Computing Shortest Non-Trivial Cycles on Orientable Surfaces of Bounded Genus in Almost Linear Time

Martin Kutz

Max-Planck Institut für Informatik Saarbrücken, Germany

Computing Shortest Non-Trivial Cycles on Orientable Surfaces of Bounded Genus in Almost Linear Time

Martin Kutz

Max-Planck Institut für Informatik Saarbrücken, Germany

A surface: connected, orientable 2-manifold \mathcal{M} .

A *surface*: connected, orientable 2-manifold \mathcal{M} .

Combinatorial representation:

a graph with local encoding of embedding

(e.g., edge-face incidences, or cyclic ordering of edges around each vertex)

A *surface*: connected, orientable 2-manifold \mathcal{M} .

Combinatorial representation:

a graph with local encoding of embedding

(e.g., edge-face incidences, or cyclic ordering of edges around each vertex)

nax planck in<u>stitut</u>

informatik

A *surface*: connected, orientable 2-manifold \mathcal{M} .

Combinatorial representation:

a graph with local encoding of embedding

(e.g., edge-face incidences, or cyclic ordering of edges around each vertex)

A *surface*: connected, orientable 2-manifold \mathcal{M} .

Combinatorial representation:

a graph with local encoding of embedding

(e.g., edge-face incidences, or cyclic ordering of edges around each vertex)

Only combinatorial information — *no geometry*.

A *surface*: connected, orientable 2-manifold \mathcal{M} .

Combinatorial representation:

a graph with local encoding of embedding

(e.g., edge-face incidences, or cyclic ordering of edges around each vertex)

Only combinatorial information — *no geometry*.

Edges may have weights.

A cycle on a surface \mathcal{M} is a closed walk on the defining graph.

A cycle on a surface \mathcal{M} is a closed walk on the defining graph.

Want to compute short cycles that are topologically interesting.

A cycle on a surface \mathcal{M} is a closed walk on the defining graph.

Want to compute short cycles that are topologically interesting.

Non-Trivial Cycles

Two cycles on a surface \mathcal{M} are *equivalent* if one can be continuously transformed into the other.

Two cycles on a surface \mathcal{M} are *equivalent* if one can be continuously transformed into the other.

Cycle γ contractible (trivial): γ equivalent to a point.

Two cycles on a surface \mathcal{M} are *equivalent* if one can be continuously transformed into the other.

Cycle γ contractible (trivial): γ equivalent to a point.

Two cycles on a surface \mathcal{M} are *equivalent* if one can be continuously transformed into the other. Cycle γ *contractible* (*trivial*): γ equivalent to a point.

Cycle γ separating: cut surface $\mathcal{M} \And \gamma$ disconnected.

Two cycles on a surface \mathcal{M} are *equivalent* if one can be continuously transformed into the other. Cycle γ *contractible* (*trivial*): γ equivalent to a point.

Cycle γ separating: cut surface $\mathcal{M} \And \gamma$ disconnected.

Theorem. [K, SoCG 2006]

On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

Theorem. [K, SoCG 2006]

On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

Why short cycles?

- Cutting along non-trivial cycles makes surface topologically simpler
- want to do this with *short* cycles.

- Cutting along non-trivial cycles makes surface topologically simpler
- want to do this with short cycles.
- Short non-trivial cycles are primitives in other algorithms:
 - cutting a surface into a disk [Erickson & Har-Peled, SoCG 2002]
 - tightening paths and cycles
 - [Colin de Verdiére & Erickson, SODA 2006]

- Cutting along non-trivial cycles makes surface topologically simpler
- want to do this with short cycles.
- Short non-trivial cycles are primitives in other algorithms:
 - cutting a surface into a disk [Erickson & Har-Peled, SoCG 2002]
 - tightening paths and cycles
 [Colin de Verdiére & Erickson, SODA 2006]
 - shortest splitting cycles

[Chambers et al., SoCG 2006]

- Cutting along non-trivial cycles makes surface topologically simpler
- want to do this with short cycles.
- Short non-trivial cycles are primitives in other algorithms:
 - cutting a surface into a disk
 [Erickson & Har-Peled, SoCG 2002]
 - tightening paths and cycles
 [Colin de Verdiére & Erickson, SODA 2006]
 - shortest splitting cycles

[Chambers et al., SoCG 2006]

 Computing short non-trivial cycles turned out to be a core problem in computational topology.

start Dijkstra's shortest-paths algorithm from the basepoint

start Dijkstra's shortest-paths algorithm from the basepoint

- start Dijkstra's shortest-paths algorithm from the basepoint
- stop as soon as the wave front hits itself non-trivially

- start Dijkstra's shortest-paths algorithm from the basepoint
- stop as soon as the wave front hits itself non-trivially
- discover trivial enclosures by Euler's formula

- start Dijkstra's shortest-paths algorithm from the basepoint
- stop as soon as the wave front hits itself non-trivially
- discover trivial enclosures by Euler's formula

n-fold execution yields globally shortest cycle in $O(n^2 \log n)$ time.

Intuition: $\Omega(n^2)$ running time should not be necessary

Intuition: $\Omega(n^2)$ running time should not be necessary ... at least if the *genus* of the surface is bounded.

Intuition: $\Omega(n^2)$ running time should not be necessary ... at least if the *genus* of the surface is bounded.

genus g = number of "holes" (handles)

Intuition: $\Omega(n^2)$ running time should not be necessary ... at least if the *genus* of the surface is bounded.

genus g = number of "holes" (handles)

Thm. [Cabello & Mohar, ESA 2005] On surfaces of bounded genus, shortest non-contractible cycles can be computed in $O(n^{3/2})$ time. $(O(n^{3/2} \log n)$ for non-separating cycles)

"most appealing open problem:" almost-linear time possible?

Thm. [Cabello & Mohar, ESA 2005] On surfaces of bounded genus, shortest non-contractible cycles can be computed in $O(n^{3/2})$ time. $(O(n^{3/2} \log n)$ for non-separating cycles)

"most appealing open problem:" almost-linear time possible?

New Result:

On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

Thm. [Cabello & Mohar, ESA 2005] On surfaces of bounded genus, shortest non-contractible cycles can be computed in $O(n^{3/2})$ time. $(O(n^{3/2} \log n) \text{ for non-separating cycles})$

"most appealing open problem:" almost-linear time possible?

New Result:

On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

(*Reminder:* exponential dependence on g! genus-independent possible in $O(n^2 \log n)$)

Technical Tools I: Minimal System of Loops

- fix arbitrary basepoint x
- find shortest non-separating loop l_1 through x

- fix arbitrary basepoint x
- find shortest non-separating loop ℓ_1 through x
- cut \mathcal{M} along ℓ_1 (duplicating vertices and edges)

- fix arbitrary basepoint x
- find shortest non-separating loop l_1 through x
- cut \mathcal{M} along ℓ_1 (duplicating vertices and edges)
- find shortest non-separating loop ℓ_2 in $\mathcal{M} \not\ge \ell_1$ from x to x

- fix arbitrary basepoint x
- find shortest non-separating loop l_1 through x
- cut \mathcal{M} along ℓ_1 (duplicating vertices and edges)
- find shortest non-separating loop ℓ_2 in $\mathcal{M} \not\ge \ell_1$ from x to x
- cut along l₂

- fix arbitrary basepoint x
- find shortest non-separating loop ℓ_1 through x
- cut \mathcal{M} along ℓ_1 (duplicating vertices and edges)
- find shortest non-separating loop ℓ_{2g} in $\mathcal{M} \bigotimes (\ell_1 \cup \cdots \cup \ell_{2g-1})$ form x to x

Such a *minimal system of loops*

decomposes the surface into a disk!

Such a minimal system of loops

- decomposes the surface into a disk!
- is *minimal* (each loop is minimal in its homotopy class)

Such a *minimal system of loops*

- decomposes the surface into a disk!
- is *minimal* (each loop is minimal in its homotopy class)
- can be computed in linear time (instead of just O(gn log n)) using *Eppstein's tree-cotree decomposition* [Erickson & Whittlesey, SODA 2005]

• fundamental domain $F := \mathcal{M} \And \bigcup \ell_i$,

- fundamental domain $F := \mathcal{M} \not\bowtie \bigcup \ell_i$,
- glue "infinitely many" F-copies along the boundaries ℓ_i to form an infinite plane ${\cal H}$

- fundamental domain $F := \mathcal{M} \boxtimes \bigcup \ell_i$,
- glue "infinitely many" F-copies along the boundaries l_i to form an infinite plane \mathcal{H} , so that

non-trivial cycles in $\mathcal{M} \longrightarrow$ non-closed paths in \mathcal{H}

- fundamental domain $F := \mathcal{M} \not \subseteq \bigcup \ell_i$,
- glue "infinitely many" F-copies along the boundaries l_i to form an infinite plane \mathcal{H} , so that

non-trivial cycles in $\mathcal{M} \longrightarrow$ non-closed paths in \mathcal{H}

Lem. [Cabello & Mohar, ESA 2005] (*Crossing Bound*) Let $\ell_1, \ldots, \ell_{2g}$ be a minimal system of loops. Then there exists a shortest non-contractible (non-separating) cycle that crosses each loop ℓ_i at most twice.

Proof via 3-Path Condition [Thomassen, JCT(A) 1990]

• Crossing bound guarantees a shortest non-trivial cycle through $\leq 4g$ fundamental domains

Meta Paths

- Crossing bound guarantees a shortest non-trivial cycle through $\leq 4g$ fundamental domains
- Idea: test all possible types of such "meta paths"

- Crossing bound guarantees a shortest non-trivial cycle through $\leq 4g$ fundamental domains
- Idea: test all possible types of such "meta paths"

Meta Paths

- Crossing bound guarantees a shortest non-trivial cycle through $\leq 4g$ fundamental domains
- Idea: test all possible types of such "meta paths"
- How to find a shortest cycle in such a meta path?

• consider n corresponding points pairs u, v

• consider n corresponding points pairs u, v

- consider n corresponding points pairs u, v
- perform shortest-path search for each pair

- consider n corresponding points pairs u, v
- perform shortest-path search for each pair

Total (worst-case) running time: $\Omega(n^2)$

Trick: identify the terminal domains of a meta path to form a cylinder

Trick: identify the terminal domains of a meta path to form a cylinder **Thm.** [Frederickson, 1987] In a planar graph with two vertices s,t, one can find a minimal s-t-cut in $O(n \log n)$ time.

Trick: identify the terminal domains of a meta path to form a cylinder **Thm.** [Frederickson, 1987] In a planar graph with two vertices s,t, one can find a minimal s-t-cut in $O(n \log n)$ time.

Trick: identify the terminal domains of a meta path to form a cylinder **Thm.** [Frederickson, 1987] In a planar graph with two vertices s,t, one can find a minimal s-t-cut in $O(n \log n)$ time.

Trick: identify the terminal domains of a meta path to form a cylinder

Thm. [Frederickson, 1987] In a planar graph with two vertices s,t, one can find a minimal s-t-cut in $O(n \log n)$ time.

Warning: meta paths must be manyfolds! (can be guaranteed)

• generate minimal system of loops $\ell_1, \ldots, \ell_{2g}$ and fundamental domain $F := \mathcal{M} \And \bigcup \ell_i$,

- generate minimal system of loops $\ell_1, \ldots, \ell_{2g}$ and fundamental domain $F := \mathcal{M} \And \bigcup \ell_i$,
- consider all planar meta paths $F_0, F_1, F_2, \ldots, F_k$ of length $k \le 4g$

- generate minimal system of loops $\ell_1, \ldots, \ell_{2g}$ and fundamental domain $F := \mathcal{M} \And \bigcup \ell_i$,
- consider all planar meta paths $F_0, F_1, F_2, \ldots, F_k$ of length $k \le 4g$
- merge each such meta path into a cylinder C

- generate minimal system of loops $\ell_1, \ldots, \ell_{2g}$ and fundamental domain $F := \mathcal{M} \And \bigcup \ell_i$,
- consider all planar meta paths $F_0, F_1, F_2, \ldots, F_k$ of length $k \le 4g$
- merge each such meta path into a cylinder C
- ... and compute shortest cycle around C

- generate minimal system of loops $\ell_1, \ldots, \ell_{2g}$ and fundamental domain $F := \mathcal{M} \bigotimes \bigcup \ell_i$,
- consider all planar meta paths $F_0, F_1, F_2, \dots, F_k$ of length $k \le 4g$
- merge each such meta path into a cylinder C
- ... and compute shortest cycle around C

Theorem. On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

Conclusion

Theorem. On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

Conclusion

Theorem. On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

Non-orientable manifolds: [Cabello, unpublished / – written]

Theorem. On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

Non-orientable manifolds: [Cabello, unpublished/-written]

Open problem: How to avoid the exponential dependence on g? (*Remember:* genus-independent in $O(n^2 \log n)$)

Theorem. On orientable surfaces of bounded genus, shortest non-contractible and shortest non-separating cycles can be computed in $O(n \log n)$ time.

Non-orientable manifolds: [Cabello, unpublished/-written]

Open problem: How to avoid the exponential dependence on g? (*Remember:* genus-independent in $O(n^2 \log n)$)

Maybe trade-off possible between n and g?

Want to cut \mathcal{M} (along several paths) to obtain a (topological) disk.

Outlook: Cut Graphs

Want to cut \mathcal{M} (along several paths) to obtain a (topological) disk.

Example: \mathcal{M} – system of loops = disk

Want to cut \mathcal{M} (along several paths) to obtain a (topological) disk.

- Example: \mathcal{M} system of loops = disk
- **Def.** a *cut graph* is a collection of paths that cut \mathcal{M} into a disk.

Outlook: Cut Graphs

Def. a *cut graph* is a collection of paths that cut \mathcal{M} into a disk.

Def. a *cut graph* is a collection of paths that cut \mathcal{M} into a disk.

Thm. [Erickson & Har-Peled, SoCG 2002] Computing a minimum cut graph is NP-hard. (requires large genus)

Def. a *cut graph* is a collection of paths that cut \mathcal{M} into a disk.

Thm. [Erickson & Har-Peled, SoCG 2002] Computing a minimum cut graph is NP-hard. (requires large genus) But can be $O(\log^2 g)$ -approximated in $O(g^2 n \log n)$ time.

Def. a *cut graph* is a collection of paths that cut \mathcal{M} into a disk.

Thm. [Erickson & Har-Peled, SoCG 2002] Computing a minimum cut graph is NP-hard. (requires large genus) But can be $O(\log^2 g)$ -approximated in $O(g^2 n \log n)$ time.

Question: Fixed-parameter tractable? (in g) Because of similarity to Steiner-tree problem.

Theorem. [K & Steurer, unpublished / – written] Approximating the minimum cut graph up to a constant factor is fixed-parameter tractable (in g).

