Theorem. Every point set P with $\#P^{\infty} = \infty$ has dilation $\Delta(P) > 1$.

The dilation of any triangulation T that contains P as vertices is bounded away from 1 by some γ_{P} . There's a "gap!"

Density Theorem.

If P^{∞} is infinite then it is dense in some region.

Approximation Lemma. (from exact intersections to dilation > 1)

Gap Theorem.

Every point set P with $\#P^{\infty} = \infty$ has dilation $\Delta(P) > 1$.

Cor. [Ismailescu & Radoičić, 2004]

If *whole lines* instead of segments, then the process on 4 pt's in non-convex position densely covers the whole plane.

Density Theorem.

If P^{∞} is infinite then it is dense in some region.

Approximation Lemma. (from exact intersections to dilation > 1)

Gap Theorem.

Every point set P with $\#P' = \infty$ has dilation $\Delta(P) > 1$.

Def. Point set Q is an ϵ -cover for point set P if the (closed) ϵ -ball around every point $p \in P$ contains a point $q \in Q$.

(\Leftrightarrow directed Hausdorff distance $\leq \epsilon$)

Lemma. Given finite point set P and parameters $k \in \mathbb{N}$ and $\epsilon > 0$. Then there exists $\delta > 1$ such that: for any triangulation T = (V, E) with $V \supseteq P$ and dilation $\leq \delta$, the set V is an ϵ -cover for P^k .

Pentagon Density Theorem $+ \epsilon$ -Cover Lemma

 ⇒ can force approximations of any set we want (and in arbitrary quality)

Lemma. Given finite point set P and parameters $k \in \mathbb{N}$ and $\epsilon > 0$. Then there exists $\delta > 1$ such that: for any triangulation T = (V, E) with $V \supseteq P$ and dilation $\leq \delta$, the set V is an ϵ -cover for P^k .

Pentagon Density Theorem $+ \epsilon$ -Cover Lemma

 ⇒ can force approximations of any set we want (and in arbitrary quality)

Density Theorem.

If P^{∞} is infinite then it is dense in some region.

Approximation Lemma. (from exact intersections to dilation > 1)

Gap Theorem.

Every point set P with $\#P' = \infty$ has dilation $\Delta(P) > 1$.

Martin Kutz: Iterated crossing points and a gap result for triangulations - p. 14

Martin Kutz: Iterated crossing points and a gap result for triangulations - p. 14

max planck institut informatik

Theorem. Every point set P with $\#P^{\infty} = \infty$ has dilation $\Delta(P) > 1$.

Theorem. Every point set P with $\#P^{\infty} = \infty$ has dilation $\Delta(P) > 1$.

Theorem. Every point set P with $\#P^{\infty} = \infty$ has dilation $\Delta(P) > 1$.

Open Problems:

- What is the dilation of the regular pentagon?
- Is the infimum in $\Delta(P)$ always attained by some triangulation?