Fast Smallest-Enclosing-Ball Computation in High Dimensions

Martin Kutz
FU Berlin

joint work with Bernd Gärtner and Kaspar Fischer, ETH Zürich

The Smallest Enclosing Ball

given: finite point set S in $\mathbb{R}^{\text {d }}$

The Smallest Enclosing Ball

given: finite point set S in \mathbb{R}^{d}
wanted: smallest ball B
$=\mathrm{B}(\mathrm{c}, \mathrm{r}):=\{\mathrm{x}:\|\mathrm{x}-\mathrm{c}\| \leq \mathrm{r}\}$ containing S

The Smallest Enclosing Ball

given: finite point set S in \mathbb{R}^{d}
wanted: smallest ball B
$=\mathrm{B}(\mathrm{c}, \mathrm{r}):=\{\mathrm{x}:\|\mathrm{x}-\mathrm{c}\| \leq \mathrm{r}\}$ containing S

Call this unique minimal B the smallest
 enclosing ball of S, denoted seb(S).

Applications

- visibility culling and bounding sphere hierarchies in 3D computer graphics
- clustering (e.g. for support-vector machines) - many dimensions
- nearest neighbor search

Previous Work

- Welzl proposed randomized combinatorial algorithm, implemented by Gärtner, fast for $\mathrm{d} \leq 30$, impractical above.
- Quadratic-programming approach by Gärtner \& Schönherr, uses exact arithmetic, up to $d=300$.

Previous Work

- Welzl proposed randomized combinatorial algorithm, implemented by Gärtner, fast for $\mathrm{d} \leq 30$, impractical above.
- Quadratic-programming approach by Gärtner \& Schönherr, uses exact arithmetic, up to $d=300$.
- General-purpose QP-solver CPLEX, solves $d \leq 3,000$.

Previous Work

- Welzl proposed randomized combinatorial algorithm, implemented by Gärtner, fast for $\mathrm{d} \leq 30$, impractical above.
- Quadratic-programming approach by Gärtner \& Schönherr, uses exact arithmetic, up to $d=300$.
- General-purpose QP-solver CPLEX, solves $d \leq 3,000$.
- Zhou, Toh, and Sun use interior-point method to find approximate solution, up to $d=10,000$.
- Kumar, Mitchell, Yildrum compute approximation with core sets, results given up to $d=1,400$.

Our Algorithm

- simple combinatorial algorithm (not approximation)

Our Algorithm

- simple combinatorial algorithm (not approximation)
- similar to LP simplex-method
- equipped with pivot scheme to avoid cycling

Our Algorithm

- simple combinatorial algorithm (not approximation)
- similar to LP simplex-method
- equipped with pivot scheme to avoid cycling
- C++ floating-point implementation: solves several thousand points in a few thousand dimensions

Our Algorithm

- simple combinatorial algorithm (not approximation)
- similar to LP simplex-method
- equipped with pivot scheme to avoid cycling
- C++ floating-point implementation: solves several thousand points in a few thousand dimensions
- idea not completely new; Hopp \& Reeve presented similar algorithm but without proofs, some details unclear, 3D only

The Basic Idea: Deflating a Ball

Iteratively shrink an enclosing Ball $B=B(c, T)$ represented by

- a current center c,
- an affinely independent subset $T \subseteq S$ of points at a common distance from c - the support set

The Basic Idea: Deflating a Ball

Iteratively shrink an enclosing Ball $B=B(c, T)$ represented by

- a current center c,
- an affinely independent subset $T \subseteq S$ of points at a common distance from c - the support set

Invariants:

$$
\begin{aligned}
& T \subset \partial B(c, T) \\
& S \subset B(c, T)
\end{aligned}
$$

2D "Example"

2D "Example"

2D "Example"

2D "Example"

2D "Example"

2D "Example"

2D "Example"

2D "Example"

Termination Criterion

Termination Criterion

Lemma (Seidel).

Let T be set of points on boundary of some ball B with center c .

Then

$$
B=\operatorname{seb}(T) \quad \Longleftrightarrow \quad c \in \operatorname{conv}(T) .
$$

How to Shrink

Moving Step [Precondition c $\notin \operatorname{aff}(T)]$

Move c orthogonally towards aff(T), i.e., heading for closest point in $\operatorname{aff}(\mathrm{T})$.

How to Shrink

Moving Step [Precondition $c \notin \operatorname{aff}(T)]$
Move c orthogonally towards aff(T), i.e., heading for closest point in $\operatorname{aff}(T)$.

For any fixed point c^{\prime} on this path, T stays on sphere around c^{\prime}.

Especially, our target point is the center of the unique sphere through T in $\operatorname{aff}(T)$, called circumcenter of T.

How to Shrink

Moving Step [Precondition $c \notin \operatorname{aff}(T)]$
Move c orthogonally towards aff(T), i.e., heading for closest point in $\operatorname{aff}(T)$.

For any fixed point c^{\prime} on this path, T stays on sphere around c^{\prime}.

Especially, our target point is the center of the unique sphere through T in $\operatorname{aff}(T)$, called circumcenter of T.

Stop movement when shrinking boundary hits new point of S, insert it into T; otherwise just stop with c in $\operatorname{aff}(T)$.

Dropping Step

Necessary if $c \in \operatorname{aff}(T) \backslash \operatorname{conv}(T)$.
Must remove a point from T.

Dropping Step

Necessary if $c \in \operatorname{aff}(T) \backslash \operatorname{conv}(T)$.
Must remove a point from T. Pick one with negative coefficient in affine representation

$$
c=\sum_{p \in T} \lambda_{p} p, \quad \sum_{p \in T} \lambda_{p}=1 .
$$

Dropping Step

Necessary if $c \in \operatorname{aff}(T) \backslash \operatorname{conv}(T)$.
Must remove a point from T. Pick one with negative coefficient in affine representation

$$
c=\sum_{p \in T} \lambda_{p} p, \quad \sum_{p \in T} \lambda_{p}=1 .
$$

Afterwards, c lies outside the new $\operatorname{aff}(\mathrm{T})$, so it we can move again.
The next move will not recollect the
 dropped point.

The Whole Algorithm

$c:=$ any point of S;
$T:=\{p\}$, with some $p \in S$ at maximal distance from c;
while $c \notin \operatorname{conv}(T)$ do
[Invariant: $\mathrm{B}(\mathrm{c}, \mathrm{T}) \supset \mathrm{S}, \partial \mathrm{B}(\mathrm{c}, \mathrm{T}) \supset \mathrm{T}$, and T affinely independent]
if $c \in \operatorname{aff}(T)$ then drop T-point with negative coefficient in aff. rep. of c; [Invariant: c $\notin \operatorname{aff}(\mathrm{T})$]

The Whole Algorithm

$c:=$ any point of S;
$T:=\{p\}$, with some $p \in S$ at maximal distance from c;
while $c \notin \operatorname{conv}(\mathrm{~T})$ do
[Invariant: $\mathrm{B}(\mathrm{c}, \mathrm{T}) \supset \mathrm{S}, \partial \mathrm{B}(\mathrm{c}, \mathrm{T}) \supset \mathrm{T}$, and T affinely independent]
if $c \in \operatorname{aff}(T)$ then drop T-point with negative coefficient in aff. rep. of c; [Invariant: c $\notin \operatorname{aff}(\mathrm{T})$]
move c towards aff(T),
stop when boundary hits new point $\mathrm{q} \in \mathrm{S}$ or c reaches aff(T);
if point stopped us then $T:=T \cup\{q\}$;
end while;

Our Example Again

Correctness \& Termination

Correctness "clear" from invariants.

Correctness \& Termination

Correctness "clear" from invariants.
while $c \notin \operatorname{conv}(\mathrm{~T})$ do
[Invariant: $\mathrm{B}(\mathrm{c}, \mathrm{T}) \supset \mathrm{S}, \partial \mathrm{B}(\mathrm{c}, \mathrm{T}) \supset \mathrm{T}$, and T affinely independent]
if $c \in \operatorname{aff}(T)$ then drop T-point with negative coefficient in aff. rep. of c; [Invariant: c $\notin \operatorname{aff}(T)$]
move c towards aff(T),
stop when boundary hits new point $\mathrm{q} \in \mathrm{S}$ or c reaches $\operatorname{aff}(\mathrm{T})$;
if point stopped us then $\mathrm{T}:=\mathrm{T} \cup\{\mathrm{q}\}$;
end while;

Correctness \& Termination

Correctness "clear" from invariants. Termination more complicated.

Correctness \& Termination

Correctness "clear" from invariants. Termination more complicated.
Proposition. In the non-degenerate case (no affinely dependent subset $\mathrm{T} \subseteq \mathrm{S}$ lies on a sphere) the algorithm terminates.

Correctness \& Termination

Correctness "clear" from invariants. Termination more complicated.
Proposition. In the non-degenerate case (no affinely dependent subset $\mathrm{T} \subseteq \mathrm{S}$ lies on a sphere) the algorithm terminates.

Proof:

- Negative-coefficient rule prevents immediate re-insertion after drop.
- Radius decreases after dropping step.
- At least 1 out of d consecutive iterations performs a drop.
- Set of all possible balls $\mathrm{B}(\mathrm{c}, \mathrm{T})$ preceding drops is finite.

How to Prevent Cycling

In degenerate cases cycling may occur, i.e., the center c doesn't move but only support set T changes - forever.

How to Prevent Cycling

In degenerate cases cycling may occur, i.e., the center c doesn't move but only support set T changes - forever.

Solution: pivot rule, similar to Bland's rule for simplex algorithm.
Index the point set S in arbitrary order.
When dropping a point with negative coefficient, pick the one with smallest index.

When movement stopped by several points, also pick the one with smallest index.

How to Prevent Cycling

In degenerate cases cycling may occur, i.e., the center c doesn't move but only support set T changes - forever.

Solution: pivot rule, similar to Bland's rule for simplex algorithm.
Index the point set S in arbitrary order.
When dropping a point with negative coefficient, pick the one with smallest index.

When movement stopped by several points, also pick the one with smallest index.

Theorem. Using "Bland's rule" our algorithm terminates.

Technical Details

Data structure for support set T needed that allows requests

- compute orthogonal projection onto aff(T) (for walking),
- compute affine coefficients of point $p \in \operatorname{aff}(T) \quad$ (for dropping)

Technical Details

Data structure for support set T needed that allows requests

- compute orthogonal projection onto aff(T) (for walking),
- compute affine coefficients of point $p \in \operatorname{aff}(T) \quad$ (for dropping)
and updates
- insert point into T and
- delete point from T.

Technical Details

Technical Details

Let $A:=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{r}\end{array}\right]$ (homogenized).
Let $\chi^{*} \in\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ minimize the risidual

$$
\|A x-b\|_{2}
$$

then $A x^{*}$ is the orthogonal projection of b onto $\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$.

Technical Details

Let $A:=\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{r}\end{array}\right]$ (homogenized).
Let $x^{*} \in\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ minimize the risidual

$$
\|A x-\mathbf{b}\|_{2}
$$

then $A x^{*}$ is the orthogonal projection of b onto $\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$.

If $b \in\left\langle a_{1}, a_{2}, \ldots, a_{k}\right\rangle$ then the coefficients of χ^{*} simply are the coefficients of b.

Technical Details

We compute the x^{*} that minimizes $\|A x-b\|$ with $Q R$-decomposition

Technical Details

We compute the x^{*} that minimizes $\|A x-b\|$ with $Q R$-decomposition

"Solve" $\mathrm{Ax}=\mathrm{b}$ via $\mathrm{QRx}=\mathrm{b} \Longleftrightarrow \mathrm{R} x=\mathrm{Q}^{\top} \mathrm{b}$.

Technical Details

We compute the x^{*} that minimizes $\|A x-b\|$ with $Q R$-decomposition

"Solve" $A x=b$ via $Q R x=b \Longleftrightarrow R x=Q^{\top} b$.
Let $y: \approx Q^{\top} b$ with last entries zeroed and then solve $R x=y$ via back substitution.

Technical Details

Update QR-decomposition via Givens rotations.

Technical Details

Update QR-decomposition via Givens rotations.

- add new column a to A (and rotated column $Q^{\top} a$ to R)

Technical Details

Update QR-decomposition via Givens rotations.

- add new column a to A (and rotated column $Q^{\top} a$ to R)
- rotate rows of R and colums of Q to reduce R to triangular shape

Technical Details

Update QR-decomposition via Givens rotations.

- add new column a to A (and rotated column $Q^{\top} a$ to R)
- rotate rows of R and colums of Q to reduce R to triangular shape

Our Implementation

- single iteration in $\mathcal{O}(n d)$ time

Our Implementation

- single iteration in $\mathcal{O}(n d)$ time
- C++ floating-point
- Bland's rule replaced by numerically more stable heuristic

Our Implementation

- single iteration in $\mathcal{O}(n d)$ time
- C++ floating-point
- Bland's rule replaced by numerically more stable heuristic
- $Q R$ decomposition numerically very stable
- very accurate results, about 1,000 times machine precision

Uniform Distribution

Almost Spherical Distribution

