Reachability Substitutes for Planar Digraphs

Martin Kutz

Max-Planck Institut für Informatik, Saarbrücken

Joint work with Irit Katriel (MPII Saarbrücken) and Martin Skutella (Universität Dortmund)

Reachability Substitutes

Given a digraph G = (V, E) with a set of vertices U marked "interesting".

Reachability Substitutes

Given a digraph G = (V, E) with a set of vertices U marked "interesting".

How efficiently can we represent the reachabilities in U?

Given a digraph G = (V, E) with a set of vertices U marked "interesting".

How efficiently can we represent the reachabilities in U?

Def. Two digraphs G = (V, E) and G' = (V', E') are reachability substitutes for each other (w.r.t. U) if for all $u, v \in U \subseteq V, V'$:

$$u \stackrel{G}{\leadsto} v \quad \text{iff} \quad u \stackrel{G'}{\leadsto} v$$

Theorem. Almost all digraphs with k interesting vertices have only RSs of size $\Omega(k^2/\log k)$.

Example: $\vec{K}_{4,4}$ – matching is incompressible **Theorem.** Almost all digraphs with k interesting vertices have only RSs of size $\Omega(k^2/\log k)$.

Example: $\vec{K}_{4,4}$ – matching is incompressible

Theorem. Finding a minimum RS (size = |V| + |E|) for a given digraph is NP-hard.

How complex can planar reachabilities be?

Main Theorem. Any planar digraph G = (V, E) with k interesting vertices has a reachability substitute of size $O(k \log^2 k)$.

Main Theorem. Any planar digraph G = (V, E) with k interesting vertices has a reachability substitute of size $O(k \log^2 k)$.

Observe: bound in k = |U|, not |V|. (So Euler won't help.) The containing/defining digraph G may be arbitrarily large!

Main Theorem. Any planar digraph G = (V, E) with k interesting vertices has a reachability substitute of size $O(k \log^2 k)$.

Observe: bound in k = |U|, not |V|. (So Euler won't help.) The containing/defining digraph G may be arbitrarily large!

Previous result [Subramanian, 1993]: If all interesting vertices lie on a constant number of faces then there is a substitute of size $O(k \log k)$.

separation (balanced directed cuts)

separation (balanced directed cuts)

- separation (balanced directed cuts)
- representing reachabilities to / from the cut

- separation (balanced directed cuts)
- representing reachabilities to / from the cut

- separation (balanced directed cuts)
- representing reachabilities to / from the cut

- separation (balanced directed cuts)
- representing reachabilities to / from the cut
 - type bound (how many color sets)

- separation (balanced directed cuts)
- representing reachabilities to / from the cut
 - type bound (how many color sets)
 - new encoding (interval structure)

Tools & Techniques

separation (balanced directed cuts)
 representing reachabilities to / from the cut
 type bound (how many color sets)
 new encoding (interval structure)
 recurse

For simplicity, we consider only dags.

Lemma. (The Type Bound) The number of different types (and also of type changes!) is linear in the number of colors.

Lemma. (The Type Bound) The number of different types (and also of type changes!) is linear in the number of colors.

Lemma. There exists a dag of size $O(k \log k)$ that encodes all reachabilities from the k colors down to the cut line.

proof idea: nested intervals

- insert one interesting vertex after another, each together with all vertices reachable from it
- every interesting vertex must appear before all interesting vertices in its "shadow"

proof idea: nested intervals

- insert one interesting vertex after another, each together with all vertices reachable from it
- every interesting vertex must appear before all interesting vertices in its "shadow"

proof idea: nested intervals

- insert one interesting vertex after another, each together with all vertices reachable from it
- every interesting vertex must appear before all interesting vertices in its "shadow"

Lemma. (The Type Bound) The number of different types (and also of type changes!) is linear in the number of colors.

Lemma. There exists a dag of size $O(k \log k)$ that encodes all reachabilities from the k colors down to the cut line.

- wanted: two simply-connected regions separated by a closed Jordan curve
- directed needed for cross-cut interval structure to work
- **balanced** (w.r.t. U) required for recursion depth $O(\log |U|)$

- wanted: two simply-connected regions separated by a closed Jordan curve
- directed needed for cross-cut interval structure to work
- *balanced* (w.r.t. U) required for recursion depth $O(\log |U|)$

- wanted: two simply-connected regions separated by a closed Jordan curve
- directed needed for cross-cut interval structure to work
- **balanced** (w.r.t. U) required for recursion depth $O(\log |U|)$

- choose two colors, red and green, for the simply connected "out set" A
- draw the cut line around them

- wanted: two simply-connected regions separated by a closed Jordan curve
- directed needed for cross-cut interval structure to work
- **balanced** (w.r.t. U) required for recursion depth $O(\log |U|)$

- choose two colors, red and green, for the simply connected "out set" A
- draw the cut line around them
- this collects at least onevertex

- wanted: two simply-connected regions separated by a closed Jordan curve
- directed needed for cross-cut interval structure to work
- **balanced** (w.r.t. U) required for recursion depth $O(\log |U|)$

- choose two colors, red and green, for the simply connected "out set" A
- draw the cut line around them
- this collects at least onevertex
- then by transitivity, the other two colors must sit in A, too

- wanted: two simply-connected regions separated by a closed Jordan curve
- directed needed for cross-cut interval structure to work
- **balanced** (w.r.t. U) required for recursion depth $O(\log |U|)$

- choose two colors, red and green, for the simply connected "out set" A
- draw the cut line around them
- this collects at least onevertex
- then by transitivity, the other two colors must sit in A, too

Theorem. Every plane dag has an almost-directed 1:3-cut.

Theorem. Every plane dag has an almost-directed 1:3-cut.

Theorem. Every plane dag has an almost-directed 1:3-cut.

proof sketch:

process the dag in some fixed topological order

Theorem. Every plane dag has an almost-directed 1:3-cut.

- process the dag in some fixed topological order
- grow simply-connected out-directed regions, vertex by vertex

Theorem. Every plane dag has an almost-directed 1:3-cut.

- process the dag in some fixed topological order
- grow simply-connected out-directed regions, vertex by vertex

Theorem. Every plane dag has an almost-directed 1:3-cut.

- process the dag in some fixed topological order
- grow simply-connected out-directed regions, vertex by vertex

Theorem. Every plane dag has an almost-directed 1:3-cut.

- process the dag in some fixed topological order
- grow simply-connected out-directed regions, vertex by vertex
- merge regions when necessary

Theorem. Every plane dag has an almost-directed 1:3-cut.

- process the dag in some fixed topological order
- grow simply-connected out-directed regions, vertex by vertex
- merge regions when necessary

Theorem. Every plane dag has an almost-directed 1:3-cut.

proof sketch:

nax planck institut

nformatik

- process the dag in some fixed topological order
- grow simply-connected out-directed regions, vertex by vertex
- merge regions when necessary
- saddle points are critical

Theorem. Every plane dag has an almost-directed 1:3-cut.

- process the dag in some fixed topological order
- grow simply-connected out-directed regions, vertex by vertex
- merge regions when necessary
- saddle points are critical

Theorem. Every plane dag has an almost-directed 1:3-cut.

- process the dag in some fixed topological order
- grow simply-connected out-directed regions, vertex by vertex
- merge regions when necessary
- saddle points are critical
- but only one will persist

• cut the given dag in half

- cut the given dag in half
- represent cross-cut reachabilities:
 - size O(k log k) interval structure (takes care of all single-cross paths)

- cut the given dag in half
- represent cross-cut reachabilities:
 - size O(k log k) interval structure (takes care of all single-cross paths)
 - O(k) arcs for the *"almost"*-outlier (takes care of zig-zag paths)

- cut the given dag in half
- represent cross-cut reachabilities:
 - size O(k log k) interval structure (takes care of all single-cross paths)
 - O(k) arcs for the *"almost"*-outlier (takes care of zig-zag paths)
- recurse $O(\log |\mathcal{U}|)$ times

- cut the given dag in half
- represent cross-cut reachabilities:
 - size O(k log k) interval structure (takes care of all single-cross paths)
 - O(k) arcs for the *"almost"*-outlier (takes care of zig-zag paths)
- recurse $O(\log |U|)$ times
- directed cycles can be taken care of separately in advance (they cut the plane into well-separated areas)

A charakterization of digraphs with planar reachability substitutes in terms of forbidden directed minors might be possilbe.

A charakterization of digraphs with planar reachability substitutes in terms of forbidden directed minors might be possilbe.

How difficult is it to decide whether a given digraph has a planar reachability substitute?

A charakterization of digraphs with planar reachability substitutes in terms of forbidden directed minors might be possilbe.

- How difficult is it to decide whether a given digraph has a planar reachability substitute?
- Find a general bound on the size of such a substitute.
 (Some instances known to require Ω(|U|²) size.)

A charakterization of digraphs with planar reachability substitutes in terms of forbidden directed minors might be possilbe.

- How difficult is it to decide whether a given digraph has a planar reachability substitute?
- Find a general bound on the size of such a substitute.
 (Some instances known to require Ω(|U|²) size.)

General Problems:

- Prove a super-linear lower bound on the size of general (non-planar) reachability substitutes.
- Are the two log-factors in our construction really necessary?