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Combinatorial Surfaces

A surface: connected, orientable 2-manifold M.

Combinatorial representation:

a graph with local encoding
of embedding

(e.g., edge-face incidences,
or cyclic ordering of edges around each vertex)

Only combinatorial information — no geometry.

Edges may have weights.
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Non-Trivial Cycles

A cycle on a surface M is a closed walk on the defining graph.

Want to compute short cycles that are topologically interesting.
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Non-Trivial Cycles

equivalent

Two cycles on a surface M are equivalent
if one can be continuously transformed into the other.

Cycle γ contractible (trivial ): γ equivalent to a point.

Cycle γ separating: cut surface M γ disconnected.
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Non-Trivial Cycles

contractible
= trivial

non-contractible but separating

Two cycles on a surface M are equivalent
if one can be continuously transformed into the other.

Cycle γ contractible (trivial ): γ equivalent to a point.
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= trivial

non-contractible but separating
non-separating

Two cycles on a surface M are equivalent
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Result

Theorem. [K, SoCG 2006]

On orientable surfaces of bounded genus,
shortest non-contractible and shortest non-separating cycles
can be computed in O(n log n) time.

Why short cycles?
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Why Short Cycles?

Cutting along non-trivial cycles makes surface
topologically simpler

want to do this with short cycles.

Short non-trivial cycles are primitives in other algorithms:

cutting a surface into a disk
[Erickson & Har-Peled, SoCG 2002]

tightening paths and cycles
[Colin de Verdiére & Erickson, SODA 2006]

shortest splitting cycles
[Chambers et al., SoCG 2006]

Computing short non-trivial cycles turned out to be
a core problem in computational topology.
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Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cycle
through a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave front
hits itself non-trivially

discover trivial
enclosures
by Euler’s formula

n-fold execution yields
globally shortest cycle
in O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7



max planck institut
informatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cycle
through a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave front
hits itself non-trivially

discover trivial
enclosures
by Euler’s formula

n-fold execution yields
globally shortest cycle
in O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7



max planck institut
informatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cycle
through a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave front
hits itself non-trivially

discover trivial
enclosures
by Euler’s formula

n-fold execution yields
globally shortest cycle
in O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7



max planck institut
informatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cycle
through a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave front
hits itself non-trivially

discover trivial
enclosures
by Euler’s formula

n-fold execution yields
globally shortest cycle
in O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7



max planck institut
informatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cycle
through a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave front
hits itself non-trivially

discover trivial
enclosures
by Euler’s formula

n-fold execution yields
globally shortest cycle
in O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7



max planck institut
informatik

Shortest Cycles Through a Basepoint

Erickson & Har-Peled (SoCG 2002): Shortest non-trivial cycle
through a given basepoint in O(n log n) time.

start Dijkstra’s shortest-paths algorithm from the basepoint

stop as soon as the wave front
hits itself non-trivially

discover trivial
enclosures
by Euler’s formula

n-fold execution yields
globally shortest cycle
in O(n2 log n) time.

Martin Kutz: Shortest non-trivial cycles on surfaces – p. 7



max planck institut
informatik

The Genus of a Surface

Intuition: Ω(n2) running time should not be necessary

. . . at least if the genus of the surface is bounded.

genus g = number of “holes” (handles)
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The Genus of a Surface

g = 0 g = 1 g = 2

Intuition: Ω(n2) running time should not be necessary

. . . at least if the genus of the surface is bounded.

genus g = number of “holes” (handles)
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Improvement

Thm. [Cabello & Mohar, ESA 2005] On surfaces of bounded genus,
shortest non-contractible cycles can be computed in O(n3/2) time.
(O(n3/2 log n) for non-separating cycles)

“most appealing open problem:” almost-linear time possible?

New Result:

On orientable surfaces of bounded genus,
shortest non-contractible and shortest non-separating cycles
can be computed in O(n log n) time.

(Reminder: exponential dependence on g!
genus-independent possible in O(n2 log n) )
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Technical Tools I: Minimal System of Loops

fix arbitrary basepoint x

find shortest non-separating loop `1 through x

cut M along `1 (duplicating vertices and edges)
...

find shortest non-separating loop `2g

in M (`1 ∪ · · · ∪ `2g−1) form x to x
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Technical Tools I: Minimal System of Loops

Such a minimal system of loops

decomposes the surface into a disk!

is minimal (each loop is minimal in its homotopy class)

can be computed in linear time (instead of just O(gn log n))
using Eppstein’s tree-cotree decomposition
[Erickson & Whittlesey, SODA 2005]
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Technical Tools II

Use system of loops to form universal cover :

fundamental domain F := M
⋃

`i,

glue “infinitely many” F-copies along the boundaries `i
to form an infinite plane H, so that

non-trivial cycles in M ←→ non-closed paths in H
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Technical Tools II

same point
in M

Use system of loops to form universal cover :

fundamental domain F := M
⋃

`i,

glue “infinitely many” F-copies along the boundaries `i
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Technical Tools III

Lem. [Cabello & Mohar, ESA 2005] (Crossing Bound )
Let `1, . . . , `2g be a minimal system of loops.
Then there exists a shortest non-contractible (non-separating) cycle
that crosses each loop `i at most twice.

Proof via 3-Path Condition [Thomassen, JCT(A) 1990]
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Meta Paths

Crossing bound guarantees a shortest non-trivial cycle through
≤ 4g fundamental domains

Idea: test all possible types of such “meta paths”

How to find a shortest cycle in such a meta path?
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Meta Paths — Naive Search

F2F1

F0

F3

F4

For each meta path:

consider n corresponding points pairs u, v

perform shortest-path search for each pair

Total (worst-case) running time: Ω(n2)
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Forming Cylinders

−→

F0

F1F2

F3F4

F0 = F4

F1

F2

F3

Trick: identify the terminal domains of a meta path to form a cylinder

Thm. [Frederickson, 1987] In a planar graph with two vertices s,t,
one can find a minimal s-t-cut in O(n log n) time.

Warning : meta paths must be manyfolds! (can be guaranteed)
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The Whole Algorithm

generate minimal system of loops `1, . . . , `2g

and fundamental domain F := M
⋃

`i,

consider all planar meta paths F0, F1, F2, . . . , Fk

of length k ≤ 4g

merge each such meta path into a cylinder C

. . . and compute shortest cycle around C

Theorem. On orientable surfaces of bounded genus,
shortest non-contractible and shortest non-separating cycles
can be computed in O(n log n) time.
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Conclusion

Theorem. On orientable surfaces of bounded genus,
shortest non-contractible and shortest non-separating cycles
can be computed in O(n log n) time.

Non-orientable manifolds: [Cabello, unpublished / –written]

Open problem: How to avoid the exponential dependence on g?

(Remember: genus-independent in O(n2 log n) )

Maybe trade-off possible between n and g?
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Outlook: Cut Graphs

Want to cut M (along several paths) to obtain a (topological) disk.

Example: M − system of loops = disk

Def. a cut graph is a collection of paths that cut M into a disk.
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Outlook: Cut Graphs

Def. a cut graph is a collection of paths that cut M into a disk.

Thm. [Erickson & Har-Peled, SoCG 2002]
Computing a minimum cut graph is NP-hard. (requires large genus)
But can be O(log2 g)-approximated in O(g2n log n) time.

Question: Fixed-parameter tractable? (in g)
Because of similarity to Steiner-tree problem.
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Outlook: Cut Graphs

Theorem. [K & Steurer, unpublished / –written]
Approximating the minimum cut graph up to a constant factor is
fixed-parameter tractable (in g).
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