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The Smallest Enclosing Ball

given: finite point set S in R
d
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The Smallest Enclosing Ball

given: finite point set S in R
d

wanted: smallest ball B

= B(c, r) := {x : ||x − c|| ≤ r}

containing S

Call this unique minimal B the smallest
enclosing ball of S, denoted seb(S).
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Applications

• visibility culling and bounding sphere hierarchies in 3D computer graphics

• clustering (e.g. for support-vector machines) — many dimensions

• nearest neighbor search
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Previous Work

• Welzl proposed randomized combinatorial algorithm, implemented by
Gärtner, fast for d ≤ 30, impractical above.

• Quadratic-programming approach by Gärtner & Schönherr, uses exact
arithmetic, up to d = 300.
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• Quadratic-programming approach by Gärtner & Schönherr, uses exact
arithmetic, up to d = 300.

• General-purpose QP-solver CPLEX, solves d ≤ 3,000.
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Previous Work

• Welzl proposed randomized combinatorial algorithm, implemented by
Gärtner, fast for d ≤ 30, impractical above.

• Quadratic-programming approach by Gärtner & Schönherr, uses exact
arithmetic, up to d = 300.

• General-purpose QP-solver CPLEX, solves d ≤ 3,000.

• Zhou, Toh, and Sun use interior-point method to find approximate
solution, up to d = 10,000.

• Kumar, Mitchell, Yildrum compute approximation with core sets, results
given up to d = 1,400.
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Our Algorithm

• simple combinatorial algorithm (not approximation)
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Our Algorithm

• simple combinatorial algorithm (not approximation)

• similar to LP simplex-method

• equipped with pivot scheme to avoid cycling

Martin Kutz — Smallest Enclosing Balls 9



Our Algorithm

• simple combinatorial algorithm (not approximation)

• similar to LP simplex-method

• equipped with pivot scheme to avoid cycling

• C++ floating-point implementation: solves several thousand points in a
few thousand dimensions

Martin Kutz — Smallest Enclosing Balls 10



Our Algorithm

• simple combinatorial algorithm (not approximation)

• similar to LP simplex-method

• equipped with pivot scheme to avoid cycling

• C++ floating-point implementation: solves several thousand points in a
few thousand dimensions

• idea not completely new; Hopp & Reeve presented similar algorithm but
without proofs, some details unclear, 3D only
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The Basic Idea: Deflating a Ball

Iteratively shrink an enclosing Ball B = B(c, T) represented by

• a current center c,

• an affinely independent subset T ⊆ S of points at a common distance
from c — the support set
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The Basic Idea: Deflating a Ball

Iteratively shrink an enclosing Ball B = B(c, T) represented by

• a current center c,

• an affinely independent subset T ⊆ S of points at a common distance
from c — the support set

Invariants:

T ⊂ ∂B(c, T)

S ⊂ B(c, T)
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2D “Example”
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2D “Example”
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2D “Example”
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Termination Criterion
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Termination Criterion

Lemma (Seidel).

Let T be set of points on boundary
of some ball B with center c.

Then

B = seb(T) ⇐⇒ c ∈ conv(T).
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How to Shrink

Moving Step [ Precondition c 6∈ aff(T) ]

Move c orthogonally towards aff(T),
i.e., heading for closest point in aff(T).

aff(T)
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How to Shrink

Moving Step [ Precondition c 6∈ aff(T) ]

Move c orthogonally towards aff(T),
i.e., heading for closest point in aff(T).

For any fixed point c ′ on this path,
T stays on sphere around c ′.

Especially, our target point is the
center of the unique sphere through T

in aff(T), called circumcenter of T .

aff(T)

Martin Kutz — Smallest Enclosing Balls 25



How to Shrink

Moving Step [ Precondition c 6∈ aff(T) ]

Move c orthogonally towards aff(T),
i.e., heading for closest point in aff(T).

For any fixed point c ′ on this path,
T stays on sphere around c ′.

Especially, our target point is the
center of the unique sphere through T

in aff(T), called circumcenter of T .

Stop movement when shrinking boundary
hits new point of S, insert it into T ;
otherwise just stop with c in aff(T). aff(T)
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How to Shrink

Dropping Step
Necessary if c ∈ aff(T) \ conv(T).

Must remove a point from T .

+

−

+
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How to Shrink

Dropping Step
Necessary if c ∈ aff(T) \ conv(T).

Must remove a point from T .
Pick one with negative coefficient
in affine representation

c =
∑

p∈T

λpp,
∑

p∈T

λp = 1.

+

−

+
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How to Shrink

Dropping Step
Necessary if c ∈ aff(T) \ conv(T).

Must remove a point from T .
Pick one with negative coefficient
in affine representation

c =
∑

p∈T

λpp,
∑

p∈T

λp = 1.

Afterwards, c lies outside the new aff(T),
so it we can move again.
The next move will not recollect the
dropped point.

+

−

+
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The Whole Algorithm

c := any point of S;
T := {p}, with some p ∈ S at maximal distance from c;

while c 6∈ conv(T) do
[ Invariant: B(c, T) ⊃ S, ∂B(c, T) ⊃ T , and T affinely independent ]

if c ∈ aff(T) then drop T -point with negative coefficient in aff. rep. of c;
[ Invariant: c 6∈ aff(T) ]
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The Whole Algorithm

c := any point of S;
T := {p}, with some p ∈ S at maximal distance from c;

while c 6∈ conv(T) do
[ Invariant: B(c, T) ⊃ S, ∂B(c, T) ⊃ T , and T affinely independent ]

if c ∈ aff(T) then drop T -point with negative coefficient in aff. rep. of c;
[ Invariant: c 6∈ aff(T) ]

move c towards aff(T),
stop when boundary hits new point q ∈ S or c reaches aff(T);

if point stopped us then T := T ∪ {q};

end while;

Martin Kutz — Smallest Enclosing Balls 31



Our Example Again
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Our Example Again
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Our Example Again
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Our Example Again
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Our Example Again
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Correctness & Termination

Correctness “clear” from invariants.
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Correctness & Termination

Correctness “clear” from invariants.

while c 6∈ conv(T) do
[ Invariant: B(c, T) ⊃ S, ∂B(c, T) ⊃ T , and T affinely independent ]

if c ∈ aff(T) then drop T -point with negative coefficient in aff. rep. of c;
[ Invariant: c 6∈ aff(T) ]

move c towards aff(T),
stop when boundary hits new point q ∈ S or c reaches aff(T);

if point stopped us then T := T ∪ {q};

end while;
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Correctness & Termination

Correctness “clear” from invariants. Termination more complicated.
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Correctness & Termination

Correctness “clear” from invariants. Termination more complicated.

Proposition. In the non-degenerate case (no affinely dependent subset
T ⊆ S lies on a sphere) the algorithm terminates.
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Correctness & Termination

Correctness “clear” from invariants. Termination more complicated.

Proposition. In the non-degenerate case (no affinely dependent subset
T ⊆ S lies on a sphere) the algorithm terminates.

Proof:

• Negative-coefficient rule prevents immediate re-insertion after drop.

• Radius decreases after dropping step.

• At least 1 out of d consecutive iterations performs a drop.

• Set of all possible balls B(c, T) preceding drops is finite.
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How to Prevent Cycling

In degenerate cases cycling may occur, i.e., the center c doesn’t move but
only support set T changes — forever.
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How to Prevent Cycling

In degenerate cases cycling may occur, i.e., the center c doesn’t move but
only support set T changes — forever.

Solution: pivot rule, similar to Bland’s rule for simplex algorithm.

Index the point set S in arbitrary order.

When dropping a point with negative coefficient, pick the one with
smallest index.

When movement stopped by several points, also pick the one with
smallest index.
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How to Prevent Cycling

In degenerate cases cycling may occur, i.e., the center c doesn’t move but
only support set T changes — forever.

Solution: pivot rule, similar to Bland’s rule for simplex algorithm.

Index the point set S in arbitrary order.

When dropping a point with negative coefficient, pick the one with
smallest index.

When movement stopped by several points, also pick the one with
smallest index.

Theorem. Using “Bland’s rule” our algorithm terminates.

Martin Kutz — Smallest Enclosing Balls 53



Technical Details

Data structure for support set T needed that allows requests

• compute orthogonal projection onto aff(T) (for walking),

• compute affine coefficients of point p ∈ aff(T) (for dropping)
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Technical Details

Data structure for support set T needed that allows requests

• compute orthogonal projection onto aff(T) (for walking),

• compute affine coefficients of point p ∈ aff(T) (for dropping)

and updates

• insert point into T and

• delete point from T .
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Technical Details

a1
a2

b

0

Let A :=
[

a1 a2 · · · ar

]

(homogenized).
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Technical Details

a1
a2

Ax∗

b

0

Let A :=
[

a1 a2 · · · ar

]

(homogenized).

Let x∗ ∈ 〈a1, a2, . . . , ak〉 minimize
the risidual

||Ax − b||2,

then Ax∗ is the orthogonal projection
of b onto 〈a1, a2, . . . , ak〉.
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Technical Details

a1
a2

Ax∗

b

0

Let A :=
[

a1 a2 · · · ar

]

(homogenized).

Let x∗ ∈ 〈a1, a2, . . . , ak〉 minimize
the risidual

||Ax − b||2,

then Ax∗ is the orthogonal projection
of b onto 〈a1, a2, . . . , ak〉.

If b ∈ 〈a1, a2, . . . , ak〉
then the coefficients of x∗ simply are
the coefficients of b.
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Technical Details

We compute the x∗ that minimizes ||Ax − b|| with QR-decomposition

=

R

×

QA
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Technical Details

We compute the x∗ that minimizes ||Ax − b|| with QR-decomposition

=

R

×

QA

“Solve” Ax = b via QRx = b ⇐⇒ Rx = QTb.
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Technical Details

We compute the x∗ that minimizes ||Ax − b|| with QR-decomposition

=

R

×

QA

“Solve” Ax = b via QRx = b ⇐⇒ Rx = QTb.

Let y :≈ QTb with last entries zeroed
and then solve Rx = y via back substitution.
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Technical Details

Update QR-decomposition via Givens rotations.

=

R

×

QA
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Technical Details

Update QR-decomposition via Givens rotations.

=

R

×

QA

• add new column a to A (and rotated column QTa to R)
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Technical Details

Update QR-decomposition via Givens rotations.

=

R

×

QA

• add new column a to A (and rotated column QTa to R)

• rotate rows of R and colums of Q to reduce R to triangular shape
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Technical Details

Update QR-decomposition via Givens rotations.

=

R

×

QA

• add new column a to A (and rotated column QTa to R)

• rotate rows of R and colums of Q to reduce R to triangular shape

Martin Kutz — Smallest Enclosing Balls 65



Our Implementation

• single iteration in O(nd) time
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Our Implementation

• single iteration in O(nd) time

• C++ floating-point

• Bland’s rule replaced by numerically more stable heuristic
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Our Implementation

• single iteration in O(nd) time

• C++ floating-point

• Bland’s rule replaced by numerically more stable heuristic

• QR decomposition numerically very stable

• very accurate results, about 1,000 times machine precision
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Kumar et al.: n = 1000
Zhou et al.: n = 1000

our algorithm: n = 1000
our algorithm: n = 2000

Uniform Distribution

dimension

se
co

n
d
s

2000150010005000
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50

0
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CPLEX: n = 1000
CPLEX: n = 2000

our algorithm: n = 1000
our algorithm: n = 2000

Almost Spherical Distribution
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