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The Longest-Commmon-Subsequence Problem

α γ γ β ε α β β α γ δ

γ β α γ ε β δ δ α β δ

Given: two sequences A = (a1, . . . , am), B = (b1, . . . , bn)

over some alphabet Σ

Task: Find a longest subsequence that occurs in both sequences,
a longest common subsequence (LCS)

Note: letters may occur repeatedly in the subsequence
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The Longest-Increasing-Subsequence Problem

γ α δ β δ α γ β ε δ

Given: a sequence A = (a1, . . . , am)

over an ordered alphabet Σ = {α < β < γ < δ < ε}

Task: Find a longest increasing subsequence (LIS) in A

Important: here, letters may not occur repeatedly
(strictly increasing subsequence)
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Classical Results

LCS can be computed in O(mn) time by dynamic programming
[Wagner & Fischer, 1974]

(and by divide-&-conquer in O(n) space [Hirschberg, 1975])

Θ(log n)-time speed-up possible [Masek & Paterson, 1980]

important parameter: r = # matches (pairs (i, j) with ai = bj)

LCS in O(r log n) time [Hunt & Szymanski, 1977]
(assuming r ≥ m,n)

LIS in O(n log n) time [Fredman, 1975]

(also as corollary of O(r log n)-time algorithm above)
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Longest Commmon Increasing Subsequences

α γ γ β ε α β β α γ δ

γ β α γ ε β δ δ α β δ

Given: two sequences A = (a1, . . . , am), B = (b1, . . . , bn)

over some ordered alphabet Σ = {α < β < γ < δ < · · ·}

Task: Find a longest increasing subsequence that occurs in both
sequences, a longest common increasing subsequence (LCIS)

Quite recently introduced by Yang, Huang, and Chao (IPL, 2005):
They compute LCIS in Θ(mn) time and space.
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LCIS Results

LCIS in Θ(mn) time and space [Yang et al., IPL 2005]

parametrized: O

(

min {r log |Σ|,m|Σ| + r} log log m + SortΣ(m)

)

(essentially O(r · log |Σ|)) [Chan et al., ISAAC 2005]

remember: r might be Ω(mn)

but it could also be much smaller in certain important cases
(when A,B are permutations, for example)

New Result:

An LCIS for a length-m and a length-n sequence can be computed in

O

(

(m + n`) log log |Σ| + SortΣ(m)

)

time, where ` = length of LCIS.

(essentially O(n`)) (n ≥ m)

We “usually” expect quite small `. So it’s a “good” parameter!
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LCIS Results

New Result:

An LCIS for a length-m and a length-n sequence can be computed in

O

(

(m + n`) log log |Σ| + SortΣ(m)

)

time, where ` = length of LCIS.

(essentially O(n`)) (n ≥ m)

You “usually” expect quite small `. So it’s a “good” parameter!

Even O(m) space possible using randomized data structures;
then it’s expected running time.

(uses Willard’s y-fast tries)
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Weakly-Increasing Subsequences

Both, LIS and LCIS consider strictly increasing subsequences.

What about the “weak” (≤ instead of < ) variant?

:

LCWIS: longest common weakly increasing subsequence

(of two sequences over an ordered alphabet)

Our new result also applies (just replace < by ≤ everywhere) but . . .

Theorem.

We can compute an LCWIS over a 2-letter alphabet in linear time,
and over a 3-letter alphabet in O(m + n log n) time.

Why should this be interesting?
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Weakly-Increasing Subsequences

Theorem.

We can compute an LCWIS over a 2-letter alphabet in linear time,
and over a 3-letter alphabet in O(m + n log n) time.

For LCS the 2-letter case seems to be as hard as the general
problem already.

For LCIS the bounded-alphabet case can be done in near-linear
time (our algorithm)

Complexity of LCWIS seems to lie somehow between the two

4-letter LCWIS remains open

Martin Kutz: Faster Algorithms for Longest Common Increasing Subsequences – p. 9



max planck institut
informatik

Weakly-Increasing Subsequences

Theorem.

We can compute an LCWIS over a 2-letter alphabet in linear time,
and over a 3-letter alphabet in O(m + n log n) time.

For LCS the 2-letter case seems to be as hard as the general
problem already.

For LCIS the bounded-alphabet case can be done in near-linear
time (our algorithm)

Complexity of LCWIS seems to lie somehow between the two

4-letter LCWIS remains open

Martin Kutz: Faster Algorithms for Longest Common Increasing Subsequences – p. 9



max planck institut
informatik

Weakly-Increasing Subsequences

Theorem.

We can compute an LCWIS over a 2-letter alphabet in linear time,
and over a 3-letter alphabet in O(m + n log n) time.

For LCS the 2-letter case seems to be as hard as the general
problem already.

For LCIS the bounded-alphabet case can be done in near-linear
time (our algorithm)

Complexity of LCWIS seems to lie somehow between the two

4-letter LCWIS remains open

Martin Kutz: Faster Algorithms for Longest Common Increasing Subsequences – p. 9



max planck institut
informatik

Weakly-Increasing Subsequences

Theorem.

We can compute an LCWIS over a 2-letter alphabet in linear time,
and over a 3-letter alphabet in O(m + n log n) time.

For LCS the 2-letter case seems to be as hard as the general
problem already.

For LCIS the bounded-alphabet case can be done in near-linear
time (our algorithm)

Complexity of LCWIS seems to lie somehow between the two

4-letter LCWIS remains open

Martin Kutz: Faster Algorithms for Longest Common Increasing Subsequences – p. 9



max planck institut
informatik

Weakly-Increasing Subsequences

Theorem.

We can compute an LCWIS over a 2-letter alphabet in linear time,
and over a 3-letter alphabet in O(m + n log n) time.

For LCS the 2-letter case seems to be as hard as the general
problem already.

For LCIS the bounded-alphabet case can be done in near-linear
time (our algorithm)

Complexity of LCWIS seems to lie somehow between the two

4-letter LCWIS remains open

Martin Kutz: Faster Algorithms for Longest Common Increasing Subsequences – p. 9



max planck institut
informatik

Applications
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Our LCIS algorithm
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Our LCIS algorithm

Theorem. An LCIS for a length-m seq. A and a length-n seq. B

can be computed in O

(

(m + n`) log log |Σ| + SortΣ(m)

)

time.

A dynamic-programming approach, but not over the A × B table.

Instead, evaluate arrays Li[j]: minimal index κ in B

such that there exists lenght-i CIS
on A[1..i] and B[1..κ] ending on ai.L1[4] = 3

L1[1] = 8

L1[9] = 8

L2[4] = 9

L2[5] = 2

L3[8] = 6
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Our LCIS algorithm

1 2 3 4 5 6 7 8 9

A : γ α α β δ α β ε γ

B : β δ β α α ε δ γ β
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Our LCIS algorithm

1 2 3 4 5 6 7 8 9

A : γ α α β δ α β ε γ

B : β δ β α α ε δ γ β

Evaluate arrays Li one after another:
compute Li[1 . . . m] from Li−1[1 . . . m]

“New” data structure: Bounded Heaps

combine McCreight’s priority search tree with van Emde Boas trees

maintain collection of items, each with a key and a priority

query (k): minimum-priority item with key < k

insert (item,key,priority) and decrease_key (item,key)

items: length-(i − 1) CIS ending on ah = bk (in A resp. B)
key: the letter ah = bk

priority: the index k (in B)

Each operation in O(log log |Σ|) time
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Our LCIS algorithm

1 2 3 4 5 6 7 8 9

γ α α β δ α β ε γ

β δ β α α ε δ γ β

query (k): minimum-priority item with key < k

items: length-(i − 1) CIS ending on ah = bk (in A resp. B)
key: the letter ah = bk

priority: the index k (in B)

Example: want to compute L3[8]

query (ε) “where does longest length-2 sequence
with last letter < ε end in B?”

answer: at position 2

find next occurence of ε

after position 2 in B: 6

set new value L3[8] := 6
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LCWIS with Two Letters

Theorem.

We can compute an LCWIS over a 2-letter alphabet in linear time,
and over a 3-letter alphabet in O(m + n log n) time.

2-Letter case is simple:

every potential solution is of the form αrβs

for every r ≤ m do
find leftmost occurence of αr in A and B

fill up to the right with maximum number of β’s

take the best result over all r

−→ O(m) time
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LCWIS with Three Letters

Theorem.

We can compute an LCWIS over a 2-letter alphabet in linear time,
and over a 3-letter alphabet in O(m + n log n) time.

3-Letter case is not so simple!

every potential solution is of the form αrβsγt

naive implementation would require quadratic time

Idea: Guess a cut (s, t) ∈ A × B and consider only solutions
with all α’s to the left of the cut and all γ’s to its right.

α

α

γ

γ

s

t
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LCWIS with Three Letters

Idea: Guess a cut (s, t) ∈ A × B and consider only solutions
with all α’s to the left of the cut and all γ’s to its right.

α

α

γ

γ

s

t

Now enter all “α-information” into the cut in linear time
and then check all “γ-information” against the cut in linear time.

Gives linear time per cut −→ cubic total time!

A hierarchical distribution of information reduces all information
storage to O(m + n log n) time.
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Multiple Sequences

Theorem.

An LCIS or LCWIS of k length-n
sequences can be computed in
O(r logk−1 log log r) time, where
r = # of match vectors.

−→
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4 Multiple Sequences

In this section we consider the problem of finding an LCIS of k length-n se-
quences, for k ≥ 3. We will denote the sequences by A1 = (a1

1, . . . , a
1
n), A2 =

(a2
1, . . . , a

2
n), . . ., Ak = (ak

1 , . . . , ak
n). A match is a vector (i1, i2, . . . , ik) of indices

such that a1
i1

= a2
i2

= · · · = ak
ik

. Let r be the number of matches. Chan et al. [4]
showed that an LCIS can be found in O(min(kr2, kr log σ logk−1 r)+kSortΣ (n))
time (they present two algorithms, each corresponding to one of the terms in
the min). We present a simpler solution which replaces the second term by
O(r logk−1 r log log r).

We denote the ith coordinate of a vector v by v[i], and the alphabet symbol
corresponding to the match described by a vector v will be denoted s(v). A
vector v dominates a vector v′ if v[i] > v′[i] for all 1 ≤ i ≤ k, and we write
v′ < v. Clearly, an LCIS corresponds to a sequence v1, . . . , v� of matches such
that v1 < v2 < · · · < v� and s(v1) < s(v2) < · · · < s(v�).

To find an LCIS, we use a data structure by Gabow et al. [6, Theorem 3.3],
which stores a fixed set of n vectors from {1, . . . , n}k. Initially all vectors are
inactive. The data structure supports the following two operations:

1. Activate a vector with an associated priority.
2. A query of the form “what is the maximum priority of an active vector that

is dominated by a vector p ?”

A query takes O(logk−1 n log log n) time and the total time for at most n
activations is O(n logk−1 n log log n). The data structure requires O(n logk−1 n)
preprocessing time and space.

Each of the r matches v = (v1, . . . , vk) corresponds to a vector. The priority of
v will be the length of the longest LCIS that ends at the match v. We will consider
the matches by non-decreasing order of their symbols. For each symbol s of the
alphabet, we first compute the priority of every match v with s(v) = s. This
is equal to 1 plus the maximum priority of a vector dominated by v. Then, we
activate these vectors in the data structure with the priorities we have computed;
they should be there when we compute the priorities for matches v with s(v) > s.

The algorithm applies to the case of a common weakly-increasing subsequence
by the following modification: The matches will be considered by non-decreasing
order of s(v) as before, but within each symbol also in non-decreasing lexico-
graphic order of v. For each match, we compute its priority and immediately
activate it in the data structure (so that it is active when considering other
matches with the same symbol). The lexicographic order ensures that if v > v′

then v′ is in the data structure when v is considered.

Theorem 4. An LCIS or LCWIS of k length-n sequences can be computed in
O(r logk−1 r log log r) time, where r counts the number of match vectors.

5 Outlook

The central question about the LCS problems is, whether it can be solved in
O(n2−ε) time in general. It seems that with LCIS we face the same frontier. Our

Theorem.

An LCIS or LCWIS of k length-n
sequences can be computed in
O(r logk−1 log log r) time, where
r = # of match vectors.

−→
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Open Problems

Can you do the Four-Russians Trick for LCIS?

(get something like O(n2 log log n/ log n))

Can you extend the near-linear running time for LCWIS
to 4,5,. . . -letter alphabets?

With LCS, is the 2-letter case as hard as the general problem?
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