Weak Positional Games on Hypergraphs of Rank Three

Martin Kutz
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Two players alternatingly claim squares, trying to get three in a row. (retaking forbidden)

Two players alternatingly claim squares, trying to get three in a row. (retaking forbidden)

Such a positional game can be played on any hypergraph $H=(V, E) . \quad\left(E \subseteq 2^{V}\right)$

Two players alternatingly claim squares, trying to get three in a row. (retaking forbidden)

Such a positional game can be played on any hypergraph $H=(V, E) . \quad\left(E \subseteq 2^{V}\right)$
two variants:

- strong positional game: both players trying to get an edge (draw possible but 2nd player never wins, by "strategy stealing")
- weak positional game: 1st player (Maker) tries to get an edge while 2nd player (Breaker) tries to prevent this (no draw, by definition)

Tic-Tac-Toe

$$
\begin{aligned}
\text { strong-game 1st-player win } & \Rightarrow \text { weak-game Maker win } \\
\text { strong-game draw } & \Leftarrow \text { weak-game Breaker win }
\end{aligned}
$$

two variants:

- strong positional game: both players trying to get an edge (draw possible but 2nd player never wins, by "strategy stealing")
- weak positional game: 1st player (Maker) tries to get an edge while 2nd player (Breaker) tries to prevent this (no draw, by definition)

Weak Games - Previous / Classical Results

- local criterion [Hales \& Jewett, '63] n-uniform hypergraph: max deg $\leq n / 2 \Rightarrow$ Breaker win
- global criterion [Erdős \& Selfridge, '73] n-uniform hypergraph $H=(V, E)$: $|\mathrm{E}|<2^{\mathrm{n}-1} \Rightarrow$ Breaker win
- Ramsey criterion [Beck] $x(\mathrm{H}) \geq 3$ (chromatic number) \Rightarrow Maker win

Computational Complexity

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78].

Computational Complexity

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78].

Strong games also PSPACE-complete [Reisch, '80].

Computational Complexity

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78]. (uses rank 11)
 maximum edge size

Strong games also PSPACE-complete [Reisch, '80].

Computational Complexity

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78]. (uses rank 11)
 maximum edge size

Strong games also PSPACE-complete [Reisch, '80].

Rank 2 is trivial:

Computational Complexity

Deciding who wins a weak game on a given hypergraph is PSPACE-complete [Schaefer, '78]. (uses rank 11)
maximum edge size
Strong games also PSPACE-complete [Reisch, '80].

Rank 2 is trivial:

We set out to solve rank-3 hypergraphs ... (efficient classification and thus, optimal play)

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given hypergraph of rank 3.

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Def. A hypergraph is called almost-disjoint if any two edges share at most one vertex.

This is not an unnatural property. (satisfied, e.g., by arbitrary-dimensional Tic-Tac-Toe and often considered in the context of hypergraph coloring.)
It does not define away the problem.

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
- extensive case distinctions

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
- extensive case distinctions

Def. Call a hypergraph a winner if Maker (playing first) can win on it.

Playing Along Paths

Lemma. Any connected almost-disjoint rank-3 hypergraph with at least two 2-edges is a winner.

Playing Along Paths

Lemma. Any connected almost-disjoint rank-3 hypergraph with at least two 2-edges is a winner.

is a loser (not almost-disjoint)

Decompositions

Lemma. The disjoint union $H=A \dot{B}$ of two hypergraphs is a winner iff one of A and B is a winner.

Decompositions

Lemma. The disjoint union $H=A \dot{\cup} B$ of two hypergraphs is a winner iff one of A and B is a winner.

We can extend this result to "almost-disjoint" unions:
Def. A vertex p is an articulation of a hypergraph H if $H=A \cup B$ with $V(A) \cap V(B)=\{p\}$ for non-trivial hypergraphs A and B.

Decompositions

Lemma. The disjoint union $H=A \dot{B}$ of two hypergraphs is a winner iff one of A and B is a winner.

We can extend this result to "almost-disjoint" unions:
Def. A vertex p is an articulation of a hypergraph H if $H=A \cup B$ with $V(A) \cap V(B)=\{p\}$ for non-trivial hypergraphs A and B.

Decompositions

Articulation Lemma. Let $H=A \cup B$ with $V(A) \cap V(B)=\{p\}$. Then H is a winner iff one of the following holds:

- A is a winner on its own
- B is a winner on its own

Decompositions

Articulation Lemma. Let $H=A \cup B$ with $V(A) \cap V(B)=\{p\}$. Then H is a winner iff one of the following holds:

- A is a winner on its own
- B is a winner on its own
- A with p already played and B with p already played are both winners

Decompositions

Articulation Lemma. Let $H=A \cup B$ with $V(A) \cap V(B)=\{p\}$. Then H is a winner iff one of the following holds:

- A is a winner on its own
- B is a winner on its own
- A with p already played and B with p already played are both winners

Corollary. If Maker can win neither on A nor on B alone then playing at the articulation p is definitely an optimal move.

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
- extensive case distinctions

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
- exactly one 2-edge per component

■ articulation-free components \Rightarrow no "dangling paths"

- extensive case distinctions

Main Result

Theorem. We can decide in polynomial time, who wins the weak game on a given almost-disjoint hypergraph of rank 3.

Ingredients:

- basic winning structures (paths and cycles)
- decomposition lemmas
- exactly one 2-edge per component

■ articulation-free components \Rightarrow no "dangling paths"

- extensive case distinctions
- threats along paths and cycles lead to three essentially different winning blocks for Maker

Towards a General Decomposition Theorem

The Articulation Lemma says:
There are only three different types of "1-point halves."

Towards a General Decomposition Theorem

The Articulation Lemma says:
There are only three different types of "1-point halves."

Towards a General Decomposition Theorem

The Articulation Lemma says:
There are only three different types of "1-point halves."

behaves exactly as one of these three:

Towards a General Decomposition Theorem

The Articulation Lemma says:
There are only three different types of "1-point halves."

behaves exactly as one of these three:

winner

Towards a General Decomposition Theorem

The Articulation Lemma says:
There are only three different types of "1-point halves."

absolute loser
winner

Towards a General Decomposition Theorem

The Articulation Lemma says:
There are only three different types of "1-point halves."

absolute loser

winner

A Poset of "Halfgames"

A k-pointed hypergraph contains k marked contact points.

A Poset of "Halfgames"

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_{k} X$ of two such hypergraphs by gluing at the points.

A Poset of "Halfgames"

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_{k} X$ of two such hypergraphs by gluing at the points.

Let $A \leq B$ for k-ptd h'graphs if for all k-ptd h'graphs X :

$$
A \sqcup_{k} X \text { is a winner } \Rightarrow B \sqcup_{k} X \text { is a winner }
$$

A Poset of "Halfgames"

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_{k} X$ of two such hypergraphs by gluing at the points.

Let $\mathrm{A} \leq \mathrm{B}$ for k -ptd h'graphs if for all k -ptd h'graphs X :

$$
A \sqcup_{k} X \text { is a winner } \Rightarrow B \sqcup_{k} X \text { is a winner }
$$

What is the structure of the resulting poset \mathcal{H}_{k} ? (after identification of equivalent ptd h'graphs)

A Poset of "Halfgames"

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_{k} X$ of two such hypergraphs by gluing at the points.

Let $\mathrm{A} \leq \mathrm{B}$ for k -ptd h'graphs if for all k -ptd h'graphs X :

$$
A \sqcup_{k} X \text { is a winner } \Rightarrow B \sqcup_{k} X \text { is a winner }
$$

What is the structure of the resulting poset \mathcal{H}_{k} ? (after identification of equivalent ptd h'graphs)
\mathcal{H}_{1} is a chain of three elements (Articulation Lemma)

A Poset of "Halfgames"

A k-pointed hypergraph contains k marked contact points.

Form the k-pointed union $A \sqcup_{k} X$ of two such hypergraphs by gluing at the points.

Let $\mathrm{A} \leq \mathrm{B}$ for k -ptd h'graphs if for all k -ptd h'graphs X :

$$
A \sqcup_{k} X \text { is a winner } \Rightarrow B \sqcup_{k} X \text { is a winner }
$$

What is the structure of the resulting poset \mathcal{H}_{k} ? (after identification of equivalent ptd h'graphs)

Conjecture. All \mathcal{H}_{k} are finite.

