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Abstract

The increasingly widespread availability of high dynamic range (HDR) technol-
ogy has led to active study of the characteristics of the human visual system (HVS)
in terms of brightness, lightness, contrast, and color perception and the application
of the results of these studies to computer graphics. Becausethe development of
HDR technology gives us display devices with much broader dynamic range for
both high and low luminances, it is especially important to revise the models of
HVS for the luminance ranges which are not covered by classical psychophysics,
but required by the new HDR technology.

In this dissertation, we focus on the evaluation and enhancement of the appear-
ance of HDR images as reproduced on low dynamic range (LDR) media. First, we
conducted a psychophysical experiment on seven tone mapping operators (TMOs)
to assess how tone mapped images are perceived differently by human observers
and to find out which attributes of image appearance account for these differences.
The results show qualitative differences in TMOs, however,it also turned out that
it was hard to choose the consistently best algorithm in terms of the fidelity of
tone mapped images to real-world scenes. Based on this result, we conducted
another series of psychophysical experiments with a generic easy to understand
TMO. This experiment focused on three parameters - brightness, contrast, and
color saturation - in order to measure user preference for, and fidelity of, tone
mapped HDR images across several types of emulated limited dynamic range dis-
plays. The results of this study provide novel guidance for creating more advanced
TMO designs.

To evaluate the enhancement of image appearance, we conducted two series of
experiments on contrast and brightness enhancement. A non-linear change in per-
ceived contrast with respect to given physical contrast anda different adaptation
luminance levels were measured by contrast scaling and contrast discrimination
threshold experiments on HDR displays. These results lead to a model of just
noticeable difference (JND) unit which provides uniformlychanging perceived
contrast in complex images. Finally, brightness enhancement caused by the glare
illusion was investigated. We employed two profiles to evokethe glare illusion:
a point spread function (PSF) of the human eye and a Gaussian kernel. The out-
come of this study shows that the glare illusion increases the perceived luminance
(brightness) by 20 – 35% for both convolution methods of a PSFand a Gaussian
kernel. This means that faithful simulation of the human eyeoptics, which has
been proposed before, is not necessary to achieve a strong brightness enhance-
ment of the glare illusion because the Gaussian kernel, which has no theoretical
justification in human perception, evokes the brightness enhancement at the same
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or higher strength than the PSF.
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Kurzfassung

Mit der zunehmenden Verbreitung von Bildverarbeitung mit hohem Dynamikum-
fang (HDR), wurden auch die Eigenschaften des menschlichen Sehens in Bezug
auf Helligkeit, Kontrast und Farbwahrnehmung eingehend studiert und im Be-
reich der Computergrafik angewandt. Die Entwicklung der HDR-Technologie hat
den Dynamikumfang von Anzeigegeräten sowohl f̈ur hohe als auch für niedrige
Leuchtdichten deutlich erweitert. Deshalb ist es wichtig,die aktuellen, psycho-
physischen Modelle des menschlichen Sehens auf die Helligkeitsbereiche auszu-
dehnen, die neuerdings von HDR-Technologien angeboten werden.

In dieser Dissertation konzentrieren wir uns auf die Evaluation und Verbesse-
rung der Darstellung von HDR-Bildern auf Geräten mit niedrigem Dynamikum-
fang (LDR)E Wir haben psychophysische Experimente mit sieben verschiede-
nen Arten der Dynamikkompression durchgeführt, um herauszufinden, wie un-
terschiedlich dynamikkomprimierte Bilder von Menschen wahrgenommen wer-
den und welche Bildeigenschaften für die Unterschiede maßgeblich sind. Unse-
re Experimente haben nicht nur gezeigt, daß es durchaus qualitative Unterschie-
de zwischen verschiedenen Dynamikkompressionsverfahren(TMO) gibt, sondern
auch, daß es kein durchgehend bestes Verfahren in puncto Wiedergabetreue gibt.
Darauf aufbauend, haben wir eine zweite Reihe von Studien miteinem gene-
rischen, einfach zu verstehenden Dynamikkompressionsverfahren durchgef̈uhrt.
Unser Hauptaugenmerk lag hierbei darauf, wie die drei Parameter Helligkeit, Kon-
trast und Farbs̈attigung die allgemeine Präferenz und Wiedergabetreue von HDR
Bildern auf verschiedenen, emulierten Typen von LDR Displays beeinflussen. Das
Resultat dieser Studien ist eine neue Herangehensweise an die Entwicklung von
Dynamikkompressionsverfahren.

Zur Verbesserung der wahrgenommenen Bilddarstellung, haben wir zwei Expe-
rimente zur Helligkeits- und Kontrasterhöhung durchgef̈uhrt. Mit Hilfe von Kon-
trastskalierung und Versuchen zur Kontrastunterscheidungschwelle auf HDR Dis-
plays konnten wir messen, daß der wahrgenommene Kontrast ineinem nicht-
linearen Verḧaltnis zum realen Kontrast steht und daß sich die Helligkeitsadap-
tion des Betrachters mit dem Kontrast verändert. Unsere Ergebnisse resultieren
in einem Modell zum gerade noch wahrnehmbaren Unterschied (JND), das einen
sich gleichm̈aßig ver̈andernden, wahrgenommenen Kontrast in komplexen Bil-
dern erm̈oglicht. Außerdem haben wir die Helligkeitserhöhung durch die Blen-
dillusion untersucht. Um eine Blendillusion hervorzurufenhaben wir zwei ver-
schiedene Faltungen auf Bilder angewendet: die Point SpreadFunction (PSF)
des menschlichen Auges und einen Gauss-Kernel. Diese Studie zeigt, daß bei-
de Faltungen die wahrgenommene Helligkeit um 20-35% erhöhen. Obwohl ange-
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nommen wird, daß die Blendillusion durch optische Eigenschaften hervorgerufen
wird, ist also eine wirklichkeitsgetreue Simulation der menschlichen Optik nicht
nötig um eine starke Helligkeitserhöhung zu erreichen, da der Gauss-Kernel eine
ähnliche oder gar stärkere Helligkeitserḧohung bewirkt als die PSF. Im Gegen-
satz zur PSF hat der Gauss-Kernel aber keinen theoretischenHintergrund in der
menschlichen Wahrnehmung.
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Summary

As the need for high dynamic range (HDR) technology has increased, knowl-
edge of the human visual system (HVS) has been actively introduced in computer
graphics research. Many characteristics of the HVS in termsof brightness, light-
ness, contrast, and color perception have been studied by psychophysical methods
and used in computer graphics applications. However, because new HDR tech-
nology provides a much broader dynamic range on display devices for both high
and low luminances, it is especially important to revise themodels of HVS for the
luminance ranges which are not covered by classical psychophysics but required
by the new HDR technology.

How to capture or generate an HDR image has been an actively researched topic
for many years. An HDR scene can be captured either by new imaging sensors
or by conventional LDR cameras with software support, or it can be produced by
using 3D renderers. In parallel with the development of HDR image generating
techniques, a variety of compression algorithms and HDR fileformats have been
introduced. However, even if an HDR image is created, LDR displays cannot
display it. To solve this problem, many tone mapping operators (TMOs) have been
proposed to adjust the dynamic range of an HDR image to that ofLDR display
devices as a software approach. From the point of hardware approach, there exist
dual-modulation HDR displays which can reproduce the display dynamic range
between 0.01 and 3,000cd/m2.

Although a variety of TMOs have been developed, no systematic perceptual eval-
uation exists to reveal their strength or weakness. We conducted a psychophysical
experiment based on a direct comparison between the appearance of real-world
scenes and tone mapped images of these scenes. The primary goal of this psy-
chophysical experiment was to assess how tone mapped imagesare perceived dif-
ferently by determining find out which attributes of image appearance account for
the differences between TMOs. This experiment employed fiveattributes of image
appearance: overall brightness, overall contrast, detailreproductions in bright and
dark regions, and naturalness. The results show qualitative differences in TMOs,
however, it also turns out that it is hard to choose one of the existing algorithms
which will consistently perform the best in terms of the fidelity of tone mapped
images.

Building on this result, we conducted another series of psychophysical experi-
ments which employed a generic, easy to understand TMO with three parameters:
brightness, contrast, and color saturation. These parameters were controllable by
human observers, and the goal was to find: a) the most preferred image without
any reference (preferencetask) and b) the closest image to the real-world scenes
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(fidelity task). In addition, several types of limited dynamic range of displays were
emulated in the experiments. The results show that this generic TMO is strongly
affected by two factors: anchor (reference) white and contrast. It is also shown
that the parameters can be automatically estimated based onthe characteristics
of an image for providing a reasonable “best-guessing” result. Additionally, the
outcome from emulating several types of limited dynamic range displays indicates
that the best resulting image depends on the purpose of the TMO: the best-looking
(preference task) or the best fidelity task. These results for a simple and funda-
mental TMO will be applicable for more complicated TMO designs.

We also studied the enhancement of contrast and brightness in HDR images. A
usual way to scale contrast in image processing changes contrast equally in the
whole image. While this contrast scaling method is suitable for LDR displays, it
leads to a non-uniform perceived change in contrast in HDR because of the lower
contrast sensitivity of the human eyes for low luminances. Based on this non-
uniformity of the perceived contrast change, we conducted two psychophysical
experiments: contrast scaling and contrast discrimination threshold experiments
for a complex image. The results of these two experiments were converted to
just noticeable difference (JND) units to construct a modelover perceived con-
trast, physical contrast, and adaptation luminance in order to provide uniformly
changing perceived contrast in complex images.

Finally, we measured the brightness enhancement which is caused by the glare
illusion. The glare illusion causes an object in an image to look much brighter
if it is surrounded by smooth gradient profiles. To evoke the glare illusion, we
employed two different convolution methods: a point spreadfunction (PSF) of
the human eye and a Gaussian kernel. A brightness matching experiment was
conducted for the upper and lower border of the glare illusion by using a modified
version of the increment/decrement method. The outcome of this study shows
that the glare illusion increases the perceived luminance (brightness) by 20 – 35%
for both of the convolution methods PSF and Gaussian kernel.This leads to the
conclusion that, although it is believed the glare illusionis related to some optical
system, faithful simulation of the human eye is not necessary to achieve the strong
brightness enhancement caused by the glare illusion because the Gaussian kernel,
which has no theoretical justification, in terms of human perception evokes the
brightness enhancement at same or higher strength as the PSF.
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Zusammenfassung

Mit der zunehmenden Verwendung von Bildverarbeitung mit hohem Dynami-
kumfang (HDR) wurden viele Eigenschaften des menschlichen Sehens in Be-
zug auf Helligkeit, Kontrast und Farbwahrnehmung in Studien erforscht und in
der Computergrafik angewendet. Da jedoch die Entwicklung aufdem Gebiet der
HDR-Technologie Geräte mit einem deutlich ḧoheren Dynamikbereich, sowohl
bei niedrigen als auch hohen Leuchtdichten hervorgebrachthat, m̈ussen die beste-
henden Modelle des menschlichen Sehens auf die Helligkeitsbereiche hin unter-
sucht werden, die von der HDR-Technologie ermöglicht werden, von klassischen
psychophysischen Studien aber nicht abgedeckt sind.

Das Aufnehmen oder Erzeugen eines HDR Bildes ist in den letzten Jahren stark
in den Mittelpunkt der Forschung gerückt. Mittlerweile kann eine HDR-Szene
entweder mit Hilfe von speziellen Bildsensoren direkt oder mit herkömmlichen
Kameras mit geringerem Dynamikumfang (LDR) und dazu gehörender Software
aufgenommen werden, oder sie kann mit einem 3D Renderer produziert werden.
Parallel dazu wurden auch eine Vielzahl von Kompressionsverfahren und Datei-
formaten f̈ur HDR entwickelt. Dennoch kann ein HDR-Bild nicht einfach aufei-
nem LDR Display dargestellt werden. Um dieses Problem zu lösen wurden einige
Dynamikkompressionsverfahren vorgestellt, die den Dynamikumfang eines HDR
Bildes so reduzieren, daß es auf einem LDR Display dargestellt werden kann. Auf
dem Gebiet der Display-Entwicklung gibt es mittlerweile HDR Displays mit dop-
pelter Intensiẗatsmodulation und einem Kontrastumfang von 0,01 – 3,000cd/m2.

Trotz der Vielfalt an Dynamikkompressionsverfahren (TMO), gibt es keine Wahr-
nehmungsbasierten Studien zu den Vor- und Nachteilen der einzelnen Verfahren.
Deshalb haben wir eine psychophysische Studie durchgeführt, die auf dem di-
rekten Vergleich zwischen echten Szenen und tone-mapped Bildern der gleichen
Szene basiert. Hauptaugenmerk lag hierbei darauf, wie tone-mapped Bilder im
Vergleich wahrgenommen werden und welche Bildattribute für die Unterschiede
zwischen verschiedenen tone-mapping Verfahren maßgeblich sind. F̈unf Bildattri-
bute wurden hierf̈ur herangezogen: Gesamthelligkeit, Gesamtkontrast, Detailwie-
dergabe in hellen und dunklen Bereichen und Natürlichkeit des Bildes. Die Er-
gebnisse zeigen qualitative Unterschiede zwischen tone-mapping Verfahren auf,
aber auch, daß kein einzelner TMO stets die wirklichkeitstreuesten Bilder liefert.

Darauf aufbauend haben wir eine weitere Studie mit einem generischen, einfach
zu verstehenden TMO mit 3 Parametern durchgeführt: Helligkeit, Kontrast und
Farbs̈attigung. Diese Parameter konnten von den Benutzern verändert werden um
1. ohne Referenzbild das bevorzugteste Bild und 2. das wirklichkeitstreueste Bild
verglichen mit der echten Szene zu finden. Zusätzlich haben wir in der Studie ver-
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schiedene Typen von LDR Displays emuliert. Die Ergebisse zeigen, daß dieser
generische TMO stark von zwei Faktoren beeinflußt wird: dem Referenz-Weiß
und dem Kontrast. Wir konnten außerdem zeigen, daß die Parameter basierend
auf Bildcharakteristika automatisch bestimmt werden können. Die Emulation ver-
schiedener LDR Displays hat gezeigt, daß die Ergebnisbilder vom Anwendungs-
zweck des TMO abḧangig sind, je nachdem ob das schönste Bild oder das wirk-
lichkeitsgetreuste Bild gefordert ist. Unsere Erkenntnisse anhand eines einfachen
und grundlegenden TMO sind auch auf das Design von komplizierteren TMO
anwendbar.

Wir haben ebenfalls studiert, wie Kontrast und Helligkeit in HDR Bildern verbes-
sert werden k̈onnen. In der Bildverarbeitung wird der Kontrast gewöhnlich einfach
skaliert, was eine konstantëAnderung des Kontrasts im gesamten Bild bewirkt.
Während diese Art der Kontrasterhöhung f̈ur LDR Displays geeignet ist, bewirkt
sie in HDR eine uneinheitlichëAnderung des wahrgenommen Kontrasts, weil das
menschliche Auge in dunkleren Bereichen weniger empfindlichfür Kontraste ist.
Basierend auf dieser Beobachtung haben wir zwei psychophysische Studien zur
Kontrastskalierung und zur Kontrastunterscheidungsschwelle durchgef̈uhrt. Die
Ergebnisse der beiden Experimente wurden in Einheiten gerade noch wahrnehm-
baren Unterschieds konvertiert um wahrgenommenen Kontrast, physikalischen
Kontrast und Adaption zu modellieren. Das Modell ermöglicht letztendlich einen
sich gleichm̈aßig ver̈andernden Kontrast in komplexen Bildern.

Abschließend haben wir noch die Erhöhung der wahrgenommenen Helligkeit, wie
sie durch die Blendillusion hervorgerufen wird. Die Blendillusion, die ein Objekt
heller im Bild erscheinen lässt, wird hervorgerufen, wenn das Objekt von einem
glatten Helligkeitsgradienten umgeben ist. Um diese optische T̈auschung herbei-
zuführen, haben wir zwei verschiedene Faltungsmethoden verwendet: die Point
Spread Function (PSF) des menschlichen Auges und einen Gauss-Kernel. In einer
Studie mussten Probanden die Helligkeit von Bildern ohne Blendillusion an ein
Referenzbild mit der Illusion anpassen. Dabei hat sich gezeigt, daß die wahrge-
nommene Helligkeit durch die Blendillusion um 20-35% erhöht wird, und zwar
sowohl bei Verwendung der PSF als auch mittels Gauss-Kernel. Obwohl bisher
angenommen wurde, daß die menschliche Optik für die Blendillusion verantwort-
lich ist, lässt sich daraus schließen, daß eine genaue Simulation des menschlichen
Auges nicht n̈otig ist, um eine starke Erhöhung der Helligkeit zu bewirken. Der
Gauss-Kernel, der keinen theoretischen Hintergrund in dermenschlichen Wahr-
nehmung hat, bewirkt eine ebenso starke, wenn nicht gar stärkere Erḧohung der
wahrgenommenen Helligkeit.
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Chapter 1

Introduction

Significant progress in developing image and video recording devices has seen
the advent of a variety of techniques such as down-sizing, increasing resolution,
compression algorithms, and image stabilizers. However, most of the today’s
common recording devices capture only a part of the scene’s luminance range that
the human eyes can perceive at once. If an image of a scene whose luminance
range is broader than the capability of a camera is taken by such cameras, darker
and brighter areas in an image are under- and over-saturatedrespectively, and
details in those regions are not very visible in the image. Such images that contain
much broader dynamic range than conventional recording anddisplay devices
can handle are calledhigh dynamic range (HDR)images. On the other hand,
conventional recording, display devices, and images encoded in JPEG and MPEG
formats are refereed aslow dynamic range (LDR).

With the increasing the need for HDR technology, the development speed of HDR
technology has been surprisingly rapid. How to capture or produce an HDR image
has been actively researched so that an HDR scene can be now captured either with
the new imaging sensors or by LDR cameras with some software support, or it can
be produced by using 3D renderers. In addition to the existence of many ways to
produce HDR scenes, there are also many compression techniques and HDR file
formats available, for example, OpenEXR is a widely used HDRfile format.

Yet, even if an HDR image is created, it cannot be displayed asan HDR image on
an LDR display device. As shown in Figure1.1, the capabilities of LDR displays
(CRT and LCD) are very limited compared to the real-world luminance ranges.
To conquer this problem, we can take both software and hardware approaches. In
the software approach, a number oftone mapping operators (TMOs)have been
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Figure 1.1: Comparison of the luminance ranges of the natural environments
and the capabilities of display devices (CRT, LCD, and HDR from bottom to
top).

presented to adjust the dynamic range of an HDR image to fit that of an LDR
display device. On the other hand, new HDR display techniques have been intro-
duced. The basic idea behind these devices is to mount a second light modulator
to enable even stronger backlight, while still maintainingproper reproduction of
black levels. Figure1.1 shows a comparison of luminance ranges reproduced by
LDR and HDR displays. Note that HDR display technology expand not only the
upper limit of the dynamic range of the display but also its lower limit. The newest
HDR display has a luminance range between 0.01 to 3,000cd/m2 while modern
LCD and plasma displays are capable of 1.0 to 500 or even 1,000cd/m2 which
is much more than has been possible until recently using CRT displays.

As increasing the need of HDR technology, another issue has started to play an
important role in computer graphics: human visual perception. A variety of char-
acteristics inhuman visual system (HVS)have been studied on brightness, light-
ness, contrast, and color perception by psychophysical studies, and they are well
applied into computer graphics applications.

This dissertation is dedicated to evaluation and enhancement of the appearance
of HDR images. We first conducted a perceptual evaluation of TMOs which are
not directly compared to each other but compared to their corresponding real-
world views. There had been conducted a number of psychophysical experiments
comparing image-to-image, however, there existed no systematic perceptual eval-
uation to reveal the strength or weakness of the TMOs. It turns out that it is hard
to choose one of the existing algorithms to perform consistently the best in terms
of the fidelity of tone mapped images.

Based on the outcome above, we employed a generic TMO whose parameters are
the three most important factors: brightness, contrast, and color saturation instead
of using complicated TMO algorithms. These parameters werecontrolled by users
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for both image preference and fidelity experiments. In addition, an HDR display
emulated several types of display devices with limited dynamic range.

We also took into account the enhancement of contrast and brightness of an image.
For contrast perception, there have been presented many psychophysical studies,
however, they were conducted on very simple patterns of stimuli and did not con-
sider the cases of HDR. Additionally, it was already known that the perceived
contrast changes are not same for all adaptation luminances. We conducted sub-
jective experiments to observe a relationship of perceivedcontrast change, given
physical contrast, and different adaptation luminance in complex images so that
the outcome of the experiment proposes a model to keep a uniform perceived
contrast change for different adaptation levels.

Finally, brightness boosts caused by the glare illusion based on a point spread
function of the human eye and a simple Gaussian kernel was investigated. There
are several types of glare effects such as disability glare and veiling glare. The
glare illusion is the one which increases the brightness of an object in an image
when the object is surrounded by smooth gradient profiles. A number of render-
ing methods have been proposed for disability glare. These methods are based on
some characteristics of HVS which are roughly equivalent todesigning a point
spread function of the eye optics; therefore, although theywere meant to render
disability glare, they are actually used to model the glare illusion. A simple Gaus-
sian convolution, which has no strong justification as a point spread function of
the eye, was also employed to compare its performance of the glare illusion to that
of the optic-based algorithms.

1.1 Main Contributions

The ideas discussed in this dissertation have been already published in interna-
tional journals and presented at conferences. In this dissertation, they are com-
bined under the common concept of evaluation and enhancement of image ap-
pearance in HDR images by using displays with varying dynamic range from
LDR to HDR. With respect to these publications, we revise presented methods
and demonstrate improved results. The key contributions can be summarized in
four parts.

• Perceptual evaluation of TMOs with human-perceived reality[Yoshida
et al. 2007a]. We conducted a psychophysical experiment based on a direct
comparison between the appearance of real-world scenes andHDR images
of these scenes displayed on an LDR monitor. In our experiment, two HDR



4 Chapter 1: Introduction

scenes were tone mapped by seven existing tone mapping operators. The
primary interest of this psychophysical experiment is to assess the differ-
ences in how tone mapped images are perceived by human observers and to
find out which attributes of image appearance account for these differences
when tone mapped images are compared directly with their corresponding
real-world scenes rather than with each other. The human subjects rate im-
age naturalness, overall contrast, overall brightness, and detail reproduction
in dark and bright image regions with respect to the corresponding real-
world scene (Chapter4).

• Analysis of reproducing real-world appearance on HDR displays
[Yoshida et al. 2006]. We proposed a novel approach to the tone mapping
problem, in which the tone mapping parameters are determined based on
the data from subjective experiments, rather than an image processing algo-
rithm or a visual model. A series of experiments was conducted in which
the subjects adjusted three generic TMO parameters: brightness, contrast
and color saturation. They are to find a) the most preferred image without a
reference image (preference task) and b) the closest image to the real-world
scene which the subjects are confronted with (fidelity task). We analyze
subjects’ choice of parameters to provide more intuitive control over the pa-
rameters of a TMO. Unlike most of the researched TMOs that focus on ren-
dering for standard low dynamic range monitors, we considera broad range
of potential displays, each offering different dynamic range and brightness.
We simulate capabilities of such displays on an HDR display.This allows
us to address the question of how tone mapping needs to be adjusted to ac-
commodate displays with drastically different dynamic ranges (Chapter5).

• Perception-based contrast enhancement model for complex images in
HDR [Yoshida et al. 2008b]. Contrast in image processing is typically
scaled using a power function (gamma) where its exponent specifies the
amount of the physical contrast change. While the exponent isnormally
constant for the whole image, we observe that such scaling leads to percep-
tual nonuniformity in the context of HDR images. This effectis mostly due
to lower contrast sensitivity of the human eyes for the low luminance levels.
Such levels can be reproduced by an HDR display while they cannot be
reproduced by standard display technology. We conducted two perceptual
experiments on a complex image: contrast scaling and contrast discrimina-
tion threshold, then we derived a model which relates changes of physical
and perceived contrasts at different adaptation luminances. We used the
model to adjust the exponent value such that we obtain betterperceptual
uniformity of global and local contrast scaling in complex images (Chap-
ter6).
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• Brightness of the glare illusion[Yoshida et al. 2008a]. We measured the
perceived luminance of the glare illusion in a psychophysical experiment.
To evoke the illusion, an image is convolved with either a point spread func-
tion (PSF) of the eye or a Gaussian kernel. It is found that 1) the Gaussian
kernel evokes an illusion of the same or higher strength thanthat produced
by the PSF while being computationally much less expensive,2) the glare
illusion can raise the perceived luminance by20 − 35%, 3) some convolu-
tion kernels can produce undesirable Mach-band effects andthereby reduce
the brightness boost of the glare illusion. The reported results have practical
implications for glare rendering in computer graphics (Chapter7).

1.2 Chapter Overview

This dissertation is structured as follows. Chapter2 reviews the human visual
system (HVS) and several characteristics of HVS: human visual sensitivities on
contrast and brightness and temporal visual adaptation. InChapter3, we give an
overview of the high dynamic range imaging (HDRI) and its related techniques.
Perceptual evaluation of recent TMOs is described in Chapter4, and an analysis
of reproducing real-world appearance on HDR displays is reported in Chapter5.
Then, two enhancement models are presented in Chapters6 and7 as perception-
based contrast enhancement model for complex images in Chapter 6 and bright-
ness of the glare illusion in Chapter7. Finally, Chapter8 concludes this disserta-
tion and gives an outlook for future work.
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Chapter 2

The Human Visual System (HVS)

2.1 The Eye

The human visual system (HVS)is a part of the nervous systems which makes it
possible to see external objects by interpreting information via incoming lights
into the human eye. The human eye has a very complex structureconsisting of a
number of small organic parts including the cornea, pupil, iris, lens, and retina as
its main parts (see Figure2.1). The cornea provides most of the eye’s refractive
power, the iris controls the entry of an incoming light into the eye, and the vari-
able opening within the iris is called the pupil. The pupil determines the amount
of light which can reach the retina. The lens changes its shape during the act
of accommodation in order to provide focal control. Incoming light which goes
through the cornea and lens are projected onto the retina which contains photore-
ceptor cells and neural tissues. The retina is an important component of the eye
for considering sensitivity in HVS. Two major photoreceptor cells of the retina
are calledrodsandcones(see Figure2.2), which cover the wavelengths of lights
between 400 to 700 nm. The rods are sensitive at low illumination levels (scotopic
vision) whose peak of the sensitivity is at 498 nm while the cones are sensitive at
high illumination levels (photopic vision) with the highest sensitivities at 420 nm
for the short wavelength (blue), at 534 nm for the medium wavelength (green), and
at 564 nm for the long wavelength (red) [Ferwerda 2001]. Vision models of sco-
topic, mesopic, and photopic visions are illustrated with the luminance range of
the natural environments in Figure2.3. Once incoming lights reach the retina, the
projected light is transferred to the brain via optic nerve to interpret information.
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Figure 2.1: The structure of the human eye. After [Atkinson 1988].

Figure 2.2: The structure of the retina. Two major photoreceptors are num-
bered as 1) cones and 2) rods. After [Atkinson 1988].
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Figure 2.3: The luminance range for scotopic, mesopic, and photopic vision.
After [ Spillman et al. 1990].

This whole mechanism of the optic system in the human eye and information
retrieving process in the brain is called HVS. In this chapter, we firstly review
several fundamental characteristics of HVS:visual adaptation(Section2.2) and
visual sensitivity tocontrast(Section2.3) andbrightness(Section2.4). Refer to
[Graham 1965, Spillman et al. 1990, Wandell 1995, Barten 1999, Ferwerda 2001]
for more details on the other characteristics of HVS. Next, we give an overview
of psychometic scaling, which are often used in HVS research (Section2.5).

2.2 Visual Adaptation

As shown in Figure2.3, the luminance dynamic range of the natural environ-
ments is quite broad. HVS are processed on this broad range ofluminances by
adaptation. Adaptation is achieved through the coordinated action of mechanical,
photochemical, and neural processes in HVS [Ferwerda 2001]. For example, the
human eyes cannot be adapted to a quick change of illumination instantaneously.
Detection threshold of time for HVS can be measured by such anexperiment that
a subject is seated in a room under a certain ambient illumination for long enough
time to be adapted to its intensity. Next, the illumination is changed suddenly,
and then the ability of the subject for detecting a small luminance difference on
a stimuli is examined. The length of time until he/she startsbeing able to de-
tect the luminance difference is measured. Figure2.4 shows the time course of
dark adaptation, which HVS adjusts from bright to dark illumination level. The
crossing point of the rod and cone curves is known asPurkinje breakwhich in-
dicates the transition from detection by the cones to detection by the rods [Kling
and Riggs 1971].

The inverse case of dark adaptation, which HVS adjust from dark to bright illu-
mination level, is calledlight adaptation. Figure2.5 shows the time course of
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light adaptation for the rods and cones. As shown in the figure, light adaptation is
more rapid than dark adaptation. This characteristic of HVSfor temporal visual
adaptation is applied to design time-dependent tone mapping operators [Ferwerda
et al. 1996, Pattanaik et al. 2000, Durand and Dorsey 2000, Reinhard et al. 2005].

Figure 2.4: The time course of dark adaptation for the rods andcones. Image
after [Ferwerda 2001]. Original data was measured by Hecht in [Murchison
1934].

2.3 Visual Sensitivity to Contrast

2.3.1 What is Contrast?

Contrast is the difference in visual properties which makes the representation of
an object distinguishable from the others or from the background. There have
been presented a number of ways to define contrast for the caseof simple stimuli
which contain two extreme intensities such as sinewave patterns or Gabor patches.
The simplest way to calculate contrast is to take their ratio(Simple Contrast) as

Cs =
Lmax

Lmin
, (2.1)
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Figure 2.5: The time course of light adaptation for the rods (left) and cones
(right). Images after Adelson [Adelson 1982] (left) and Baker [Baker 1949]
(right).

whereLmax andLmin are the maximum and minimum luminances. Simple con-
trast is often used for photography to specify the ratio between bright and dark
areas in an image, butCs is not practical to use for psychophysics.Cs is some-
times calculated in logarithmic domain:log Cs = log Lmax

Lmin
(Logarithmic Ratio)

which actually denotes the logarithmic difference betweenLmax andLmin. Signal
to Noise Ratio (SNR)is similar to the Logarithmic Ratio:

SNR = 20 · log10

Lmax

Lmin
(2.2)

which is given in the unit of decibels (dB).

In psychophysics experiment,Weber’s fractionandMichelson contrastare often
used contrast definitions. They are formulated as

Cw =
Lmax− Lmin

Lmin
(2.3)

Cm =
Lmax− Lmin

Lmax + Lmin
(2.4)

for Weber’s fractionCw and Michelson contrastCm, respectively. The ranges of
values in contrast are−1.0 to ∞ for Weber’s fraction and0 to 1.0 for Michelson
contrast. Weber’s fraction is commonly used for measuring the local contrast of a
single stimulus of uniform luminance on a uniform background while Michelson
contrast is used for periodic patterns such as sigmoidal gratings. Weber’s fraction
is reviewed in Section2.3.5.
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All of the definitions presented above can be applied only forsimple patterns. On
the other hand, defining contrast in complex images is not as easy as the above
definitions. Peli proposed a way to define contrast in compleximages by using
quasi-local definition of contrast [Peli 1990]. This definition is based on an idea
that, because human contrast sensitivity highly depends onspatial frequency, es-
pecially near thresholds, contrast for each spatial frequency band is calculated
separately to address the variation of contrast across an image. Peli’s contrast is
given in a 2D array for each band of spatial frequencies as

Cp(x, y) =
b(x, y)

l(x, y)
(2.5)

whereb(x, y) is the band-pass filtered version of an original image, andl(x, y) is
the low-pass filtered version which includes all energy below the band (Note that
l(x, y) > 0). x andy represent the coordinate of a pixel. In this method, Gaussian
pyramidL and Laplacian pyramidB [Adelson and Burt 1981] are constructed for
a given image. The band-pass imageb(x, y) is taken from the pyramidB, and
the low-pass imagel(x, y) is taken from two levels below in the pyramidL (see
Figure2.6). Refer to [Peli 1990] for the details of his contrast definition and its
applications.

Figure 2.6: An illustration of the contrast definition in [ Peli 1990].

The definitions of contrast reviewed above deal withphysicalcontrast. However,
contrast has another side:apparentcontrast which denotes the perceived phenom-
ena of contrast by HVS. Even if the same physical contrast stimuli are given, they
can be sometimes judged to be stronger or weaker depending onsuch factors as
image contents, adaptation luminance, and display devices. Because it is difficult
to manipulate physical contrast due to display device limitations, considering ap-
parent contrast based on HVS can be benefitical to enhance theperceived contrast.

In the following sections, we review several factors of contrast perception:con-
trast detection and discrimination thresholds, contrast sensitivity function (CSF),
threshold versus intensity (TVI) function, andWeber’s law.



2.3 Visual Sensitivity to Contrast 13

2.3.2 Contrast Detection and Discrimination Thresholds

Before describing perceptual theories of contrast, it is important to clarify the dif-
ference betweencontrast detectionandcontrast discriminationthresholds. Both
of them are often used in psychophysical studies to measure perceptual character-
istics of the human eye [Barten 1999]. Thecontrast detectionthreshold measures
the smallest visible contrast of a given stimulus on a uniform background (see
Figure2.7 left). On the other hand,contrast discriminationthreshold is a mea-
surement of the smallest visible difference at a given stimulus with given pedestal
contrast (see Figure2.7 right). Contrast detectionis a special case ofcontrast
discriminationwhen its pedestal contrast (green part of the discrimination plot in
Figure2.7) is zero. For measuring contrast detection and discrimination thresh-
olds, there are a number of psychophysical methods such as increment/decrement
method, staircase method, Parameter Estimation by Sequential Testing (PEST)
[Taylor and Creelman 1967], and QUEST [Watson and Pelli 1983].

Figure 2.7: Illustration of contrast detection and discrimination thresholds.

When a stimulus is 1) significantly above the detection or discrimination thresh-
old or 2) very close or equal to the threshold, they are called1) suprathreshold
and 2)subthresholdor threshold, respectively.Contrast detectionmeasures a per-
formance of the human eye atsubthresholdwhile contrast discriminationmea-
surement deals withsuprathresholdcharacteristics.Contrast detectionthresholds
have been modeled such asContrast Sensitivity Function (CSF), Threshold ver-
sus Intensity (TVI)function, andWeber’s law, which are briefly reviewed in the
following sections.

2.3.3 Contrast Sensitivity Function (CSF)

Contrast sensitivity function (CSF)is one of the well-known HVS characteristics
in contrast perception. It describes the sensitivity of thehuman eye as a func-
tion of spatial frequencies. As shown in Figure2.8, although the amplitude of
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signals are decreasing uniformly, the perceived signals disappear non-uniformly.
The sensitivity of the human eyes for spatial frequency is band-pass type, i.e.,
our eyes are the most sensitive at the medium spatial frequencies around 4 – 10
cycles per degree of visual angle. From the concept of image perception on the
display, this means that theCSFdepends on the viewing distance. Additionally, it
is also affected by adaptation luminances (see Figure2.9). Several models of the
CSFhave been used in computer graphics field [Mannos and Sakrison 1974, Daly
1993].

Figure 2.8: Contrast sensitivity function (CSF) over spatial frequencies (hor-
izontal axis). The amplitude of signals decreases uniformlyalong the vertical
axis for all frequencies, but the signals disappear non-uniformly for the hu-
man eyes. Our eyes are the most sensitive at the medium spatial frequencies.
After [ Campbell and Robson 1968].
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Figure 2.9: Family of contrast sensitivity functions (CSFs) with different
adaptation luminances. Those CSFs are plotted based on [Daly 1993].

2.3.4 Threshold versus Intensity (TVI) Function

A measurement of visual adaptation can be obtained by the detection threshold
mtehod and then given asThreshold versus Intensity (TVI)function. Such an ex-
periment is conducted as follows: a subject has been seated in front of a big dark
screen for long enough time to be adapted to the illuminationof the screen. In each
trial, a disk of light at the center of the screen flashes for a few hundred millisec-
onds. The subject must answer whether the disk appeared or not. If the answer
is yes, the intensity of the disk is decreased or vice versa. Byrepeating those
steps, the detection thresholds against the correspondingbackground luminance
are given in theTVI function (see Figure2.10). The formulation of theTVI func-
tion in computer graphics has been modeled in several ways [Daly 1993, Ferwerda
et al. 1996, Ashikhmin 2002]. The relation between CSF and TVI can be given
by considering the maximum spatial frequency for a given adaptation luminance
level (refer to [Mantiuk et al. 2006]).

Based on theTVI function,Contrast versus Intensity (CVI)function can be intro-
duced ascvi(Ladapt) =

tvi(Ladapt)

Ladapt
which indicatescontrast detectionthresholds at a

given adaptation luminanceLadapt.
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Figure 2.10: Threshold versus intensity (TVI) functions for the rods and
cones. After [Ferwerda 2001].

2.3.5 Weber’s Law

It is observed that the curve of theTVI function for rods is almost flat below
−4 log cd/m2 as seen in Figure2.10. After this point, the curve becomes nonlin-
ear, then it becomes linear after−2 log cd/m2. For the cones, the curve is almost
flat below 0log cd/m2, nonlinear below 2 – 3log cd/m2, and then linear for the
rest. This linear relationship is calledWeber’s lawwhich can be formulated as

∆L = kL (2.6)

whereL is a luminance value andk is a constant factor which is experimentally
defined [Kling and Riggs 1971]. Weber’s law describes the change in stimulus
luminance that can just be discriminated (∆L) is a constant fraction (k) of the
starting luminance of the stimulus (L). It indicates that HVS have constant con-
trast sensitivity because the increase in thresholds with background luminance is
corresponding to luminance with constant contrast. As discussed in Section2.3.1,
this law can be also used as one of the definitions of contrast whenL = Lmin

and∆L = Lmax − Lmin in Equation (2.3). Note that Weber’s law holds for the
luminance range greater than 500cd/m2. Within the luminance range of the con-
ventional displays (1 – 500cd/m2), Weber’s law is not an accurate model of
luminance masking.
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2.4 Visual Sensitivity to Brightness

2.4.1 What is Brightness?

The term “brightness” (or “darkness” as its opponent) is often used to describe the
sensation of light for subjective or relative measurement while the absolute mea-
surement of light is given by luminance in the unit ofcd/m2. It is very important
to point out that brightness perception depends on many factors such as spatial and
temporal distribution of light in the visual field. A number of effects can occur
in brightness perception, for example,simultaneous contrast, Gelb effect, Mach
bands, andCraik-O’Brien-Cornsweet illusion. They are briefly reviewed in the
following sections.

2.4.2 Simultaneous Contrast

An object is perceived brighter or darker according to whether it reflects a higher
or lower percentage of the incident light under natural environment. However, an
object of moderate reflectance appears relatively brighteror darker according to
whether spatially adjacent areas are considerably darker or brighter than the object
itself. This dependence on adjacent areas for brightness ordarkness is called
simultaneous contrast. Figure2.11illustrates a classical example of simultaneous
contrast. All of the inner squares have the same luminance, but their brightness
varies according to their surroundings.

Figure 2.11: An example of simultaneous contrast. The inner gray squares
can be perceived differently in brightness, although all ofthem are the same
in luminance.
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2.4.3 Anchoring Theory and Gelb Effect

Another example of how HVS depend on relative luminance is the Gelb effect. If
an object of low reflectance (Object A) in a dark environment is illuminated by
a light source which is not directly visible for a subject, Object A looks medium
gray or white. Then, if another object of higher reflectance (Object B) is placed
next to Object A, Object A now looks black while Object B lookswhite. The per-
ceived blackness of Object A depends on the relative reflectance of Object B. The
Gelb effectsupports theAnchoring Theorypresented by Gilchrist et al. [Gilchrist
et al. 1999]. Krawczyk et al. extended theAnchoring Theoryof lightness percep-
tion for complex images and applied as a tone mapping operator [Krawczyk et al.
2005].

2.4.4 Mach Bands and Craik-O’Brien-Cornsweet Illusion

Brightness perception also causes border contrast effects such asMach bandsand
Craik-O’Brien-Cornsweet illusion. The illusion ofMach bandsis illustrated in
Figure2.12. Mach bands are observed as over- and under-shoots of brightness if
two uniform objects of high and low reflectance are connectedby a gradient. The
ramp should be neither too shallow nor too steep to makeMach bandsvisible. In
the meaningful range of gradients to produceMach bands, it is known that the
steeper gradient causes stronger effect ofMach bands[Lotto et al. 1999].

Figure 2.12: Left: An example of Mach bands. Right: Profiles of luminance
and brightness of Mach bands. The actual profile in luminance isshown in
the pink line while it is perceived as in the black line (brightness).

Similar to Mach bands, Craik-O’Brien-Cornsweet illusionis also a well-known
border contrast effect [O’Brien 1959, Craik 1966]. If the parts of over- and under-
shoots are given in an object of a uniform reflectance, the part with over-shoots
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starts looking brighter, and the other side looks darker (see Figure2.13). While
Mach bandsappear only in the areas which are close to the given gradient, Craik-
O’Brien-Cornsweet illusionaffects the perception of large areas. Purves et al. pre-
sented that this illusion still has a strong effect in 3D objects [Purves et al. 1999],
and it was extended for 3D unsharp masking model by Ritshcel etal. [Ritschel
et al. 2008].

Figure 2.13: Left: An example of Craik-O’Brien-Cornsweet ill usion. Right:
Profiles of luminance and brightness of Craik-O’Brien-Cornsweet illusion.
Pink line indicates the actual luminance profile while it is perceived as in the
dashed black line.

2.5 Psychometric Scaling

Psychophysics, which is a part of experimental psychology, is a way to studythe
characteristics of HVS. It is the scientific study of the relation between physical
stimulus and sensation which is observed by human subjects.Here, psychophysics
can be a bridge between HVS and computer graphics because in computer graph-
ics it is important to determine what factors of an image contribute to visual expe-
rience and to assess what method produces effective visual experience if several
different methods are proposed for the same purpose.

Two important changes have recently occurred in psychophysics: development of
the theory of signal detection and the refinements of methodsfor directly scal-
ing sensory magnitude [Gescheider 1997]. These two improvements lead a wide
applicability of psychophysics. As broadening the capability of psychophysics in
research, there have been a number of experimental methods,background theories
of statistics, and ways of analyzing or scaling data depending on the purpose of an
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experiment. In this section, we briefly review the experimental methods and ana-
lyzes which are used in this dissertation. Refer to [Gescheider 1997, Engeldrum
2000, Coolican 2004] for the other theories and applications in psychophysics,
and [Torgerson 1958] for scaling methods.

2.5.1 Two-Alternative Forced Choice (2AFC)
for 1D Scaling

If a limited number of stimuli are given and one wants to know the scaling or
ranking between those stimuli,two-alternative forced choice (2AFC)(sometimes
called pairwise comparison) or ranking methodare commonly used. Assume
n stimuli are prepared. All possible combinations ofn stimuli are presented to a
subject, and he/she must answer a question which stimulus has stronger (or weaker
for some cases) intensity for each pair of stimuli, for example, “which stimulus
is brighter?”. In the end of the experiment with a large enough number of human
subjects, an × n square matrixM is constructed to determine the number of
times which each stimulus was chosen. Each elementmi,j at theith row andjth
column in the matrixM denotes the observed number of times which stimulusj
was chosen when it was compared to stimulusi. The diagonal cells ofM are left
vacant. Next, the elements of the matrixM are normalized between 0 – 1. Then,
based on the normalized matrix, a basic transformation matrix X is constructed
such that the elementxi,j is the unit normal deviate corresponding to each element
of the normalized matrix and can be obtained by referring to atable of areas under
the unit normal curve. The diagonal cells ofX are filled with zeros. Finally, the
elements of each column in the matrixX are summed up to obtain the scalings
between given stimuli. Resulting scalings are given by distances between the
stimuli.

This analysis is called Thurstone’s law of comparative judgment [Thurstone 1927,
Thurstone 1967]. This is very simple method to achieve scalings between stimuli,
but a big drawback is that the number of comparisons is given as n(n − 1)/2
which exponentially grows by increasingn. There have been presented several
ways to reduce the number of comparison in 2AFC experiment (see [Torgerson
1958, Chapters 8 – 9] for the details). An alternative approach is to useranking
methodwhich gives part or all of the stimuli to a subject instead of presenting one
pair after another and then asks them to order the given stimuli. It can be also
analyzed in the same way by using Thurstone’s law. 2AFC and Thurstone’s law
are used in Chapter6 for giving a scaling of perceived contrast with respect to
given physical contrast.
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2.5.2 Threshold Measurement

If one wants to measure detection or discrimination thresholds, probably the sim-
plest approach is theincrement/decrementmethod. In the experiment by incre-
ment/decrement method, a pair of the reference and target stimuli are presented
to a human subject. The target stimulus is set either at the same intensity of the
reference stimulus (Case 1) or at the level which is significantly different from the
reference (Case2). Then, a subject is asked to start changingthe intensity of the
target stimulus until he/she starts seeing the difference (for Case1) or starts seeing
the stimuli same (for Case 2).

The increment/decrement method is simple, however, its accuracy is sometimes
doubtful. In theStaircasemethod, a pair of the reference and the target stimuli
are presented as same as increment/decrement method. The target’s intensity is
increased whenever the different between the reference andtarget is not discrimi-
nated or decreased when there is no difference perceived.

For both increment/decrement method and staircase method,a subject is allowed
to change the intensity of the target stimulus. InParameter Estimation by Se-
quential Testing (PEST), the intensity of the target stimulus is changed by the
experimental program [Taylor and Creelman 1967]. Again, a pair of the reference
and target stimuli are presented to a subject. The target stimulus is set significantly
different from the reference. At each step, a subject must answer a question “do
you see difference?”. If the answer is yes, the intensity of the target stimulus is
jumped close the the reference (commonly the width of the first jump is same as
the difference between the reference and the intensity where the target started).
An experiment is basically conducted by repeating these steps. Every time a sub-
ject answers in the different way as the previous time, the direction of changing
the target’s intensity is inversed and the width of a jump is reduced to its half size,
while the target’s intensity is changed to the same direction with the same width of
a jump as far as being answered yes. One trial can be finished ifthe response of a
subject start being constant enough.QUEST, a refinement of PEST, has also been
presented [Watson and Pelli 1983]. PEST is employed in Chapter6 for measuring
contrast detection thresholds.

2.5.3 Rating Experiments and Multivariate Statistics

If one wants to know some ratings by human observers for each stimulus, it is
necessary to ask them to score each stimulus for a given property. This approach
is, of course, much harder than just asking yes/no questions, but it provides much
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more possibilities in its results. There are a variety of ways to analyze data in rat-
ing experiments depending on how many variables exist and what the purpose of
an experiment is. There are briefly four categories of the experimental purposes
such that one wants to know 1) the degree of relationship among variables, 2) sig-
nificance of group differences, 3) prediction of group membership, or 4) structure
of given variables. For each group of the purposes, there aremultiple possibilities
to analyze data. It depends on many factors which are, for example, the number of
dependent variables (DVs), that are measured and depend on subjects’ response
and the number ofindependent variables (IVs), that are manipulated or controlled.

For 1) the degree of relationship among variables, we can apply bivariater, mul-
tiple R, hierarchical multipleR, canonicalR, or multi-way frequency analysis.
For 2) significance of group differences, there existt-test, analysis of variance
(ANOVA), analysis of covariance (ANCOVA), multivariate analysis of variance
(MANOVA), Hotelling’s T square, multivariate analysis of covariance (MAN-
COVA), and profile analysis. For 3) prediction of group membership, we may
choose between one-way, hierarchical one-way, factorial,and hierarchical facto-
rial discriminant functions. For 4) structure of given variables, principle compo-
nent analysis (PCA) or factor analysis are recommended. Referto [Tabachnick
1989] how to choose among multivariate statistical techniques.

In this dissertation, we use statistical analyzes to know significance of group dif-
ferences (Purpose 2) in Chapters4, 5, and7. For this purpose, one important
concept isnull hypothesiswhich assumes that all of the population means of the
given data are equal as

H0 : µ1 = µ2 = · · · = µk (2.7)

whereµi is each population mean andk is the number of populations. A null hy-
pothesis is commonly used to obtain the reverse of what an experiment is actually
believed.

To examine a null hypothesis, asignificancetest is used, for example, the simplest
way is t-test for the case with one DV and one IV. If there is one DV witheither
one or multiple IVs, ANOVA is applied to a set of data in one-way or factorial
way. If there are multiple DVs with either one or multiple IVs, MANOVA can
be used. A null hypothesis is tested by comparing two estimates of variance with
the given population mean and the population size. In, for example, ANOVA and
MANOVA, degrees of freedomare calculated, statisticF value is manipulated,
then finally a significance level is shown in ap-value which is the probability to
accept a null hypothesis. It is usually concerned the difference between IVs over a
given DV is significant ifp is below 0.05, i.e., a null hypothesis is rejected with a
probability over 95%. A significance level ofp < 0.01 is sometimes used for very
strict case of analyzes. Refer to [Tabachnick 1989] for more details of significance
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tests and the details of the other categories of multivariate statistics. In addition
to examining significances, it is also possible to constructa model over given IVs
and DVs by usingmultidimensional scaling[Borg and Groenen 1997].
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Chapter 3

High Dynamic Range Imaging
(HDRI)

As shown in Figure1.1 in Chapter1, neither conventional display devices nor
conventional cameras are capable of covering the luminancedynamic range that
the human eyes perceive. If we take ahigh dynamic range (HDR)shot by alow
dynamic range (LDR)camera, the areas which are out of the dynamic range of
the camera are over- or under-saturated as seen in Figure3.1. We can use short
exposure to capture details in bright parts of a scene, but, on the other hand, the
dark parts are completely invisible with a short exposure, or vice versa for long
exposures.

As increasing the need of HDR techniques, there exist three categories of the so-
lutions to capture HDR scenes: 1) shooting an HDR scene by using highest-end
imaging sensors, 2) employing multi-exposure techniques with a series of LDR
images, or 3) using 3D rendering programs. In Solution 1, there have been intro-
duced several types of new imaging sensors, however, their high costs now prevent
them from the wide-spread use. Solution 2 is probably the easiest and the most
practical way to produce an HDR image of the natural environments nowadays,
and there have been introduced several methods of multi-exposure techniques. So-
lution 3 provides more practical algorithms and applications to make HDR scenes
by using 3D renderers. However, some of them require us to have enough experi-
ence and even the sense of art.

Even if an HDR image is created and stored in some HDR formats such as floating
point TIFF, LogLov, OpenEXR, Radiance RGBE, or PFS, it is obviousthat LDR
display devices cannot display HDR images on them as HDR images. To conquer
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Figure 3.1: A series of low dynamic range (LDR) images with different ex-
posures. Because the scene contains much broader luminance range than the
dynamic range which the camera can take in one shot, the areasout of the
dynamic range of the camera are either over- or under-saturated in each im-
age. Images taken by the Canon EF 50mm lens mounted on the CanonEOS
5D.

this problem, a number ofTone Mapping Operators (TMOs)have been introduced
for compressing the dynamic range of an HDR image to fit that ofthe LDR display
devices. Using TMOs is a software approach to deal with HDR images on LDR
displays. From the point of hardware view, there exist HDR displays by using
projector- and LED-based dual-modulation technologies introduced by Seetzen
et al. [Seetzen et al. 2004]. In the following sections, we review HDR images
acquisition, tone mapping operators (TMOs), and dual-modulation HDR display
technologies.

3.1 HDR Image Acquisition

3.1.1 HDR Imaging Sensors

In this section, we discuss two prominent examples of new imaging sensors which
can take an HDR scene in one shot:Digital Pixel Sensors (DPS)andhigh dy-
namic range CMOS (HDRC). DPS mount more transistors to pixels so that each
pixel has its own analog-to-digital converter and its own logic circuits. Since DPS
are capable of 10,000 frames per second, we can run them at higher frame rate
than the actual image generation. After taking pictures with several exposures
for each capture, they are combined into an HDR image at the lowest levels in
each pixel signal. Another new imaging sensor ishigh dynamic range CMOS
(HDRC), a CMOS-based sensor with per-pixel readout logic. HDRC can cap-
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ture each frame with up to four differently exposes capturesto create an HDR
image [Bloch 2007]. Simply speaking, both approaches depend on how many
transistors can be mounted on a chip. The cameras with such new imaging sen-
sors are already available in consumers’ market, however, abig drawback of those
highest-end sensors is their cost.

3.1.2 Multi-Exposure Techniques

Figure 3.2: A principle idea of multi-exposure techniques.A series of LDR
images are taken with different exposures to cover broader dynamic range
than that of an LDR camera, then they are combined into an HDR image.

A basic idea ofmulti-exposure techniquesis that an HDR image is reconstructed
from a series of LDR images with different exposures taken bythe same camera
from the same position (refer to Figure3.2). Several multi-exposure algorithms
have been introduced such as [Mann and Picard 1995, Debevec and Malik 1997,
Robertson et al. 1999, Nayar and Mitsunaga 2000, Ward 2003]. Each algorithm
has a different strategy for recovering the response curve of a camera which is
needed to express pixel values for each LDR image in the same intensity space.
The method of Mann and Picard uses a relatively dark pixel of ataken image
as a reference, then a nonlinear response curve is recoveredwith respect to the
selected dark pixel [Mann and Picard 1995]. Debevec and Malik employed a
physical property of imaging systems for recovering cameraresponse curve and
pixel weighting function [Debevec and Malik 1997]. Robertson et al.’s method
[Robertson et al. 1999] is similar to Debevec and Malik method, but it takes all
pixels of an image while Debevec and Malik method deals with randomly selected
pixels. Robertson et al.’s method also produces a weighting function based on the
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fact that longer exposures tend to produce a better signal-to-noise ratio. Nayar and
Mitsunaga’s method uses a flexible parametric model and roughly estimates the
ratios of exposures instead of requiring precise estimatesof exposure times [Nayar
and Mitsunaga 2000]. For all methods, once the response curve of a camera and
its weighting function are reconstructed, the recovered functions are applied to
combine a series of LDR images taken with different amounts of exposure. An
example of the response curve and its weighting function is shown in Figure3.4
which is extracted from a series of LDR images in Figure3.3using Robertson et
al.’s method.

Figure 3.3: A series of LDR images with different exposures. They were
used to extract the response curve and weighting function ofthe camera (see
Figure 3.4). Images taken by the Canon EF 50mm lens mounted on the Canon
EOS 5D.

The four algorithms reviewed above have a strict requirement that all LDR images
must be taken from the exactly same position and orientation(e.g., using a tripod),
and, in addition, no single movement of objects in an image isallowed. Ward
presented a method to create an HDR image by combining a series of LDR images
taken by a hand-held camera [Ward 2003]. His method arbitrarily selects one of
the given LDR images as a reference, then it outputs a set of integer offsets for
the rest of images. After calculating offsets, an HDR image is created by using a
known recovering function for a camera response curve.
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Figure 3.4: An example of weighting function and camera response curve
extracted from Figure 3.3 by Robertson et al.’s method for the Canon EF
50mm lens mounted on the Canon EOS 5D.

3.1.3 3D Renderers for HDR Images

There are a number of 3D rendering methods to produce HDR scenes inclassical
photorealistic rendering, physically based rendering, and image-based lighting.
The classical photorealistic rendering approaches such asscanlineor raytracing
use the lighting model of direct illumination. We can place fake objects to make
the final result as HDR, for example, negative lights, shadow mapping, textures,
and ramps. These approaches are the simplest and fastest methods to render HDR
scenes, however, they require the users to have experience and artistic skills.

On the other hand,global illumination simulates the behavior of lights strictly
according to the physics laws. In this category of the physically based rendering
approaches, one may findradiosityandMonte Carlomethod as its applications.
Physically based rendering methods can produce more visually accurate results
than the classical approaches, however, they still requiresome talent and experi-
ence for the users.

Using another option, an image-based lighting method such as [Debevec 1998],
is more intuitive and has a huge potential to make use of HDR imagery. Image-
based lighting firstly records environmental lighting characteristics in an image of
a dome or a sphere, then the recorded characteristics of the surroundings are taken
into account with the rendered scene by using global illumination technique. The
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details and usage of these applications are summarized in [Bloch 2007] [Reinhard
et al. 2007, Chapter 13].

3.2 Tone Mapping Operators (TMOs)

3.2.1 Overview

There were several early research papers about photographic tone reproduction.
Jones and Condit researched the relationship of brightness and camera exposure
with a number of exterior pictures and proposed prediction methods of a me-
ter constant of an image [Jones and Condit 1941]. Bartleson and Breneman
showed theoretical predictions of the optimum tone reproduction functions for
prints and transparencies and proved it by experimental data [Bartleson and Bren-
eman 1967]. Additionally, Miller et al. proposed an idea of tone mapping in the
field of lighting engineering [Miller and Hoffman 1984].

In 1993, the idea of tone reproduction was firstly introducedby Tumblin and
Rushmeier into the computer graphics community [Tumblin and Rushmeier
1993]. The main goal of tone reproduction is to adjust the dynamicrange of
an image to the range that can be displayed on physical devices when the lumi-
nance range of the images does not fit that of the physical devices. The dynamic
range must be compressed for very bright images, and it must be expanded for
very dark images. However, not only should aTone Mapping Operator (TMO)
adjust the dynamic range, but it should also preserve details and global contrast of
an image. It is a hard and contradicting requirement. Usually, if overall contrast is
simply preserved, details of an image may be lost or vice versa. How to preserve
them at the same time is always a difficult problem to solve forTMOs.

There have been presented a number of TMOs which are reviewedin the following
sections in terms of different scopes of TMO domains (refer to [Devlin et al. 2002]
[Reinhard et al. 2007, Chapters 6 – 8] for the details), and Figure3.5 shows an
example of tone mapped images by different TMOs. Some of themare used in
the perceptual evaluation of TMOs with respect to their corresponding real-world
scenes in Chapter4.

3.2.2 Luminance Domain TMOs

The simplest way to adjust the dynamic range of an HDR image tothat of the
display devices islinear TMO which scales luminance range of an HDR image
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linearly. Linear TMO is also employed in logarithmic domain(logarithmic linear
TMO). Without gamma correction, most of conventional displays follow approx-
imately log-linear response.

The first TMO in computer graphics field, Tumblin and RushmeierTMO, employs
the characteristics of HVS for transforming the luminance of the real-world to
that of a display device in order to preserve brightness [Tumblin and Rushmeier
1993]. This method works only on grayscale images, then it is revised to a new
TMO which incorporates a linear scaling factor based on adaptation luminance
[Tumblin et al. 1999].

Ward Larson et al. introducedhistogram adjustmentTMO [Ward Larson et al.
1997] based on [Ward 1994, Ferwerda et al. 1996]. This TMO leads to a mono-
tonic tone reconstruction curve, and then it applies the curve globally to all pixels
in an image.

Pattanaik et al. extended an early work [Tumblin and Rushmeier 1993] and pre-
sented a TMO which employs the idea of temporal visual adaptation of HVS
[Pattanaik et al. 2000]. This method is constructed by two models: the visual
adaptation model and the visual appearance model to take into account thresh-
old visibility, color appearance, visual acuity, and sensitivity change over time for
average luminance.

PhotographicTMO is also a luminance domain operator [Reinhard et al. 2002].
This method is inspired by photographic film development andits printing pro-
cess. The luminance of an HDR image is firstly adjusted by using the same func-
tion to all pixels, then photographic “dodging and burning”technique is applied
to enhance the quality of an image. This method is extended to[Reinhard 2003]
to be operated automatically.

Ashikhmin introduced a multi-pass approaching TMO to deal with two character-
istics of HVS: signaling absolute brightness and local contrast [Ashikhmin 2002].
This TMO firstly calculates the local adaptation luminance,then applies the ca-
pacity function which is based on the linearly approximatedTVI function. The
final tone mapped image is produced by multiplying a detailedimage given by the
ratio of pixel luminance to the corresponding local adaptation.

Adaptive logarithmic mappingis based on logarithmic compression of luminance
[Drago et al. 2003]. A family of different logarithmic functions are applied to
preserve details of an image, for example,log10 is applied for the high luminance
levels. In the end, Perlin and Hoffert’s bias power functionis used to interpolate
between the images modified by different logarithmic bases [Perlin and Hoffert
1989].



32 Chapter 3: High Dynamic Range Imaging (HDRI)

Lightness perceptionTMO was presented by Krawczyk et al. [Krawczyk et al.
2005]. This method de-composites an HDR image into several areasof consis-
tent luminance and local lightness values. It is inspired byan anchoring theory
[Gilchrist et al. 1999] and emphasizes the importance of luminance by using it.

Photoreceptor-basedTMO provides a sigmoidal compression for the dynamic
range of an image [Reinhard and Devlin 2005]. This method is based on the
behavior of photoreceptors and employs an idea of “semi-saturation” by linearly
interpolating the geometric average and each pixel’s luminance by applying user-
set parameters.

3.2.3 Contrast Domain TMOs

Gradient domainTMO identifies gradients at various scales in order to reduce
the magnitudes of large luminance gradients while preserving small changes for
high frequency details of an image [Fattal et al. 2002]. This TMO compresses low
frequency details strongly but keeps high frequency details uncompressed. They
also employ the gradient attenuation function, which is applied for each band of
frequencies, in order to avoid halo artifacts.

A fast bilateral filteringconsiders two different spatial frequency layers of an
image: a base layer and a detail layer [Durand and Dorsey 2002]. The base layer
preserves high contrast edges and removes high spatial frequency details of lower
contrast. The detail layer stores the difference between the original image and
the base layer. The final tone mapped image is produced by summing up these
two layers. This method is extended toTrilateral filtering which applies bilateral
filtering twice in different domains [Choudhury and Tumblin 2003].

Mantiuk et al. presented two TMOs in their perceptual framework for contrast
processing [Mantiuk et al. 2006]. Theircontrast mappingmethod is similar to that
of gradient domain method [Fattal et al. 2002] but is entirely based on the percep-
tual characteristic of human eyes. This method succeeds to avoid low-frequency
artifacts in an image. Additionally, theircontrast equalizationmethod equalizes a
histogram of contrast responses in order to produce a sharp and visually appealing
tone-mapped image.
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(a) [Ashikhmin 2002] (b) [Drago et al. 2003] (c) [Durand and Dorsey
2002]

(d) [Fattal et al. 2002] (e) [Mantiuk et al. 2006] (f) [Reinhard 2003]

(g) [Tumblin et al. 1999] (h) [Ward Larson et al. 1997]

Figure 3.5: An example of tone mapped images by different TMOs.
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3.3 Dual-Modulation HDR Displays

As a hardware approach to deal with HDR images, Seetzen et al.presented
two techniques of HDR displays:projector-basedandLED-basedHDR displays
[Seetzen et al. 2004]. Their basic idea is to employ a second light modulator
which, through multiplicative effect with the originally used modulator, enables
to achieve strong improvement of the admissible contrast between the darker and
brighter pixels. This is, in particular, apparent for blacklevels. Even very strong
light source used as backlight can be attenuated for almost perfect black levels by
such dual modulators (see Figure3.6).

Figure 3.6: Dynamic range of conventional LDR displays and dual-
modulation HDR displays. Note that HDR displays not only increase their
maximum possible luminance level but also produce extremely dark states.

Theprojector-basedHDR display contains a Digital Light Projector (DLP) with
a Digital Mirror Device, an LCD panel, and the optics to combine DLP and LCD
(see Figure3.7). Its dynamic range in luminance depends on an LCD panel. Their
prototype which mounts 15” XGA color LCD (Sharp LQ150X1DG0) has lumi-
nance range between 1 and 2700cd/m2. Because it is difficult to keep the pro-
jector and the LCD panel always aligned perfectly at the pixellevel, the projector
intentionally introduce a blurred image which is then compensated in the LCD
sandwich. The pixel values of the LCD are chosen to compensatefor those ef-
fects. Theprojector-basedHDR display can cover much broader dynamic range
in luminance compared to today’s conventional display, however, it has several
drawbacks such as optical length requirement, its high power consumption, cost,
thermal management, and video bandwidth.

Another technique, theLED-basedHDR display, employs an array of white LEDs
as a backlight instead of a projector. Each of the 760 LEDs for18” LCD panel
can be individually controlled with 1024 addressable steps. Its minimum possible
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Figure 3.7: Scheme of a projector-based HDR display.

luminance value is below 0.03cd/m2 and it is 8,500cd/m2 at the maximum.
The rendering algorithm on theLED-basedHDR display is basically similar to
that of theprojector-baseddisplay, but it employs a better supportedpoint spread
function (PSF)for LEDs which are arranged on a hexagonal grid instead of a
rectangular grid (refer to [Seetzen et al. 2004] for their details). This prototype
with 18” LCD panel is now extended to the 37” HDTV resolution (see Figure3.9)
whose luminance range is between 0.01 and 3,000cd/m2 (confirmed by our mea-
surement with MINOLTA LS-100 light meter1).

1
http://www.konicaminolta.com/instruments/products/light/luminance-meter/ls100-ls110/index.html
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Figure 3.8: Scheme of an LED-based HDR display.

Figure 3.9: A 37” LED-based HDR display.



Chapter 4

Testing Tone Maping Operators
with Human-Perceived Reality

4.1 Introduction

As the need of high dynamic range (HDR) images has greatly increased, how to
produce and display HDR images has been one of the important discussions. To
represent HDR images on low dynamic range (LDR) display devices, a number
of successful tone mapping operators (TMOs) have been presented (refer to Sec-
tion 3.2). They are useful not only for HDR photography but also for lighting
simulation in realistic rendering and global illuminationtechniques, which pro-
vide real-world luminance ranges.

Because a variety of tone mapping operators have been proposed, only a system-
atic perceptual evaluation can reveal the strengths and weaknesses of the wide
range of approaches presented in recent years. We conducteda psychophysical
experiment of a direct comparison between the appearance ofreal-world scenes
and tone mapped images of these scenes. The primary interestof this experiment
is to investigate the differences in perception of tone mapped images when they
are directly compared with their corresponding real-worldviews and indirectly
compared with each other. To our knowledge, this work was thefirst direct com-
parison of tone mapped images with corresponding real-world scenes at the time
it was performed.

In this chapter, Section4.2 reviews an overview of previous work, Section4.3
describes our psychophysical experiment, Sections4.4 and4.5 show its results
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and discuss about them, and then Section4.6summarizes this project. This work
is a follow-up extention of Yoshida’s Master thesis [Yoshida 2004]. Our main
contribution is to domonstrate that qualitative differences between TMOs have
a systematic effects on the perception by human’s eye which can be a basis for
selecting an appropriate TMO for a given purpose and also foran assessment of
further approaches in TMOs [Yoshida et al. 2005, Yoshida et al. 2007a].

4.2 Previous Work

Image comparison techniques can be roughly classified into two major categories:
subjectiveandobjectivemethods. Subjective methods obtain data from human
observers and the data are usually analyzed by statistical techniques [Newsham
et al. 2002, Nijenhuis et al. 1997, Watson et al. 2001] while objective methods
are based on theoretical models. The work with the similar goals to ours about
perceptual evaluation of tone reproductions has been recently published in [Kuang
et al. 2004, Kuang et al. 2005, Ledda et al. 2005].

Kuang et al. conducted two paired comparison experiments ofeight TMOs
[Kuang et al. 2004]. Tone mapped images were displayed on an LDR monitor
without reference for observing overall rendering performance and grayscale tone
mapping performance respectively. They also conducted a similar experiment
with six TMOs (two poorly scored ones in [Kuang et al. 2004] were eliminated)
[Kuang et al. 2005]. They asked subjects to examine overall preference and sev-
eral image attributes (highlight details, shadow details,overall contrast, sharpness,
colorfulness, and artifacts) over tone mapped color imagesdisplayed on an LCD
monitor. As in [Kuang et al. 2004], they did not provide reference for subjects.

Ledda et al. also conducted psychophysical experiments of six TMOs. They asked
subjects to make paired comparison of tone mapped images displayed on an LDR
monitor with an HDR image as their reference [Ledda et al. 2005] on a Brightside
HDR display [Seetzen et al. 2004]. In their experiment, the subjects actually never
saw the real-world scenes measured by an HDR display. They measured over-
all similarity and detail reproduction of tone mapped images. First, they studied
overall similarity of TMOs and clarified that their selectedTMOs can be ranked.
They asked subjects to compare a pair of tone mapped images and choose the one
which appeared closer to the reference displayed on an HDR monitor. Following
the first experiment, detail reproduction of TMOs in both bright and dark regions
of an image were studied in the second experiment. It showed adifferent result
from that of Kuang et al. [Kuang et al. 2004] for fast bilateral filtering[Durand
and Dorsey 2002]. As Ledda et al. wrote,bilateral filteringgenerates images with
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higher contrast and more detail visibility than in the reference images. Therefore,
it had poor scores in the experiment with reference on an HDR monitor [Ledda
et al. 2005] while it performed quite well without references [Kuang et al. 2004].

This observation is also confirmed by Yoshida et al. [Yoshida et al. 2006]. The ex-
periments over the same HDR monitor as that of Ledda et al. were conducted with
and without references of the corresponding real-world view. The result shows
that subjects behaved differently with and without reference. They enhanced con-
trast proportionally to the dynamic range of an HDR display,even more than that
of an original image, if they had no reference. However, if they had reference,
they adjusted contrast almost same as that of an original image and kept it approx-
imately on the same level even for different dynamic ranges of a display [Yoshida
et al. 2006].

In parallel to our experiments, Ashikhmin and Goral [Ashikhmin and Goral 2006]
andČad́ık et al. [Čad́ık et al. 2006] conducted subjective experiments to evaluate
TMOs with respect to their corresponding real-world views.They are discussed
in details and compared to our results in Section4.5.

4.3 Perceptual Evaluation

Our experiment is different from those which are reviewed inthe previous sec-
tion in several ways. First, we provide corresponding real-world views of a tone
mapped image for subjects as reference. HDR monitors can produce much wider
dynamic range of luminance than that of today’s common display devices, but
they still have their own limitations concerning the representation of high con-
trast in high frequency areas of an HDR image and their luminance range can
not match that of the real-world [Seetzen et al. 2004]. Additionally, as shown in
[Yoshida et al. 2006], subjects may behave in different ways for observing their
preference or archiving the fidelity of an image and an HDR monitor can even
provide more contrast than an original image. Because we wantto measure how
close tone mapped images are to the real-world view, we do notselect an HDR
monitor as reference.

Second, we select the ranking method using a slider. The paired comparison
method is very simple and powerful for observing interval scales of given algo-
rithms (TMOs in this case) along a given dimension. Thurstone’s Law of compar-
ative judgement [Thurstone 1927] is the most common used analysis for paired
comparison. However, the paired comparison analyzed by Thurstone’s Law has
two problems; A paired comparison experiment needsn(n − 1)/2 experimen-
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tal trials for n stimuli. The total number of trials increase very rapidly asthe
number of stimuli. Additionally, Thurstone’s Law relies onthe assumption of
uni-dimensional scaling. It is quite useful if we want to compare the performance
of one specific attribute, but in our experiment, we want to have more insight in
multi-dimensional scaling than in uni-dimension. Therefore, we select the rating-
scale method instead of the paired comparison. The details for those methods
and analysis can be found in a book by Bartleson and Grum [Bartleson and Grum
1984].

4.3.1 HDR Image Acquisition

Figure4.1shows the scenes for our experiment. To acquire HDR images for our
perceptual evaluation, we used a multi-exposure technique(refer to Section3.1
about HDR image acquisition). Kodak Professional DCS560 digital camera and
Canon EF 24mm and 14mm were used to shoot 15 LDR images with different
shutter speeds ranging from 1/2,000 to 8.0 seconds. Both lenses have big enough
field of view to cover the view of human eyes. Because those images were saved
in a raw format of Kodak, they were converted to 36-bit TIFF format by using the
programraw2image included in the Kodak DCS Photo Desk Package. To re-
cover the camera response curve function, we employed Robertson et al.’s method
[Robertson et al. 1999]. The HDR images were constructed with the recovered re-
sponse curve and saved in the Radiance RGBE format [Ward 1991].

4.3.2 Tone Mapping Operators

Apart from the domain categorization of TMOs (see Section3.2), there is a clas-
sical way to categorize TMOs either if it applies the same transformation onto
all pixels (global TMO) or it adapts its scales to different areas of an image (lo-
cal TMO). By this global/local categorization, it is obvious that global TMOs are
much simpler and more easily implemented than local TMOs because they need
to prepare only one function to apply for every pixel, however, global TMOs tend
to lose the visibilities of details. On the other hand, localTMOs tend to lose an
impression of global contrast compared to global TMOs. Additionally, one well-
known problem which easily appears with local TMOs is halo artifacts (inverse
gradient) which can manifest as a dark aura around a very bright region.

In this chapter, we mainly use the global/local grouping. Seven commonly used
TMOs are chosen for our perceptual evaluation as shown in thefollowing list with
labels of “global” or “local” by this categorization:
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(a) Scene 1. 13,630 and 0.021cd/m2 for the maximum and minimum lumi-
nances respectively.

(b) Scene 2. 506 and 0.019cd/m2 for the maximum and minimum luminances
respectively.

Figure 4.1: View of the scenes for our experiment. Both are tone mapped by
[Drago et al. 2003] for their presentation.
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• Log-linear TMO (global)

• Histogram adjustment TMO (global) [Ward Larson et al. 1997]

• Pattanaik et al. (global) [Pattanaik et al. 2000]

• Ashikhmin (local) [Ashikhmin 2002]

• Fast bilateral filtering (local) [Durand and Dorsey 2002]

• Photographic TMO (local) [Reinhard et al. 2002]

• Adaptive logarithmic mapping (global) [Drago et al. 2003].

Refer to Section3.2for the characteristics of TMOs used in our experiment.

4.3.3 Experimental Procedure

Prior to the main experiment, we conducted a pilot study withexperienced sub-
jects to fine tune the parameter settings for each tone mapping operator. We asked
subjects to choose the best image for each tone reproductionmethod from a selec-
tion of multiple tone mapped images. Additional post-processing, such as gamma
correction, was performed according to the suggestions in each respective paper
of the TMOs. All of the images used in our experiment are shownin Figures4.2
– 4.3. All of the HDR images and our implementations of the TMOs used in the
experiment are available at our website1.

The main part of the experiment was performed with the participation of 14 sub-
jects. They were graduate students and researchers of the Computer Graphics
group in the Max-Planck-Institut für Informatik. Two of them are female, and the
rest are male. The range of their age is 24 – 34, and all of them were näıve for
the goal of the experiment and TMOs. Additionally, every participant reported
normal or corrected to normal vision.

Each subject was asked to stay in the same position as each of the HDR images
had been taken (Figure4.1) and view seven images one after another for each of
the two scenes. An sRGB-calibrated monitor (DELL UltraSharp 1800FP) dis-
playing images of resolution1, 280 × 1, 024 at 60.0 Hz was used. The subjects
compared each image with its corresponding real-world viewand gave ratings for
image appearance and realism. Image appearance attributesjudged in our exper-
iment are overall brightness, contrast, detail reproductions in dark regions, and
detail reproductions in bright regions. The subjects ratedhow well each of those
attributes was reproduced in tone mapped images with respect to the real-world

1http://www.mpi-sb.mpg.de/resources/tmo and real/
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(a) Linear (b) Bilateral filtering

(c) Pattanaik (d) Ashikhmin

(e) Ward (f) Reinhard

(g) Drago

Figure 4.2: The tone mapped images for Scene 1.
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(a) Linear (b) Bilateral filtering

(c) Pattanaik (d) Ashikhmin

(e) Ward (f) Reinhard

(g) Drago

Figure 4.3: The tone mapped images for Scene 2.
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view. Additionally, the subjects were asked to rate image naturalness in terms
of reproducing the overall appearance of the real-world views. All of the ratings
were done by moving scroll bars. The subjects were allowed tomove back and
forth among images for one scene (see Figure4.4 for screenshots of our experi-
ment and its user interface part). The whole procedure for one participant took
approximately 20 to 30 minutes.

4.4 Results

Our experiment is a seven (TMOs)× two (scenes) within-subjects design (see
Tabachnick [Tabachnick 1989] for the details of the design types in multivariate
analysis). This experiment has twoindependent variables(IVs): the TMOs and
the scenes and fivedependent variables(DVs): overall brightness, overall con-
trast, detail reproductions in dark regions, detail reproductions in bright regions,
and naturalness (see Section2.5 about DVs and IVs). Our primary interest is
whether the images produced by different TMOs are perceiveddifferently when
they are compared to their corresponding real-world views.For analyzing a set of
data, the Statistics Toolbox of MATLAB was used [MathWorks, Inc.].

As preliminary data processing, all obtained scores were normalized over each of
the attributes and each of the subjects in order to scale the standard deviations 1.0
asxi →

xi−µx

σx
wherexi is a score andµx andσx are respectively the mean and

the standard deviation over an attribute of a subject.

4.4.1 Main Effects

Because two scenes were used in the experiment, we examined how much in-
fluence comes from the difference of two scenes. Themain effectof the scenes
was first tested by usinganalysis of variance (ANOVA). Thedegrees of freedom,
F distribution and a probability valuep, which is derived fromF , are used to
determine whether there is a statistically significant difference between popula-
tions of samples (see Section2.5about significance test). The higherp value, the
more we can believe that the populations of samples are not statistically different
(refer to Tabachnick [Tabachnick 1989] for more details of the main effect and
ANOVA). In our experiment, the scene difference is not statistically significant
and small enough to be ignored (p >> 0.05 for all attributes). It follows our goal
to investigate the tone mapping performance for indoor architectural scenes.
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Figure 4.4: Screenshots of our perceptual experiment and its user interface
part.
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Overall Brightness

Figure4.5 shows the main effect of the TMOs for overall brightness. Accord-
ing to the significance values, overall brightness is the most differently perceived
attribute. As seen in the figure, it is manifested that imagesproduced by the lin-
ear, Pattanaik, Ward, and Drago methods (i.e., global methods) have substantially
higher overall brightness than the others. These TMOs are perceived the most
differently when compared to their corresponding real-world views. Figure4.5(b)
shows the estimated differences of means. The top and bottombars show 95%
confidence interval, and the middle bar shows the mean value of difference. Note
that a pair containing 0 difference (the red line in plots) inits 95% confidence
interval indicates that they are not significantly different.

The same result is shown in Table4.1 as significance values calculated byt-test
(see Section2.5aboutt-test). As shown in Figure4.5(b)and Table4.1, the pair of
the linear TMO and bilateral filtering has the biggest population difference. On the
other hand, the pairs of bilateral filtering and Ashikhmin, of Pattanaik and Ward,
of Pattanaik and Drago, of Ashikhmin and Reinhard, and of Wardand Drago are
not significantly different for overall brightness.

Bilateral Pattanaik Ashikhmin Ward Reinhard Drago
Linear 0.0000 0.0012 0.0000 0.0037 0.0000 0.0140

Bilateral 0.0000 0.0546 0.0000 0.0002 0.0000
Pattanaik 0.0000 0.9507 0.0000 0.5444

Ashikhmin 0.0000 0.0873 0.0000
Ward 0.0000 0.5580

Reinhard 0.0000

Table 4.1: p-values computed byt-test for overall brightness.

Overall Contrast

The main effect for overall contrast is shown in Figure4.6. The linear, Pattanaik,
and Ward methods have higher overall contrast than the others. Global operators
have stronger contrast than local ones as shown in Figure4.6(a). It corresponds
to the expectations because global methods require high overall contrast to retain
details in low-contrast regions. The estimated mean difference andt-test result
are shown in Figure4.6(b)and Table4.2. The result of ANOVA (Figure4.6(a))
shows significant difference between all TMOs, however, if we make pairwise
comparisons for each TMO, a number of pairs are not considered significantly
different (Figure4.6(b)and Table4.2).
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(a) Overall brightness.F = 46.14, p = 0.0.
A box shows the lower quartile, median, and upper quartile values. The whiskers are
lines extending from each end of the box to show the extent of the rest of the data.

(b) Estimated mean difference. The middle bar shows the meanvalue of estimated
difference. The top and bottom bars show 95% confidence interval.

Figure 4.5: Distributions and F and p values of overall brightness for the
main effect of the TMOs. The TMOs are labeled as linear (L), bilateral filter-
ing (B), Pattanaik (P), Ashikhmin (A), Ward (W), Reinhard (R) , and Drago
(D) methods.
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(a) Overall contrast.F = 8.74, p = 2.1058E − 08.

(b) Estimated mean difference.

Figure 4.6: Distributions and F and p values of overall contrast for the main
effect of the TMOs. The TMOs are labeled as linear (L), bilateral filtering
(B), Pattanaik (P), Ashikhmin (A), Ward (W), Reinhard (R), and Drago (D)
methods.
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Bilateral Pattanaik Ashikhmin Ward Reinhard Drago
Linear 0.0010 0.3531 0.0001 0.2713 0.0121 0.0260

Bilateral 0.0161 0.4003 0.0000 0.2197 0.1132
Pattanaik 0.0017 0.0326 0.1323 0.2305

Ashikhmin 0.0000 0.0322 0.0125
Ward 0.0000 0.0001

Reinhard 0.6942

Table 4.2: p-values computed byt-test for overall contrast.

Details in Dark Regions

Detail reproduction in dark regions (Figure4.7) show the least significance among
the attributes, but it is still highly significant (p = 0.0054). The Ashikhmin and
Drago methods are perceived to have the most details reproduced in dark regions.
The linear, Pattanaik, Ward, and Reinhard methods have almost equal scores, and
the bilateral filtering has slightly less detail reproductions than those four. Al-
though ANOVA shows that TMOs are significantly different fordetail reproduc-
tion in dark regions (p = 0.0054 in Figure4.7(a)), estimated difference of means
andt-test show that a number of TMOs are not significantly different if they are
compared pairwise.

Bilateral Pattanaik Ashikhmin Ward Reinhard Drago
Linear 0.4869 0.6613 0.0252 0.9355 0.6131 0.0087

Bilateral 0.7400 0.0884 0.3572 0.8153 0.0311
Pattanaik 0.0308 0.5240 0.9247 0.0096

Ashikhmin 0.0057 0.0453 0.5508
Ward 0.4793 0.0017

Reinhard 0.0147

Table 4.3: p-values computed byt-test for detail reproduction in dark re-
gions.

Details in Bright Regions

Detail reproduction in bright regions is the second most differently perceived at-
tribute as shown in Figure4.8. The bilateral filtering, Ashikhmin, and Reinhard
methods provide significantly more detail reproductions inbright regions than the
others. According to Figure4.8(a), all of the local operators are perceived with
more detail reproductions than global ones. This result comes from the fact that
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(a) Detail reproductions in dark regions.F = 3.18, p = 0.0054.

(b) Estimated mean difference.

Figure 4.7: Distributions and F and p values of detail reproductions in dark
regions for the main effect of the TMOs. The TMOs are labeled as linear (L),
bilateral filtering (B), Pattanaik (P), Ashikhmin (A), Ward ( W), Reinhard
(R), and Drago (D) methods.
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local operators use different scales for small regions of animage while global op-
erators use only one scale for the whole image and tend to saturate bright parts of
an image. Figure4.8(b)and Table4.4also show the distances between local and
global TMOs.

Bilateral Pattanaik Ashikhmin Ward Reinhard Drago
Linear 0.0000 0.0001 0.0000 0.0003 0.0000 0.0000

Bilateral 0.0000 0.3665 0.0000 0.8794 0.4011
Pattanaik 0.0000 0.8670 0.0000 0.0001

Ashikhmin 0.0000 0.2044 0.0653
Ward 0.0000 0.0001

Reinhard 0.4053

Table 4.4: p-values computed byt-test for detail reproduction in bright re-
gions.

Naturalness

Figure4.9 shows the main effect for naturalness. As can be seen in the figure,
the Ward, Reinhard, and Drago methods are perceived to have the most natural
appearance. As same as detail reproduction in dark regions,ANOVA shows that
all TMOs are significantly different (p = 8.3877E − 08), however, each pair-
wise comparison does not show significant difference for almost half of pairs for
naturalness.

Bilateral Pattanaik Ashikhmin Ward Reinhard Drago
Linear 0.0305 0.1845 0.0864 0.0000 0.0000 0.0000

Bilateral 0.3282 0.6094 0.0329 0.0644 0.0049
Pattanaik 0.6420 0.0012 0.0017 0.0000

Ashikhmin 0.0069 0.0124 0.0004
Ward 0.5603 0.7800

Reinhard 0.2608

Table 4.5: p-values computed byt-test for naturalness.

4.4.2 Mahalanobis Distances

Multivariate analysis of variance (MANOVA)was run to estimateMahalanobis
distancesbetween TMOs (see Section2.5about MANOVA). Mathematically, Ma-
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(a) Detail reproductions in bright regions.F = 30.355, p = 0.0.

(b) Estimated mean difference.

Figure 4.8: Distributions and F and p values of detail reproductions in bright
regions for the main effect of the TMOs. The TMOs are labeled as linear (L),
bilateral filtering (B), Pattanaik (P), Ashikhmin (A), Ward ( W), Reinhard
(R), and Drago (D) methods.
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(a) Naturalness.F = 8.11, p = 8.3877E − 08.

(b) Estimated mean difference.

Figure 4.9: Distributions and F and p values of naturalness for the main
effect of the TMOs. The TMOs are labeled as linear (L), bilateral filtering
(B), Pattanaik (P), Ashikhmin (A), Ward (W), Reinhard (R), and Drago (D)
methods.
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halanobis distanced(x1, x2) betweenx1 andx2 is formulated as

d(x1, x2) =< x1 − x2,S
−1(x1, x2) >, (4.1)

S(x1, x2) =
1

n − 1

n
∑

i=1

(x1 − x2)
t(x1 − x2) (4.2)

whereX is a data matrix,xi is the i-th row of X, X̄ is a row vector of means,
andn is the number of rows. Mahalanobis distance is a measurementof similarity
of data points relative to the probability distribution of data, which has different
variances along different dimensions. Refer to [Tabachnick 1989] for more details
of Mahalanobis distances.

Table4.6shows the Mahalanobis distances among the TMOs given after running
MANOVA. According to Table4.6, the linear tone mapping and bilateral filtering
are perceived the most differently when compared with theircorresponding real-
world views. The second and the third most different combinations come from the
combination of the linear tone mapping and Ashikhmin methodand of the linear
tone mapping and Reinhard method. All of the three biggest differences are found
with respect to the linear tone mapping. On the other hand, the least difference
is provided between bilateral filtering and the Ashikhmin method. This result
is visualized in Figure4.10 as a dendrogram plot of a hierarchical binary tree.
An interesting result shown in Figure4.10is that those seven TMOs are divided
into global and local methods by Mahalanobis distances. Three local operators
(bilateral, Ashikhmin, and Reinhard) are similar to each other and four global
operators (linear, Pattanaik, Ward, and Drago) are similarto each other, but both
categories of global and local operators are separated by a large distance.

bilateral Pattanaik Ashikhmin Ward Reinhard Drago
linear 15.4530 1.6541 14.2361 2.7122 10.6089 6.6940

bilateral 7.4749 0.6674 9.2726 1.3353 8.8120
Pattanaik 6.4395 1.1613 3.9887 2.8066

Ashikhmin 8.9709 1.2405 6.2989
Ward 4.5301 2.9536

Reinhard 3.7406

Table 4.6: Mahalanobis distances amoung the TMOs calculated after run-
ning MANOVA. The three biggest distances are colored in red andthe three
smallest distances are colored in blue. All of the biggest differences are from
the linear tone mapping. Those Mahalanobis distances are visualized by a
hierarchical binary tree in Figure 4.10.
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Figure 4.10: Tree-structured Mahalanobis distances to determine similarity
among the TMOs given by MANOVA. As in Figure 4.5, the TMOs are labeled
as linear (L), bilateral filtering (B), Pattanaik (P), Ashikhm in (A), Ward (W),
Reinhard (R), and Drago (D) methods.
Note that those TMOs are divided into global and local methods for human
perception.
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4.5 Discussion

In this Section, we discuss the results obtained in our experiments and whenever
possible we compare them with the results obtained in other independent studies
[Kuang et al. 2005, Ledda et al. 2005]. It is worth nothing that Kuang et al.
[Kuang et al. 2005, Kuang et al. 2004] have not used any reference scenes in their
experiment. Ledda et al. [Ledda et al. 2005] showed HDR images to their subjects
as the reference, but the subjects have actually never seen the real-world scenes
captured in the HDR images.

In parallel to our experiment, two other sets of experimentswere presented.
Ashikhmin and Goral [Ashikhmin and Goral 2006] conducted two experiments
consisting of three parts: image preference, image naturalness with absence of a
given real-scene reference, and comparison with the real-scenes. In their experi-
ments, they employed five TMOs

• Histogram adjustment TMO [Ward Larson et al. 1997]

• Gradient domain TMO [Fattal et al. 2002]

• Photographic TMO [Reinhard et al. 2002]

• Trilateral filtering [Choudhury and Tumblin 2003]

• Adaptive logarithmic TMO [Drago et al. 2003]

and four scenes for the one involving the real-world views. They presented all tone
mapped images to subjects and asked them a question “which image is the closest
to the real scene in front of you?”. The results in the experiments about preference
and naturalness without real-scene views are randomly scattered. However, once
the real-scenes are given as references, the results becomemore consistent such
thatGradient domainTMO performed well whiletrilateral filtering did not obtain
good scores when compared to the real-views.

Another set of experiments was conducted byČad́ık et al. [Čad́ık et al. 2006]. 14
TMOs are employed in their experiments:

• linear TMO

• Ashikhmin [Ashikhmin 2002]

• Chiu et al. [Chiu et al. 1993]

• Trilateral filtering [Choudhury and Tumblin 2003]

• Adaptive logarithmic TMO [Drago et al. 2003]
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• Bilateral filtering [Durand and Dorsey 2002]

• Gradient domain TMO [Fattal et al. 2002]

• Low curvature image simplifiers (LCIS) [Tumblin and Turk 1999]

• Pattanaik and Yee [Pattanaik and Yee 2002]

• Photographic TMO [Reinhard et al. 2002]

• Schlick [Schlick 1994]

• Tumblin and Rushmeier [Tumblin et al. 1999]

• Ward [Ward 1994]

• Histogram adjustment TMO [Ward Larson et al. 1997].

Their experiments contain two parts: 1) rating each tone mapped image for overall
image quality, brightness, contrast, reproduction of details, and reproduction of
colors with given real-world views (rating experiment) and2) ordering printouts
of all tone mapped images for overall image quality, overallcontrast, brightness,
color and detail reproduction with no given reference views. In their conclusions,
the best overall quality is exhibited by [Reinhard et al. 2002] and [Ward Larson
et al. 1997] in this order while the worst was [Chiu et al. 1993].

For our experiment, the result of the multivariate analysis(see Section4.4) shows
that the seven TMOs were perceived very differently in termsof all of the at-
tributes when compared to their corresponding real-world views.

Overall Brightness Observer assessments of overall brightness shows the
most significant differences among the TMOs, and global operators (the linear,
Pattanaik, Ward, and Drago methods) have more brightness than local ones (the
bilateral filtering, Ashikhmin, and Reinhard methods). Thisresult has a strong
agreement witȟCad́ık et al.’s results. They also reported the methods of Ward and
Drago with relatively good ratings about overall brightness compared to bilateral
filtering and Ashikhmin TMO. Only a difference is Reinhard TMOwhich was
rated low as same as the other local TMOs in our experiment butobtained quite
good score iňCad́ık et al.’s experiment.

Overall Contrast Regarding overall contrast, global operators have more con-
trast than local ones, but the difference is less pronouncedthan for overall bright-
ness. Since overall brightness and contrast are correlated[Yoshida et al. 2006],
this result is expected. The linear, Pattanaik, and Ward methods show more overall
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contrast reproduction than the others. However, it was shown that the bilateral fil-
tering and photographic TMOs (i.e., local operators) had the highest rating scales
in overall contrast when no reference is provided for subjects [Kuang et al. 2005].
Compared toČad́ık et al.’s results, there is the same tendency as overall bright-
ness. Both of their and our results agree with each other except Reinhard TMO.

Detail Reproduction in Dark Regions Detail reproduction in dark regions
is the least significant of the attributes, but it is still highly significant. The
Ashikhmin and Drago methods are perceived as providing the most details in
dark regions. The bilateral filtering exhibits slightly better detail reproduction
than the linear, Pattanaik, Ward, and Reinhard methods. In another independent
study [Kuang et al. 2005] (performed without the reference scenes), the bilateral
filtering and Reinhard methods have been reported to have highscores in detail
reproductions in dark regions. It is similar to our findings.On the other hand, if
an HDR image was provided as the reference on an HDR monitor (Ledda et al.
[Ledda et al. 2005]), the bilateral filtering reproduced the poorest details in dark
regions.

Detail Reproduction in Bright Regions Perceptual variation is the second
highest for detail reproduction in bright regions. Counter to overall brightness,
local operators are perceived with significantly more detail reproductions in bright
regions than global ones. Even when no reference was provided, the local TMOs
were considered to be better operators for detail reproduction in bright regions
[Kuang et al. 2005]. In the study with the HDR references [Ledda et al. 2005], it
can also be seen that the Reinhard TMO reproduced details in bright regions quite
well. However, the fast bilateral filtering, Ward, and DragoTMOs were reported
as having the opposite effect compared to our results.

Similar results to those of our experiments with respect to detail reproduction in
dark and bright regions, have been also recently reported bySmith et al. [Smith
et al. 2006] who proposed objective local and global contrast metrics.They con-
sidered 18 HDR images which have been compared to their tone mapped counter-
parts using their objective contrast distortion metrics.

Naturalness Concerning the naturalness attribute, the Ward, Reinhard, and
Drago methods obtain highest scores. The Ward and Reinhard methods are also
ranked as the second and the third preferred TMOs respectively in the research of
Kuang et al., however, the fast bilateral filtering is not ranked in our experiments
as high as in the experiments without reference [Kuang et al. 2004]. Ashikhmin
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and Goral asked the subjects “which image is the closest to the real scene in front
of you?”, and then their results show that the methods of Drago and Reinhard
performed well as same as our results. InČad́ık et al.’s experiment, they asked
their subjects about “overall image quality” with respect to corresponding real-
world views. Their question can be interpreted “how close the given image is to
the reference view in front of you?”, i.e., naturalness. Theresults ofČad́ık et al.
also have a strong agreement with ours about the methods of Ward and Reinhard.

For all attributes of TMOs, while the results of our experiments show some
similarities to the results of other studies [Kuang et al. 2005, Ledda et al.
2005, Ashikhmin and Goral 2006, Čad́ık et al. 2006], a number of difference are
observed as well. This may come from the difference between an experiment with
or without reference. Even when a reference is provided to subjects, the results
differ with an HDR image reference or with the correspondingreal-world scene.
Parameter setting for TMO matters as shown in [Yoshida et al. 2006] which is also
presented in Chapter5.

Similarity between TMOs In terms of the similarity of the tone mapping op-
erators computed by Mahalanobis distances, the biggest differences are between
the linear tone mapping and each of the fast bilateral filtering, the Ashikhmin
method, and the photographic tone reproduction by Reinhard et al. (i.e., lo-
cal methods). The least differences are between fast bilateral filtering and the
Ashikhmin method, between the methods of Pattanaik and Ward, and between
the Ashikhmin method and the photographic reproduction. The Mahalanobis dis-
tances are visualized in a dendrogram plot (Figure4.10), which shows that all
studied tone mapping operators are divided into global and local categories in
terms of similarity.

4.6 Summary

We conducted a psychophysical experiment over seven tone mapping operators
and two scenes with 14 human observers. We asked subjects to stay at the point
where an HDR image was taken by camera and compare tone mappedimages and
their corresponding real-world views. Tone mapped images were shown one after
another and subjects rated overall brightness, overall contrast, detail reproduction
in bright and dark regions, and naturalness for each tone mapped image by using
a slider. Our principal goal of this work was to study how people perceive tone
mapped images when they are compared with the real-world views.
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Our results demonstrate that qualitative differences in tone mapping operators
have a systematic effect on the perception of scenes by humanobservers. They
provide a solid basis for selecting the appropriate algorithm for a given application
and for assessment of new approaches to tone mapping techniques.
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Chapter 5

Analysis of Reproducing
Real-World Appearance on HDR

Displays

5.1 Introduction

A great variety of tone mapping operators have been developed in recent years
(refer to [Reinhard et al. 2005] for a detailed survey) in response to accessible
and simple high dynamic range (HDR) image acquisition technology. A major-
ity of existing operators are designed to produce images that just “look good”.
Some operators, especially those designed specifically forrealistic image synthe-
sis applications, use models of brightness or contrast perception to achieve a good
match between the image’s appearance and the correspondingreal-world scene.
In practice, each operator boils down to an image processingalgorithm that trans-
forms HDR pixels into their low dynamic range (LDR) counterparts using either
a monotonic function with respect to the HDR pixel intensity(global operators)
or a more complex relation that involves local pixel neighborhood considerations
(local operators). While new tone mapping operators are proposed, there is little
understanding whether their improvements and additional complexity really lead
to better images. It turns out that it is difficult to select one existing operator
that consistently performs the best in terms of user preferences or fidelity to the
original scene appearance for all HDR images [Reinhard et al. 2005].

In the following sections, we review previous work in Section 5.2, describe our
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psychophysical experiments in Section5.3. Results of our experiments are dis-
cussed in Section5.4, followed by Section5.6to summarize this work.

5.2 Previous Work

Evaluation of tone mapping operators (TMOs) is an active research area [Drago
et al. 2002, Kuang et al. 2004, Ledda et al. 2005, Yoshida et al. 2005], which at the
current stage is more focused on choosing correct psychophysical techniques than
on providing any clear guidance as to how existing operatorsshould be improved
to produce consistently high quality images. All existing evaluation methods treat
each tested TMO as a “black box” and its performance is compared with respect
to other operators, without explaining the reasons underlying human judgments.
While some evaluation methods go one step further and attemptto analyze the
reproduction quality of overall brightness, global contrast, and details (in dark
and bright image regions) [Ledda et al. 2005, Yoshida et al. 2005], but again they
are focused on comparing which operator is better for each ofthese tasks. Those
studies do not provide any deeper analysis as to how pixels ofan HDR image have
been transformed and what the impact of such a transformation is on desired tone
mapped image characteristics [Delahunt et al. 2005]. Another important question
is how the outcome of the transformation depends on the particular HDR image
content.

In all discussed evaluation experiments only one set of parameters per TMO and
per HDR image is considered in order to reduce the number of images that must
be compared by subjects. The choice of the parameters may dramatically affect
the appearance of tone mapped images and thus the performance of a TMO. Ex-
perimenters commonly set such parameters based on their choice or a small pilot
study, which may lead to the results that are biased by the choices of a limited
number of subjects. Sometimes the original authors of TMOs are asked to pre-
pare images according to their preference, since “they should be the best qualified
to get the best results”. However, different people may havedifferent ideas con-
cerning the preferred image appearance and the meaning of “the best results” can
be fuzzy. Even the calibration of the display used for image tuning and the actual
experiment can affect the results. A limited number of TMOs offer a method of
an automatic parameter estimation (e.g. [Reinhard 2003, Reinhard et al. 2005]).
However, these estimation methods rely mostly on the authors observation for a
small set of images or the practices borrowed from photography, rather than a
study with a large number of images and subjects.

A standard pool of HDR images for tone mapping evaluation hasbeen recently
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proposed [Johnson 2005], but a common practice for every experimenter is to rely
on his own version of tone mapped images, which makes cross-comparison of the
results for independent evaluations difficult.

Another common problem is averaging the experimental results across subjects
based on low-cross subject variability. This lack of variability can often be caused
by the choices imposed on the subjects by the experiment design, which does
not offer any possibility of adjusting the image appearanceto the subject’s real
preferences within available range of parameters of the tested TMOs. The net
result of published studies is that they often present contradictory results even if
the same HDR images are used. Some operators shown as performing the worst
in one experiment obtain the top scores in another experiment. This suggests that
the TMO evaluation methodology should be improved.

In this work, instead of proposing a new TMO and then running the subjective
evaluation to show that it performs better than the other operators, we take the op-
posite approach. We want to first identify the output tone characteristics that lead
to perceptually attractive images. Therefore, we start from measuring the subjec-
tive preference and the perception of fidelity for images produced by a generic
TMO, whose characteristic and parameters are well understood. Our goal is to
find some universal rules that facilitate a design of the TMO that consistently pro-
duces preferred image appearance.

In this respect, there are some similarities of our approachgoals with more funda-
mental research in psychophysics, which raises the issue ofimage appearance
preferences as a function of various image characteristics. For example, Fe-
dorovskaya et al. [Fedorovskaya et al. 1997] report that the relation between pref-
erence and colorfulness has a shape of inverted “∪” with the maximum preference
achieved for color saturation increased by 10%–20% in respect to the original im-
age. Similar results are obtained for contrast and brightness manipulation [Jobson
et al. 2002]. Higher color saturation is needed to compensate for reduced bright-
ness of a display in order to achieve more natural image appearance [deRidder
1996]. The preferred mean luminance levels are found for images that contain hu-
man faces [Delahunt et al. 2005]. Image preferences with respect to colorfulness,
contrast and brightness are studied in digital photography[Savakis et al. 2000].

What makes our study different from this fundamental research, which is moti-
vated by the applications of color reproduction in television and photography, is
that we focus on the particular problem of tone mapping HDR images for a broad
range of display devices. For this purpose we use in our experiments HDR im-
ages, which are displayed on an HDR display with fully controllable minimum
and maximum display luminance values. Therefore, we can investigate much
wider dynamic range than is possible using traditional LDR displays and neutral
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density filters.

5.3 Experiments

5.3.1 Introduction

We conducted two experiments on an HDR display to assess how people adjust
the settings of a TMO. In Experiment I, the subjects were given the task of adjust-
ing an HDR image shown on the HDR display so that it looked the best in their
opinion. In Experiment II, the subjects sat in front of an HDRdisplay showing
an image and the corresponding real-world scene. Their taskwas to adjust the
image to achieve the closest reproduction of the real-worldscene on the display.
Additionally, in Experiment II, we simulated several potential display devices by
limiting the lowest and highest luminance outputs of the HDRdisplay.

5.3.2 Subjects

There were in total 24 individual participants in two experiments. Four of them
were female and the rest were male. The range of their age was 24 – 46 years and
the average was 28. All of them reported normal or corrected to normal vision. All
but two subjects were not aware of the purpose of the experiments. Eight subjects
took part in both experiments, the others in only one of them.Experiment I was
completed by 15 subjects. Experiment II involved a separatesetup for each of
three real-word scenes, therefore 13, 7, and 6 subjects completed Experiment II
for each scene respectively. A single session took approximately 20 – 30 minutes
for both experiments.

5.3.3 Stimuli and Apparatus

Experiment I employed 25 HDR images commonly used for testing TMOs (see
Figures5.1 – 5.3). There were 14 outdoor scenes, 9 indoor scenes, and 2 CG-
rendered scenes. We did not include images of people or animals in the test set,
since these are rare for HDR images. Some of the images depicted daytime scenes,
the others night or evening scenes. The images were displayed in their original
resolution or scaled to the resolution of the HDR display if they were too large.



5.3 Experiments 67

(a) Image 1 (3.08) (b) Image 2 (3.93) (c) Image 3 (2.57)

(d) Image 4 (6.21) (e) Image 5 (4.06) (f) Image 6 (4.51)

(g) Image 7 (2.85) (h) Image 8 (4.88) (i) Image 9 (3.50)

Figure 5.1: Images 1 – 9 for Experiment I. Their dynamic ranges in decimal-
logarithmic units are shown in parentheses. All images are tone mapped by
using [Drago et al. 2003].
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(a) Image 10 (5.36) (b) Image 11 (2.69) (c) Image 12 (3.46)

(d) Image 13 (3.70) (e) Image 14 (3.96) (f) Image 15 (3.43)

(g) Image 16 (2.99) (h) Image 17 (3.03) (i) Image 18 (4.68)

Figure 5.2: Images 10 – 18 for Experiment I. Their dynamic ranges in
decimal-logarithmic units are shown in parentheses. All images are tone
mapped by using [Drago et al. 2003].



5.3 Experiments 69

(a) Image 19 (3.54) (b) Image 20 (2.60) (c) Image 21 (2.98)

(d) Image 22 (4.25) (e) Image 23 (3.84) (f) Image 24 (3.16)

(g) Image 25 (3.48)

Figure 5.3: Images 19 – 25 for Experiment I. Their dynamic ranges in
decimal-logarithmic units are shown in parentheses. All images are tone
mapped by using [Drago et al. 2003].
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Figure5.4 shows the HDR images used for Experiment II. These are the HDR
photographs of our experimental scenes that we set up next tothe HDR display.
Each of the three HDR images was created using the multiple exposure technique
from 15 low dynamic range images taken with a Kodak Professional DCS560
mounted on a tripod. We used Robertson’s method [Robertson et al. 1999] im-
plemented in thePFScalibration1 to calibrate a camera and create the HDR im-
ages. We selected the lens (Canon EF 50mm) and the position of the camera,
so that the image displayed on the monitor closely matched the real scene. The
subject’s viewpoint was not restricted and the setup allowed them to have com-
fortable viewing of both the real scene and the display from the distance of about
1.5 times screen height from the HDR display. Images 26 and 27(the left and
the middle images in Figure5.4) contain the same object layout but differ in the
lighting condition. Both scenes were lit with the 800 Watt HMIlamp (JOKER-
BUG 800), which gave approximately daylight illumination.For Image 27, the
lamp was covered by the diffuser (Lightbank) to decrease theintensity of the light
source. As shown in Figure5.4, the absolute luminance values were very differ-
ent with or without a diffuser for the HMI lamp. The table setup in Images 26
and 27 included a MacBeth Color CheckerTM, an 18% reflective gray card and
several objects ranging in their reflectance from black to white. The experimen-
tal sessions for all images except Image 28 were conducted inthe room whose
lighting condition could be fully controlled and was set to atypical dark office
illumination (64 lux). In the pilot study we verified that thelevel of ambient light
does not have a significant influence on the results. For Image28, the experiment
was conducted with natural light and completed within two hours in the afternoon
under stable weather conditions.

The images were shown on the Brightside18′′ LED-based HDR display [Seetzen
et al. 2004] which consists of an LCD panel (1, 280 × 1, 024 pixels) and a matrix
of 760 separately controlled white LEDs, acting as a back light. The minimum
and maximum luminance levels of the display we used for the experiments were
0.2 and3, 000 cd/m2, which gave the maximum dynamic range of4.18 log-10
units. The HDR monitor was calibrated by measuring its luminance response for
a range of input values using the MINOLTA LS-100 luminance meter. Then, the
measured values were used to create an inverse lookup table,which was used by
the display driver. The display driver was implemented in graphics hardware as a
fragment program to allow for real-time interaction with images.

Although tone mapping of images for the HDR display may seem like a futile
exercise, we found several reasons for this approach. Firstly, we wanted to check
if tone mapping is necessary for HDR displays, and if it is so,what kind of tone

1http://www.mpi-inf.mpg.de/resources/hdr/calibration/pfs.html
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(a) Image 26 (b) Image 27

(c) Image 28

Figure 5.4: Three HDR images and several measurements of luminance of
the real scenes. Their dynamic ranges inlog10 unit are also shown after each
number of the images. These images were shown to the subjects with their
corresponding real-world views in Experiment II and without reference as
done in Experiment I. The Drago TMO is applied for the convenienceof view.
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mapping. For this reason, we included several images whose dynamic range ex-
ceeded the dynamic range of the display (refer to Figures5.1– 5.3). Secondly, we
in fact artificially limited minimum and maximum luminance of the display in the
experiments as described later (although most of the data has been collected for
the full dynamic range). We also did not want to use differentdisplays of different
color characteristic in the experiments.

5.3.4 Generic Tone Mapping

The purpose of our psychophysical experiments is to collectdata from human
observers to determine what are the desired or important properties of a TMO.
This knowledge should help in the design of new TMOs or automatic parameter
estimation for the existing TMOs. Since examining all possible TMOs is not fea-
sible in an experimental setup, we consider only a global TMOthat involves linear
scaling and shifting of color values in the logarithmic domain. Even though this is
probably the simplest TMO that is practically used, it can mimic the behavior of
many global TMOs, such as [Tumblin 1999] or [Ferwerda et al. 1996], and is in
fact a part of any TMO that requires “gamma correction”, suchas [Reinhard et al.
2002] (since a power function that is used in gamma correction corresponds to lin-
ear scaling in the logarithmic domain). Many TMOs produce output pixel values
in an arbitrary range, which must be linearly scaled or shifted to fit the dynamic
range of a display (e.g. [Fattal et al. 2002, Durand and Dorsey 2002, Reinhard
et al. 2005]). For these and other TMOs such scaling (contrast adjustment) and
shifting (brightness adjustment) operations are essential for the final appearance
of a tone mapped image and are therefore analyzed in this workin more detail.

The generic TMO we use in the experiments is described with three parameters:
brightness, contrast, and saturation of color. Brightness and contrast parameters
are considered as an offset of luminance and as a difference between the maximum
and minimum luminance values, respectively. To adjust color saturation, color
coordinates are interpolated or extrapolated between the original pixel color and
its corresponding luminance value for the D65 white point. All adjustments are
performed in the logarithmic domain to approximate non-linear response of the
human visual system to light. Formally, the TMO can be modeled as

log10 R′ = c · log10 R + b, (5.1)

log10 Y ′ = 0.2126 log10 R′ + 0.7152 log10 G′

+ 0.0722 log10 B′, (5.2)

log10 R′′ = log10 Y ′ + s(log10 R′ − log10 Y ′) (5.3)
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whereb, c, ands are brightness, contrast, and color saturation parametersrespec-
tively, Y ′ is the new luminance value, andR′′ is the output red channel value.
Equations (5.1) and (5.3) are applied for green and blue channels in the same way
as for the red channel. Note thatY ′ is an approximation of luminance, which is
used for our convenience (luminance should be a weighted sumof linear instead
of logarithmicR, G andB coordinates). To assure that the adjustment of con-
trast has a minimum impact on the perceived brightness of a scene, the pixels of
each HDR image were multiplied by a constant factor, so that the median lumi-
nance value of each image wasȲ = log10(1) = 0. This way the multiplication
by the contrast parameter in Equation (5.1) “stretched”, but did not shift image
histogram. This is illustrated in Figure5.5.

Figure 5.5: Illustration how the generic tone mapping modifies the image
histogram (see Equation (5.1)).

5.3.5 Experimental Procedure

The two psychophysical experiments were conducted with andwithout reference
scenes, respectively. For both experiments, each HDR imagewas shown on the
HDR monitor one after another with a user interface that allowed the subjects to
interactively adjust parameters of brightness, contrast,and color saturation using
a mouse. The first two parameters were adjusted using a 2D slider interface and
color saturation was adjusted using a 1D slider as shown in Figure 5.6. Since
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we found in the pilot study that brightness and contrast are difficult to control
separately, we decided to use a 2D slider that would allow adjustment of both
parameters at the same time. In Experiment I, the subjects were asked to adjust
these parameters until the most preferred reproduction of each HDR image was
achieved in their own opinion without reference images (preference). In Experi-
ment II, their task was to achieve the closest reproduction of the real-world view
(fidelity). They were asked to reproduce the details of all objects in an HDR im-
age as seen in the real scene and, if possible, to adjust the HDR image brightness
to match the real scene (see Figure5.7for the settings of Experiment II).

Figure 5.6: A screenshot of the user interface used in our experiments. The
horizontal and vertical axes of the 2D slider (bottom right)adjust brightness
and contrast, respectively. The 1D slider above changes color saturation.

The parameters of brightness, contrast, and color saturation of the generic TMO
(refer to Section5.3.4) were allowed to be adjusted within the range of−3.0 – 5.0,
0.1 – 4.0, and 0.1 – 4.0 respectively. Before starting the experiments, the ranges
were checked to be large enough to reproduce everything fromvery dark/low con-

(a) Setup for Images 26 and 27 (b) Setup for Image 28

Figure 5.7: Setup used for Experiment II.
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trast images to extremely bright/high contrast images withcolor settings ranging
from grayscale to color-saturated image.

While Experiment I was conducted using the full dynamic rangeof the HDR
monitor (0.2 – 3,000cd/m2), in Experiment II, we restricted the minimum and the
maximum luminance of the HDR display to simulate a range of potential display
devices as listed in Table5.1. Additionally, for each simulated display, the subjects
were given a questionnaire sheet to mark the score of its reproduction, which could
be “good” (3), “average” (2), or “poor” (1). The subjects were näıve as to what
technically differs in each of the 14 dynamic range and brightness settings.

# Dmin - Dmax # Dmin - Dmax

1 0.2 - 3,000 8 1.0 - 3,000
2 0.2 - 80 9 80.0 - 1,000
3 0.2 - 200 10 80.0 - 3,000
4 0.2 - 1,000 11 200.0 - 1,000
5 1.0 - 80 12 200.0 - 3,000
6 1.0 - 200 13 1,000.0 - 3,000
7 1.0 - 1,000 14 0.2 - 3,000

Table 5.1: The range of the minimum and maximum luminance values of the
HDR display that simulates potential displays (given incd/m2). Note that
the dynamic range between 0.2 and 3,000cd/m2 was used twice in the test to
validate consistency of the results.

Finally, another experiment was conducted with Images 26 – 28 and four subjects
using the same procedure as in Experiment II but the task was to adjust parameters
to their preference (as in Experiment I) and no reference scene was given.

5.4 Results

The results for both experiments are summarized in Figure5.8. The plot shows a
large variance in the preferred TMO parameters, which indicates that the subjects
used a broad range of possible parameters. There is also a strong correlation
between brightness and contrast parameters. The contrast parameter is biased
toward an enhanced contrast (c > 1 in Equation (5.1) indicates that the contrast
was higher in a tone mapped image than in an original image).

Preliminary screening indicates that the results for Subject 22 are significantly
different than for the other participants (probably due to improper use of the user
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Figure 5.8: The results for all images, all subjects and for the full dynamic
range of the display (red ’+’). One subject regarded as an outlier is marked
with blue ’×’es.

interface) and therefore this data is removed from the further analysis (marked as
blue ’×’es in Figure5.8).

We ran the multivariate analysis of variance (MANOVA) to test main effectsof
subjects’ gender and expertise on measured parameters. TheF distribution and
a probability valuep, which is derived fromF , are used to determine whether
there is a statistically significant difference between populations of samples. The
higherp value, the more we can believe that the populations of samples are not
statistically different. In our experiment, the gender difference is not significant
(F (3, 496) = 1.187, p ≫ 0.05 andF (3, 360) = 1.970, p ≫ 0.05 for Experiments
1 and 2, respectively) asp > 0.05 shows that the difference between populations
of samples (male and female in this case) is not statistically significant. Two peo-
ple were aware of the experiment purpose, and therefore theywere considered
as experts. The population means of experts and non-expertsare however not
significantly different (F (3, 496) = 0.3237, p ≫ 0.05 andF (3, 360) = 2.2304,
p ≫ 0.05 for Experiments 1 and 2, respectively). Therefore, we analyze all col-
lected data together in the following sections.

To better understand the source of large parameter variations, we plot brightness
and contrast parameter settings separately for several selected subjects and im-
ages in Figure5.9. Similar plots for all subjects and images can be found in
Figures5.10 and5.11. The left pane of Figure5.9 shows that the settings can
significantly differ between subjects, ranging from the preference for high con-
trast and low brightness (Subject 6) to the opposite preference for low contrast
but bright images (Subject 2). The significant difference ofsubjects’ settings is
statistically established by MANOVA (F (52, 1872.8) = 10.7864, p < 0.05 and
F (64, 1349.0) = 7.6678, p < 0.05 for Experiments 1 and 2). We can expect
that two different individuals have different notions of a perfect image, therefore
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the TMO settings must be affected by the subject’s tastes. This is an important
observation with several consequences. Firstly, a TMO designed to render the
best looking images should account for the user’s tastes, for example by offering
user adjustable parameters. Secondly, when ranking or assessing performance of
TMOs in subjective experiments (e.g., [Ledda et al. 2005]), the subjective influ-
ence should be taken as a factor in the analysis since two different subjects are
likely to propose two different TMO rankings if they differ in their tastes. Finally,
we cannot average parameter settings across all subjects for further analysis, since
those parameters significantly differ across individuals.

Figure 5.9: The contrast–brightness relation for three selected subjects (left)
and images (center – Image 1; right – Image 13). Both contrast and bright-
ness settings differ significantly from subject to subject and from image to
image.

More consistency in the parameter settings can be observed across images. The
center and right panes of Figure5.9 show that both parameters follow a similar
line of decreasing contrast and increasing brightness. While the images follow
the similar pattern of parameter settings, the population means of the parameters
are significantly different (F (72, 1414.4) = 7.6420, p < 0.05 andF (6, 718) =
17.1307, p < 0.05 for Experiments 1 and 2). This indicates that the TMO settings
are affected by image characteristics.

5.5 Discussion

5.5.1 Contrast and Brightness Preference

To understand what the subjects’ motivation for the choice of contrast and bright-
ness parameters was, we plot the histograms of the resultingimages in Figure5.12.
Although each subject adjusted the same image in different ways, he or she also
followed a similar scheme when choosing TMO parameters for all the images.
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Figure 5.10: Brightness and contrast relations isolated foreach subject. Each
plot contains data for all images, both experiments and the full dynamic
range of a display (1–3,000cd/m2).
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Figure 5.12: The histograms of the images after subject’s brightness and con-
trast adjustments. The blue vertical lines denote display minimum and max-
imum luminance. The horizontal axis is scaled in log luminance units. The
subjects differ in their adjustments between each other, but a single subject
follows a similar style for a range of images.
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For example, the histograms resulting from the adjustmentsof Subject 6 are al-
ways more spread out than for the other subjects. This would indicate that the
magnitude of contrast enhancement is correlated with the tastes of an individual.
Additionally, there is another interesting observation which seems to be consistent
across both all images and all subjects: the display maximumluminance, above
which pixels are clipped, falls into approximately the samepart of the histogram
(see the blue vertical lines on the right of each plot in Figure5.12). This indicates
that people tend to “anchor” the brighter part of an image to the display maximum
luminance, and then they extend or compress contrast in the direction of lower
luminance to get the best looking image.

It is interesting to see whether the same observation can be generalized to a broad
range of displays or if it is applicable only to an HDR display. We plot histograms
in Figure5.13for a single subject and single tone mapped image but for several
simulated displays of different brightness and dynamic ranges. The figure clearly
indicates that subjects adjust images for the capabilitiesof a display, but they also
follow the same scheme as for the HDR display (0.2–3,000cd/m2) — they map
approximately the same part of the histogram to the maximum luminance of the
display and then adjust contrast.

−4 −2 0 2 4 6 −4 −2 0 2 4 6 −4 −2 0 2 4 6 −4 −2 0 2 4 6

Figure 5.13: The histograms of Image 1 after Subject 1 brightness and con-
trast adjustments – data from Experiment 2. The blue vertical lines denote
display minimum and maximum luminance. The horizontal axis is scaled in
log luminance units.

5.5.2 Improved Tone Mapping Algorithm

The motivation for remodelling a TMO is to provide new parameters that would
be more intuitive to use. As mentioned earlier, the settingsfor contrast and bright-
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ness are strongly correlated. An average correlation coefficient for all images and
both experiments is̄R = −0.7217 ± 0.1622. This suggests that both contrast
and brightness could be replaced with parameters that do notexhibit such strong
correlation and are therefore easier to control by the users. In the case of contrast
and brightness, the 2D slider is usually adjusted along a slanted line (refer to Fig-
ure5.9 center and right), which is neither intuitive nor convenient. A better user
interface would use decorrelated parameters, so that the subjects could either use
a simpler 1D sliders or move the 2D slider along the axes instead of a slanted line.

In Section5.5.1, we analyzed and identified the strategy that the subjects use for
adjusting TMO settings. Now, we show that this strategy can be modelled. We
rewrite Equation (5.1) as

log10 R′ = c · log10(R/Ymax) + log10(Dmax) (5.4)

whereYmax is the maximum luminance value in an image that we want to repro-
duce on a display, which we call “anchor white”. The same formula is used for the
blue and green channels. The above equation mimics the operation performed by
the subjects in our experiments. Firstly, the formula extends or compresses the im-
age histogram by the scale factorc to the left side of the anchor whiteYmax. Then,
the anchor white is shifted to the display’s maximum luminanceDmax. Note that
we use the same contrast parameterc as in Equation (5.1), but we replace the
brightness parameterb with the anchor whiteYmax.

To better understand how Equation (5.4) relates to the original contrast and bright-
ness parameters, we plot a function ofc assuming constantYmax. Firstly, we find
the relation betweenb andDmax from Equations (5.1) and (5.4) as

b = log10(Dmax) − c · log10(Ymax). (5.5)

Secondly, we choose two images (Images 1 and 10 in this example) and find the
median percentage of the clipped pixelsC̄ (see the third row of Figure5.14) in
order to computeYmax:

Ymax = percentile(Y, 100 − C̄) (5.6)

whereY is a set of luminance (or luminance factor) values of the pixels in an im-
age. Note that the above formula gives the location on the histogram for a given
percentage of clipped pixels̄C. We use the computedYmax, the maximum lumi-
nance of the displayDmax = 3, 000 cd/m2 and Equation (5.5) to plot the function
of c as a continuous magenta line in Figure5.9 (center and right). The impor-
tant observation is that the plotted functions for both images approximate well the
correlation between contrast and brightness parameters. This indicates that the



5.5 Discussion 83

largest variations between subjects in the resulting images are due to different se-
lections of contrast parameterc while the anchor whiteYmax does not vary much
between subjects.

We intentionally named the parameterYmax as “anchor white” to refer to the light-
ness perception theory [Gilchrist et al. 1999]. According to this theory, the human
visual system assesses the lightness of an object based on the anchor luminance
value, which acts as a reference for a white reflective surface. Such anchor lumi-
nance does not need to be the highest luminance in an image. This is especially
true for the scenes that contain self-luminous surfaces, such as lights or the sun.
The theory postulates that a “common denominator” for lightness estimation is
a white reflectance, instead of gray, often used in photography. Our experiment
confirms this since “anchoring” reflectance white to the maximum luminance of a
display was a dominant strategy for adjusting the TMO settings.

The linear TMO we obtain in Equation (5.4) is easier to control than our original
one, since both parameters of the contrastc and the clipping levelYmax modify in-
dependent aspects of image appearance. Moreover, if we transform Equation (5.4)
from the logarithmic to the linear domain, we have the following formula:

R′ = Dmax · (R/Ymax)
c. (5.7)

This re-parameterized form of the original TMO formula fromEquation (5.1)
is similar to a global contrast adjustment operation2, employed as a final-cut
in many TMOs and as enhancement operation in image editing software. The
importance of Equation (5.7) comes from the fact that we derived this formula
based only on the analysis of the data we collected in our experiment without any
prior assumptions on the parameters of the tone reproduction function. We have
shown that the users try to adjust the TMO parameters along the parameterc, even
if they have a non-standard user interface as used in our experiments. Moreover,
we have shown that the same formula is valid for a broad range of display devices,
ranging from dark CRT monitors to HDR displays.

5.5.3 Image and Subject Influence on TMO Parameters

We analyze how contrast, color saturation and the percentage of clipped pixels in
dark and bright regions (dependent variables – DV) differ between subjects and

2The operation from Equation (5.7) is sometimes confusingly calledgamma-correction. How-
ever, since the original meaning ofgamma-correctiondenotes compensating the non-lineary of
CRT monitors, using this term in the context of image enhancement may not be appropriate.
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Figure 5.14: The variation of the DVs (contrast, color saturation and the
percentage of clipped pixels in bright and dark regions) with respect to the
IVs (images and subjects) – data from the experiments in which full dynamic
range of the HDR display was used. Only 15 subjects participated in these
experiments. Images are numbered as in Figure5.1– 5.4. The Notation: red
lines – median; blue boxes – spanning from 25th to 75th percentile; whiskers
– minimum and maximum values without outliers; red crosses –outliers.
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images (independent variables – IV). We want to find out whichof the two DVs
is responsible for the large variance in the IV.

The variations of the DVs with respect to the IVs are summarized in Figure5.14.
Note that we do not include the brightness parameter in this figure. This is because
brightness is strongly correlated with contrast and it is also fully determined by
contrast and anchor white as described in Section5.5.2. Anchor white, on the
other hand, is related to the percentage of pixels clipped inbright regions (refer to
Equation (5.6)).

From a first look at Figure5.14we can conclude that all four DVs are significantly
different between images and subjects. This is confirmed by the two-way analysis
of variance (ANOVA) for the main effects of the subjects and the images, which
are run separately for each DV (7.07 < F < 74.21, p < 0.001). Contrast varies
more between subjects than images (see the first row if Figure5.14) and is prob-
ably determined mostly by subjects’ personal tastes as discussed in Section5.5.1.
Color saturation and the percentage of clipped pixels in the dark regions (rows 2
and 4 in Figure5.14) do not show any consistency between the subjects and the
images and therefore it is not possible to draw any conclusion for these param-
eters. The third and the fourth rows of Figure5.14 (note the difference in the
scale used for these plots) show that there are significantlymore pixels saturated
in dark regions than in bright regions. This suggests that the subjects prefer sac-
rificing a significant portion of the dark part of an HDR image,probably in order
to improve contrast. The same tendency can be observed in Figure 5.12, which
shows that Subjects 6 and 13 decided to push a large part of thehistogram below
the minimum luminance of the display, while preserving the brightest pixels. This
observation suggests that TMOs should follow a similar pattern and saturate more
pixels in the dark regions. This is contrary to the most common approach em-
ployed in many TMOs where the same number of the darkest and brightest pixels
are clipped. Such TMOs do not produce the best results if theydo not provide an
adjustment for the number of pixels clipped in dark regions.

Conclusions on the measured values of clipped pixels in bright regions can be
drawn directly from the actual images. We observed that the most pixels are
clipped for the images that contain large bright objects which should appear self-
luminous in the reproduction, like the sky in Images 1, 7, 16,25 and 28, or the
sun in Image 24 (refer to Figures5.1 – 5.3 for images and Figure5.14 for the
magnitude of clipping). Then, follow the images that contain small self-luminous
objects, such as Christmas lights in Image 15 and the images that depict dark
scenes without self-luminous objects (Images 12 and 27). There is also less clip-
ping for the images of low dynamic range (Images 3, 11 and 20).
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Figure 5.15: The prediction of tone mapping parameters (contrast, color sat-
uration, the percent of clipped pixels in bright and dark regions) based on
image statistics. Plot legends: robust fits of the linear model and correlation
coefficients.

5.5.4 Choosing Default TMO Parameters

User adjusted TMO parameters are not desirable in many applications and it
would be helpful if their values could be automatically found at least to render
a “best guess” image. We want to check if there is any correlation between the
DVs (the TMO parameters) and the IVs, so that, for example, animage char-
acteristic can predict the values of contrast and the percentage of clipped pixels
in the bright regions (needed to compute anchor whiteYmax). If we find such a
correlation, we can propose a method to automatically choose TMO parameters.

Although an algorithm cannot predict a user’s tastes, it maybe possible to guess
some TMO parameters based on the characteristics of an image. To verify this
hypothesis, we compute a set of variables characterizing each HDR image; the
dynamic range of an image, which is a difference between the logarithm of the
highest and the lowest luminance in an image; the key value,α; andLwhite. α
andLwhite are used for the automatic parameter estimation in the photographic
TMO [Reinhard 2003]. All these variables require the value of the maximum
and the minimum luminance in an image, which can be calculated in a variety
of ways. We compute the minimum and the maximum as percentiles: 0.01, 0.1,
1, 10, 20, 30 (of brightest and darkest pixels), and as the minimum or maximum
value of a low-pass filtered image, where the filter is the Gaussian with different
values ofσ (1, 2, 5, 10, and 20). This gives in total 30 different variables that
could characterize an image (3 variables times 10 estimatesof the minimum and
the maximum luminance).

We compute the correlation matrix to check if there is a correlation between any
of the computed 30 variables and the median values of the TMO parameters for
the subjects: contrast, color saturation and the percentage of clipped pixels. We
use this matrix to find the variable that is the most correlating with each TMO
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parameter. The relations between the most correlated variables and the TMO pa-
rameters, together with the results of the robust linear regression, are plotted in
Figure5.15. The highest correlation is found for the dynamic range of animage
computed using low-pass filtered images (σ = 1) and the contrast parameter (the
first plot in Figure5.15). The negative slope of this relationship is intuitive —
the images of higher dynamic range must be stronger compressed to fit into the
dynamic range of a display. A weaker correlation and less intuitive relation is
found for color saturation and the percentage of clipped pixels in the dark regions.
These TMO parameters probably cannot be predicted using thegiven set of im-
age characteristic variables. The prediction of the percentage of pixels clipped
in bright regions is more reliable. It correlates with the image key coefficientα
(computed using the 10-th percentile for the minimum and themaximum values
in an HDR image). We observed that this prediction is less accurate for the images
that contain large self-luminous objects.

The plots in Figure5.15show that both the contrast parameter and the number of
clipped pixels in the bright regions are correlated with image content, and there-
fore they can be predicted. Such predictions can be used for parameter estimation
in TMOs. Although the predicted values will not be optimal for many images and
subjects, they could be used as the “best guess” for the TMO parameter setting.
Our experiments did not include a sufficient number of imagesand subjects to
build a reliable model for such a parameter estimation, but they proved that such
estimation is possible and can be an interesting direction for further research.

5.5.5 Influence of a Display

It is interesting to know how the dynamic range and brightness of a display influ-
ences the parameters of a TMO. Figure5.16 illustrates how the contrast setting
increases as the dynamic range of a display increases. If thedynamic range of a
display is too low, the subjects compress contrast. On the other hand, they expand
contrast even above the contrast of an original image (c > 1) when a display offers
higher dynamic range. However, this behavior differs slightly between both ex-
periments: if the subjects adjust the HDR images to their preference, they enhance
contrast proportionally to the dynamic range of a display (Figure5.16top), but if
their goal is to achieve the fidelity to the real-world scene,they adjust contrast
slightly above1.0 and keep it approximately on the same level even for the HDR
displays (Figure5.16bottom). This suggests that the TMO profiled for fidelity
should not enhance contrast above the contrast of an original scene, and the TMO
profiled for preference should take full advantage of the display dynamic range.
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Figure 5.16: The relation between the dynamic range of a simulated display
and the contrast parameters. The relation is plotted for the data from Ex-
periment 1 (preference) at the top and Experiment 2 (fidelity)at the bottom.
The subjects tend to enhance contrast more if their goal is themost preferred
image. Notation is the same as in Figure5.14.
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5.5.6 Preferred Display Device

We examine how the minimum and maximum luminance values of a display can
affect subjective preferences for displayed images. We usethe data from the ques-
tionnaire used in Experiment 2. The preference scores for each simulated display
are averaged over three scenes and over all subjects. Figure5.17 illustrates the
ranking of potential display devices simulated on the HDR display. The figure
clearly shows that the subjects prefer brighter displays ofhigher dynamic range.
A typical LCD display (1 – 200cd/m2) is in the middle of the preference scale.
Interestingly, the brighter display but of lower dynamic range (80 – 3,000cd/m2)
has higher preference score than the typical LCD. The displays of the broadest dy-
namic range top the ranking, but the broadest dynamic range display (0.1 – 3,000
cd/m2) comes unexpectedly lower than the 1 – 3,000cd/m2 model. However,
the rankings in the top group (1 – 3,000, 0.2 – 1,000, 1 – 1,000,and 0.2 – 3,000
cd/m2 models) are not significantly different from each other (F (3, 126) = 0.82,
p > 0.05). The high scores for the brightest displays of the highest dynamic range
indicate that both high luminance and high contrast are important for reproducing
digital images.

To better understand the relation between the minimum and the maximum lumi-
nance of a display and the preference score, we fit the data to the linear model
using multiple linear regression. The averaged preferencescoreS is given by

S = α · log10(Dmin) + β · log10(Dmax) − γ (5.8)

whereDmin andDmax are the display minimum and maximum luminance val-
ues,α = −0.47 (±0.05), β = 0.87 (±0.11) andγ = 0.25 (±0.31). The model
accounts for nearly 60% of the data (R2 = 0.57). The negativeα indicated that
“darker” displays are more preferred (i.e., lower minimum luminance) and pos-
itive β indicates that also “brighter” displays (i.e., higher maximum luminance)
are preferred. However, since the trend is stronger forβ, we can assume that the
maximum luminance is more important than the minimum luminance of a display.
The percentages of oversaturated pixels are far smaller than that of undersaturated
pixels (see the third and fourth rows in Figure5.14). This indicates that people are
more sensitive for oversaturation than undersaturation since they carefully avoided
oversaturated pixels but did not pay much attention to undersaturated pixels com-
pared to oversaturation.
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Figure 5.17: The preference of several simulated monitors, which differ in
the minimum and the maximum luminance they can display. The preference
score is indicated on the y-axis, and the left and right end points of the hori-
zontal lines represent the minimum and maximum luminance ofthe display.
The scores of the displays are shifted by a small random offsetto avoid over-
lapping of the lines.

5.6 Summary

The major outcome of this work is a better understanding of how users adjust tone
mapping operator (TMO) parameters to achieve either the best looking images
(preference task) or the images that are the closest to real-world scenes (fidelity
task). Based on this knowledge, we propose a better parameterization of a lin-
ear TMO in logarithmic domain, in which parameters are more intuitive and can
be partly estimated from image characteristics. The TMO is controlled by two
parameters:anchor whiteandcontrast. Theanchor whiteparameter is approx-
imately consistent across subjects and depends on images — it is set to a lower
value if an image contains large self-luminous objects. Thecontrastparameter
is more subjective, and therefore users should be allowed toadjust it. We have
shown that the parameters can be automatically estimated for a TMO based on
an image characteristic to obtain a “best guess” result. Thecontrastparameter
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can be predicted from the dynamic range of an image (images ofhigher dynamic
range must be reproduced with lower contrast), and theanchor whiteparameter
is related to the image key value (although the prediction can be unreliable if an
image contains large self-luminous objects). We believe that the results of our
analysis are also applicable to complex TMO, which can benefit from both a bet-
ter selection of user adjusted parameters and an automatic parameter estimation.

The second main subject of this work is an investigation how the dynamic range
and brightness of a display affects the preference for tone reproduction. For 14
simulated monitors of varying brightness and dynamic rangewe do not find any
major difference in the strategy the subjects use to adjust images for LDR and
HDR displays. We notice however that the resulting images depend on a given
task. If the goal is to find the best looking image (preference), subjects tend to
strongly enhance contrast (up to four times that of the original image contrast),
even at the cost of clipping a large portion of the darkest pixels. On the other
hand, when the task is to achieve the best fidelity with a real-world scene, the sub-
jects avoid clipping both in the dark and bright parts of an image and they do not
extend contrast much above the contrast of an original image. In both tasks, there
is a tendency towards brighter images, which are achieved byover-saturating the
brightest pixels belonging to self-luminous objects. The final investigation com-
pares user’s preference for displays of varying capabilities. The subjects prefer
in the first order the displays that are bright, and in the second order, the displays
that have low minimum luminance.
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Chapter 6

Perception-Based Contrast
Enhancement Model for
Complex Images in HDR

6.1 Introduction

In the recent years, we witness significant progress in the display technology in
terms of expanded color gamut, luminance dynamic range, andphysical contrast.
For example, specialized HDR displays can reproduce luminance levels ranging
from 0.015 to 3,000cd/m2, but even modern LCD TV sets feature remarkable
luminance ranges of 0.1 – 800cd/m2 [Seetzen et al. 2004]. This results in much
better visibility of details in deep shadows and bright highlights; it makes the
reproduced images more plausible with respect to the real-world observation con-
ditions. In particular, the black level in such displays guarantees that the darkest
image regions appear black in contrast to the grey appearance of such regions on
older displays with the minimum luminance higher than 2 – 5cd/m2.

The dynamic range and contrast expansion of display devicesrequire revisiting
well-established image processing techniques which are often tailored for 8-bit
color depths and luminance ranges typical for the once prevailing CRT displays.
For example, image contrast manipulation is often based on the assumption of
contrast constancy, i.e. invariance of perceived contrastover variations of display
dynamic range. However, as increasing possible dynamic range of displays, the
need of studying HVS for the luminance levels which used to benon-covered by
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display devices is highly required. Additionally, the characteristics of HVS have
been researched on simple stimuli such as sinewave gratingsand Gabor patches
but not on complex images.

In this work, we consider this problem in the context of complex images and for
luminance ranges typical for HDR displays. Our goal is to derive a model relating
physical and apparent contrast, which can be applied to improve visual uniformity
of contrast changes resulting from image contrast manipulation. The main con-
tribution of this research is to parameterizec in such a way, that a specified con-
trast change is perceived as a uniform modification of the image independently of
luminance levels and contrasts existing in the given local area. Furthermore, we
apply the parameterized model for arbitrary images in orderto generate a contrast-
enhanced version of them [Yoshida et al. 2007b, Yoshida et al. 2008b].

In the following sections, we first conduct perceptual experiments to establish the
relation between physical and apparent contrast changes ina complex image in
Chapter6.4. Then, we derive a model encapsulating this relation, discuss the ob-
served relations, and propose a method for perceptually uniform contrast scaling
in images displayed over high dynamic range in Chapter6.6. We conclude the
paper and outline future work in Section6.9.

6.2 Previous Work

A number of research have been proposed on contrast detection and discrimination
for simple patterns (see Section2.3.2 for contrast detection and discrimination
thresholds). Legge proposed power laws for increment contrast discrimination
threshold with exponents 0.6 – 0.7 by conducting psychophysical experiments on
sine wave gratings stimuli at 2 and 8 cycles per degree [Legge 1980]. Whittle’s
law does not hold for contrast discimination under any of their cases. Based on
this work, they also presented a contrasttransducer functionwhich models the
behavior of HVS for a given physical contrast [Legge and Foley 1980].

Two sets of psychophysical experiments on contrast were conducted in parallel.
Foley and Legge conducted another forced-choice experiment to determine con-
trast detection and near-threshold discrimination thresholds for sine-wave gratings
at 0.5, 2, and 8 cycles per degree [Foley and Legge 1981]. S-shaped models were
presented for detection threshold while discrimination thresholds were formed
linearly. Gottesman et al. employed magnitude estimation mtehod for measuring
perceived contrast on sine-wave gratings [Gottesman et al. 1981]. Their results
proposed a power function with its exponent 0.7 which does not change accord-
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ing to both luminance levels and spatial frequencies of stimuli.

Whittle measured contrast discrimination thresholds on luminance for both incre-
ment and decrement with the stimulus of 1 visual degree square and then discov-
ered that threshold is proportional to pedestal contrast [Whittle 1986]. Based on
Whittle’s measurement, Mantiuk et al. proposed a transducerfunction [Mantiuk
et al. 2006]. Whittle’s law only covers the cases that contrast is smaller than 50%.
Kingdom and Whittle extended this work by conducting experiments for the cases
of contrasts greater than 50% and proposed U-shaped model ofcontrast discrimi-
nation [Kingdom and Whittle 1996].

Peli et al. investigated the contrast constancy problem forvarious luminance adap-
tation values and simple stimuli such as the Gabor patches imposed on background
with different mean luminance [Peli et al. 1991]. In two independent contrast
matching and contrast magnitude estimation studies, they confirmed that contrast
sensitivity is significantly reduced for low luminance adaptation values below 3 –
8 cd/m2. The lower the physical contrast of the Gabor patches, the stronger the
sensitivity reduction observed, with a typical contrast versus intensity (cvi) char-
acteristic observed for near threshold contrast values. Effectively, this means that,
on modern displays, simple contrast rescaling may lead to image distortions man-
ifesting in changing apparent contrast relations with respect to the original image
through weakening perceived contrast in dark image regions. This work was ex-
tended by including other factors such as stimulus size, dichoptic presentation,
and length of adaptation [Peli 1995] and spatial frequency [Peli et al. 1996].

6.3 Contrast in Complex Images

As we reviewed in Chapter2.3.1, contrast is the relationship between the lumi-
nance values at the peaks (Lmax) and that at troughs (Lmin), and there are a num-
ber of definitions to represent contrast in literature such as simple contrast, SNR,
Weber’s fraction and Michelson contrast. However, these definitions can be ap-
plied for simple patterns such as Gabor patch or sinewave gratings. For com-
plex images, Peli proposed a definition of local band-limited contrast (refer to
Chapter2.3.1) [Peli 1990]. This method employs thecontrast sensitivity function
(CSF) and represents a contrast value at every pixel of an image as afunction
of the spatial frequency band. Since CSF works at threshold and near threshold,
Peli’s contrast definition cannot be directly applied for the cases of suprathreshold
contrast.

No method has been developed to represent contrast in a complex image by one
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numerical number not only for threshold and near-thresholdcontrast but also for
suprathreshold contrast. We investigate the standard equation for contrast scaling
in image processing [Pratt 1991]:

L(c) = L̄

(

L

L̄

)c

(6.1)

whereL denotes the luminance of a pixel,L̄ is a luminance reference, andc de-
notes thecontrast factor. The luminance referencēL defines the brightness level
which remains unchanged during contrast scaling and usually equals the mini-
mum or maximum luminance in an image, what gives normalized base in Equa-
tion (6.1). To test the perception of contrast scaling in areas of different luminance,
we set thēL value to the mean luminance in the analyzed area. Thecontrast factor
defines physical change to contrast in such a sense that a value ofc = 2 increases
while c = 1/2 decreases the physical contrast twice in logarithmic domain (see
Figure6.1 for examples). Furthermore, thecontrast factoris a relative measure
of contrast which is convenient to use and interpret within the scope of presented
applications. It also allows to analyze the contrast changein terms of one number
without measuring actual contrasts, which is particularlyimportant since a single
number physical contrast measure for complex images is difficult to be quantized.

Figure 6.1: Examples of changing contrast factorsc = 0.5, 1.0, and 2.0 from
left to right respectively. The histograms are shown in logarithmic domain
with the red bars indicating the mean luminance of an imagēL.
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6.4 Experiments on Measuring Contrast
Scaling of a Complex Image in JND

6.4.1 Introduction

We conducted two psychophysical experiments, acontrast scalingand acontrast
discrimination thresholdtasks, to assess how theHuman Visual Systems (HVS)
perceive physical contrast changes. The goal of thecontrast scalingexperiment
is to obtain uniform scalings of perceived contrast for the human observers with
respect to given physical contrast for various luminance adaptation conditions. In
this experiment, we employed aTwo-Alternative Forced Choice (2AFC)proce-
dure for image pairs with differentcontrast factorsand the same luminance levels
and analyzed the obtained data using Thurstone’s Law of Comparative Judgment
for contrast scalingexperiment (refer to Section2.5.1for 2AFC and Thurstone’s
law) [Thurstone 1927].

Thurstone’s Law of Comparative Judgment gives arbitrary uniform scaling for
each set of stimuli at different luminance levels. We can compare distances be-
tween stimuli, i.e., perceived contrast magnitude, withinthe same set but can-
not compare different sets of stimuli to each other. For rescaling the results of
Thurstone’s scaling to a contrast space compatible for all stimuli sets, acontrast
discrimination thresholdexperiment was conducted using theParameter Estima-
tion by Sequential Testing (PEST)(refer to Section2.5.2for PEST) [Taylor and
Creelman 1967].

In this experiment, each subject was shown pairs of stimuli.One pair of stimuli
contains reference and target images shown one after another randomly, and we
asked a subject to report if they saw any difference between given two images.
The details for both experiments are described in the following sections.

6.4.2 Stimuli and Apparatus

We selected a black-and-white image of the resolution900 × 600 (see Figure6.2).
This is a typical landscape image with luminance and contrast patterns which we
can observe in natural images. This image was segmented based on luminance
levels into three different regions: “dark”, “medium”, and“bright” and our exper-
iments were conducted on two displays: the Westinghouse high resolution digital
television (HDTV) and the BrightSide DR37-P HDR display [Seetzen et al. 2004].
We used the Westinghouse display, one of the commercial LCD TVs, because it
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(a) “Very dark” and “dark”. (b) “Medium”. (c) “Bright”.

Figure 6.2: Our test image (top) and its masks (Bottom). The average lu-
minance levels are 0.3, 4.5, 28.8, and 158.5cd/m2 for “very dark”, “dark”,
“medium”, and “bright” regions respectively.
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has better uniformity of its back-light but obviously can not reproduce very low lu-
minance levels. Therefore, we also employed the BrightSide HDR display which
makes it possible to reproduce very low luminance levels by spatially varying
LED-based dimming technology. Both displays use the same LCD sandwich type
and were carefully calibrated by measuring its luminance response for a range of
input values using the MINOLTA LS-100 light meter1. Except their reproducible
dynamic ranges, both displays have similar characteristic.

In order to reproduce very low luminance level, we uniformlyreduced the power
of LED back-lights of the BrightSide HDR display, and the former “dark” be-
came “very dark” region. The mean luminance levels are 0.3, 4.5, 28.8, and
158.5cd/m2 for “very dark”, “dark”, “medium”, and “bright” areas, respectively.

Each display was placed approximately 1.5 times of its diagonal size away from
a participant and viewed binocularly for both experiments.All experimental ses-
sions were conducted in a room whose lighting condition is fully controllable and
under dim illumination (65 lux).

6.4.3 Experiment I: Contrast Scaling

Contrast scalingexperiment was conducted for estimating perceived contrast at
physical contrast change at different luminance levels. Weemployed a 2AFC an-
alyzed by Thurstone’s Law of Comparative Judgment [Thurstone 1927] which are
commonly used for measuring distances between stimuli in uniform continuous
scaling.

In each trial ofcontrast scalingexperiment, a pair of stimuli was displayed next
to each other randomly and the region of interest was specified through colored
contours (see Figure6.3). In each stimulus, a differentcontrast factorhas been
applied only to the selected image region. The other regionsin an image are
present but slightly blurred (Gaussian blur,σ = 10) not only to maintain similar
local luminance adaptation in an image but also to reduce subjects distraction to
non-selected areas. Subjects were asked to switch the contour off and judge in
which image they were able to see more contrast in the specified areas. Every
participant took approximately 20 – 30 minutes to complete this experiment.

Before the main part of the experiment, we conducted a pilot study to prepare a
set of stimuli so that contrast differences are right below the visibility threshold.
We prepared several different sets of stimuli in the form ofc = 1.11n, c = 1.13n,
andc = 1.15n wheren = −5,−4, . . . , 5 and selectedc = 1.13n. Since 2AFC

1
www.konicaminolta.com/instruments/products/light/luminance-meter/ls100-ls110/index.html
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Figure 6.3: A screenshot of contrast scaling experiment. Theselected areas
are surrounded by colored contours to let a subject know to which areas they
have to pay attention. The rest of an image is blurred to reducea subject’s
distraction and to maintain luminance local adaptation.

increases the number of trials extremely, we used only one image for our ex-
periments. Although we used only one image for our experiments, we still had
220 pairs to compare, which is too many to judge for subjects.Therefore, we
removed 68 obvious pairs and conducted the experiments comparing 152 pairs
(see [Torgerson 1958] for details how to reduce experimental labor).

11 subjects between 28 – 47 years old (31 in average) participated in this ex-
periment. Four of them were female and the rest were male. Every participant
reported normal or corrected to normal vision, and everybody was näıve for the
goal of the experiment.

6.4.4 Experiment II: Contrast Discrimination Threshold

Another subjective experiment was conducted for measuringcontrast discrimina-
tion thresholdsso that we can rescale the results ofcontrast scalingexperiment
from arbitrary units toJust Noticeable Difference (JND)unit. We employed the
PEST [Taylor and Creelman 1967] at three reference points ofcontrast factors
(c = 0.69, 1.00, 1.44) for all four regions. At each reference contrast, its target
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contrast was started at significantly different point. One of the reference and tar-
get images was shown with colored contour surrounding the selected areas, the
contour disappeared, and then another image was shown. A subject was allowed
to repeat displaying each trial as many times as they wanted.In this experiment,
the task of a subject was to report if there was visible difference between two im-
ages in a specified region. One trial was ended when the recentfive thresholds
were constant enough, i.e, a trial is finished if the standarddeviation of the recent
five thresholds became below 0.05.

Six people participated in thediscrimination thresholdexperiment, which took
20–30 minutes for each subject. Everybody had participatedin thecontrast scal-
ingexperiment first, because we were interested in measuringcontrast discrimina-
tion thresholdfor the same series of images as for thecontrast scalingexperiment.

6.5 Results

6.5.1 Experiment I: Contrast Scaling

Labels cf01 cf02 cf03 cf04 cf05 cf06 cf07 cf08 cf09 cf10 cf11
c 0.54 0.61 0.69 0.78 0.89 1.00 1.13 1.28 1.44 1.63 1.84

Very dark 0 0.02 0.33 0.97 1.15 1.34 1.92 2.39 2.94 3.31 4.09
Dark 0 0.05 0.79 1.01 1.47 1.96 2.25 2.99 2.80 3.64 4.10

Medium 0 0.04 0.72 1.48 1.67 2.46 3.04 3.58 4.12 4.36 4.38
Bright 0 0.66 0.67 1.55 1.86 2.25 2.65 3.38 4.30 4.33 5.08

Table 6.1: Results of contrast scaling experiment analyzedby Thurstone’s
Law of Comparative Judgment. The labels for contrast factors correspond
to those in Figure6.4.

Two-alternative forced choice (2AFC) was employed in this experiment. A set of
11 stimuli were compared in a pair and then analyzed by using Thurstone’s law
of comparative judgment [Thurstone 1927]. The results of Thurstone’s scaling
are shown in Figure6.4 and Table6.1. Thurstone’s scaling of 2AFC experiment
is very simple and intuitive analysis, however, it returns auni-dimension scaling
in arbitrary unit. Therefore, if we analyze data for different luminance levels
separately, we can not compare the results of Thurstone’s scaling to each other. To
convert the results into a meaningful scale, we conducted the second experiment,
contrast discrimination threshold.
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Figure 6.4: Results of contrast scaling experiment analyzed by Thurstone’s
Law of Comparative Judgment. The labelscf01, . . . , cf11 denote the con-
trast factors ordered from the smallest to the biggest values (see Table6.1
for the details). Note that we can not compare them directly to each other
because they are given in arbitrary units. We have to rescalethem to JNDs
by using the results ofcontrast discrimination threshold experiment (see Sec-
tion 6.6).
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6.5.2 Experiment II: Contrast Discrimination Threshold

After the contrast scalingexperiment, there was a need to measure The results
of thediscrimination thresholdexperiment for contrast increments are shown in
Table6.2. Inter-observer variability was tested by one-way analysis of variance
(ANOVA) before calculatingcontrast discrimination thresholdin order to remove
outliers. There were a few cases with outliers, but after removing them, allp-
values are much higher than the significant level (0.05), i.e., they statistically be-
haved in the same way.

Referencecontrast factors c = 0.69 c = 1.00 c = 1.44
Very dark 0.14 0.14 0.16

Dark 0.09 0.09 0.07
Medium 0.07 0.07 0.07
Bright 0.09 0.08 0.10

Table 6.2: Contrast discrimination thresholds∆c at three reference contrast
factors as measured for contrast increments.

6.6 A Model of Uniform Contrast
Enhancement for Complex Images

In this section, we derive a model which adjusts thecontrast factorfor a desired
perceptual contrast change as a function of luminance level. The results ofcon-
trast scalingexperiment (Figure6.4) are rescaled to just noticeable difference
(JND) units by using the results ofcontrast discrimination thresholdexperiment
(Table6.2) using the following procedure:

1. Setting the origins to thecontrast detection thresholdscomputed bycontrast
sensitivity functionfor each luminance level.

2. Rescaling the outcome of thecontrast scalingexperiment to match the re-
sult of thecontrast discrimination thresholdexperiment. The distance be-
tween reference contrast and the threshold obtained by thecontrast discrim-
ination thresholdexperiment is considered as 1 JND.

3. Fitting the points obtained in Step2 to power functions. Note that every
point is rescaled inabsoluteJND units now. For practical use, we simply
change theabsoluteJNDs torelativeJNDs by setting the point of “medium”
curve atc = 1.0 to 0 JND forrelative perceived contrast(see Figure6.5).
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The coefficients of the power functionαcβ + γ, wherec is the contrast
factor for each luminance level, are given in Table6.3. All R-square values
of power fittings are above 0.93 for our data.

4. Interpolating the curves in Figure6.5 to construct a surface model with
parameters of mean luminance level,contrast factor, and relative perceived
contrast in JND units (see Figure6.6). Cubic interpolation is employed.
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Figure 6.5: Relative perceived contrast in JNDs at different luminance levels
for given contrast factors. Dots represent the rescaled data for each corre-
sponding image region. Coefficients of each curve are shown in Table 6.3.

α β γ
Very dark 9.50 0.45 -5.5

Dark 9.09 0.47 -2.6
Medium 9.21 0.47 -1.6
Highlight 9.50 0.50 -1.5

Table 6.3: Coefficients for the power functionαcβ + γ in Section6.6for mea-
sured luminance levels. See also the plots in Figure6.5.

After all steps shown above, we derive the following formulafor relative perceived
contrastCp:

Cp(c, L) = 9.3c0.47 + γ(L) (6.2)

wherec is given contrast factorandL is the logarithm of mean luminance of
a segmented region. The values ofα andβ are computed as average values in
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Table6.3. Theγ(L) coefficient part is derived as

γ(L) =
0.31L − 6.1

L + 1.7
(6.3)

by fitting to a rational function with R-square 0.99. Figure6.6 visualizes this
model.

Figure 6.6: A surface model of perceived contrast in JNDs with respect to
different mean luminance levels and contrast factors (see Equation (6.2)). A
transparent surface shows that we need different contrast factors for differ-
ent luminance levels to achieve the same perceived contrast(8 JNDs as an
example). The curves derived in Figure6.5are also displayed on the surface.

6.7 Discussion

The studies of physical versus perceived contrast change inthe context of simple
patch stimuli or sinusoidal patterns have led to the derivation of power lawfor
contrast discrimination [Legge 1980, Whittle 1986, Kingdom and Whittle 1996]
andcontrast transducerfunctions [Legge and Foley 1980, Mantiuk et al. 2006].
Although it is yet unclear how to objectively compare these findings to our studies
on a complex image, we analyze and discuss apparent similarities in the following
sections. Throughout the analysis we refer to thecontrast factorc as a relative
contrast measure, therefore both thresholds and scaling are expressed in it.
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According to the data in Table6.2, contrast discrimination threshold remains ap-
proximately constant for differentcontrast factorsand has consistent character-
istic across the luminance changes. Whilecontrast factoris a measure relative
to the existing contrast in the area, it means that we observea contrast masking
effect [Daly 1993] with exponent close to1. The discrimination threshold for
contrast factoris independent of the existing contrast in the image. The thresh-
old remains approximately constant for middle and dark luminance values, but
strongly increases for very dark luminance.

The range of local contrasts in our test image, measured at frequency of highest
contrast sensitivity, spans up to0.3 in Michelson measure. For such contrasts, Peli
at al. [Peli et al. 1991] observed a similar behavior in a corresponding experiment
for a simple stimuli. We also observe a slight increase in threshold for bright areas
which is unusual.

Thecontrast scalingexperiment derived the relation between the relative contrast
measurec and JND of contrast. Such a relation is usually described by the contrast
transducer function [Mantiuk et al. 2006], which is a power function. The con-
trast transducer converts contrastG = log(Lmax/Lmin), to the JND of contrast.
Parameterizing the contrastG with contrast scaling from Equation (6.1) we can
derive the relationG(c) = c · G(1), whereG(1) is the contrast in the unmodified
image. SinceG(1) is constant for a given image, we conclude that the contrast
transducer forc should also follow the power law.

The fit of the data from the experiment to a power function results in a fair consis-
tency of perceptual response to contrast across measured luminance levels. The
exponent valueβ = 0.47 and scale valueα = 9.32 are approximately the same
for all luminance levels and the curve is only shifted along the JND axis depend-
ing on the luminance (see Equation (6.3)). The exponent of the contrast transducer
derived by Mantiuk et al. [Mantiuk et al. 2006] is approximately equal to0.52 and
is similar to our results obtained for the complex image.

We wrap the aspect of contrast in complex images in thecontrast factorfrom
Equation (6.1) which permits obtaining a relation between two contrasts without
actually measuring them. Our handling of contrast generalizes the fact that overall
image contrasts is composed from several sub-band components which have var-
ied influence on the perceived contrast. Although we made effort that our image
is representative for natural scenes, we probably make a generalization which is
yet to be estimated. Currently, however, the comparison to related measurements
for simple stimuli does not indicate any incorrectness.
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6.8 Application

6.8.1 Uniform Contrast Scaling

We aim at maintaining perceptual uniformity in contrast scaling for complex im-
ages across wide luminance range. We employ our experimental data to parame-
terizecontrast factorin Equation (6.1) so that we adjust contrast scaling by speci-
fying the amount of perceived contrast changeCp in relative JND units of contrast:

L(Cp) = L̄ ·

(

L

L̄

)c(Cp,L)

. (6.4)

The parameterizedcontrast factorc(Cp, L) is obtained as a cross section of sur-
face in Figure6.6 at a fixed relative JND contrast changeC and as a function of
pixel luminanceL. As a formula,c(Cp, L) can be obtained as an inverse function
of Equation (6.2):

c(Cp, L) =

(

Cp − γ(L)

α

)
1

β

(6.5)

whereCp is a desired perceived contrast andγ(L) is same as Equation (6.3).

The analysis of the parameterizationc(Cp, L) in Figure 6.7(a) reveals that the
valuecontrast factorvaries significantly for a given perceptual change of contrast.
By taking the reverse, a fixedcontrast factorleads to perceptual non-uniformity in
contrast change of about 4 JND units across luminance range available on current
displays (Figure6.7(b)). Figure6.7(a)also demonstrates an interesting observa-
tion that a desired decrease in contrast equal to−2 JND with respect to middle
luminance, results in no contrast change in very dark areas.In the next sections we
use Equation (6.4) to maintain perceptual uniformity in global and local contrast
scaling.

6.8.2 Global Contrast Scaling

The global contrast scaling is obtained when the reference luminanceL̄ in Equa-
tion (6.4) is constant for all pixels in the image. To maintain perceptual uniformity,
the exponent of a power function is dependent on the pixel’s luminance value and
results in an adjusted luminance mapping function. The plotin Figure6.8 illus-
trates that high luminance requires smaller contrast change than lower luminance.
Such a difference in mapping is mandated by our experiment and derived based
on its model (see Figure6.6), and it stays in accordance with experiments by Peli
et al. [Peli et al. 1991].
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Figure 6.7: Influence of luminance level on perceived contrast change and
on adjustment of contrast factor to maintain perceptually uniform contrast
change. The values ofα and β in Equations (6.2) and (6.5) are set asα = 9.2
and β = 0.47.
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6.8.3 Local Contrast Scaling

Adjusting the reference luminancēL in Equation (6.4) to an average of certain
small area around each pixel in the image, the contrast scaling equation becomes
an unsharp masking filter for enhancement of local contrasts. Analogically to pre-
vious Section6.8.2, illustrate that high luminance areas require smaller contrast
enhancement than lower luminance areas. Fixedcontrast factorleads to much
weaker perceived enhancement of local contrast in dark areas (see Figure6.9).

Figure 6.9: Standard local contrast enhancement (Top) and perceptually uni-
form local contrast enhancement (Bottom) byCp = +4 JND with respect
to the original image shown in Figure 6.2. Differences are most visible in
marked areas, but are very subtle unless observed on an HDR display.
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6.9 Summary and Future Work

Through psychophysical experiments, we derived a model fora perceptually uni-
form contrast change in complex images and demonstrated itsapplication to
global and local contrast scaling. We expect that such a new method is partic-
ularly important for displays with wide luminance range, which reduces the non-
uniformity in contrast scaling of several JND units. We observed certain resem-
blance of our results for complex images with experiments ofothers performed
for simple stimuli.

In the next step, we plan to extend our experiments to a more representative group
of test images and to extensively compare our results with current findings in
psychophysics.



Chapter 7

Brightness of the Glare Illusion

7.1 Introduction

Figure 7.1: Glare illusion in painting (left), photography (middle), and
computer-generated games (right). The right image courtesyof Remedy En-
tertainment.

The glare illusion has been efficiently used for boosting thebrightness of light
sources in paintings, exploited in photography, and commonly employed in com-
puter games (see Figure7.1 from left to right, respectively). The illusion can
evoke a very realistic sensation of self-luminous objects and can produce an im-
pression of higher brightness than the maximum of a computerdisplay or re-
flectance of white paint. While painters have to rely on their skill to produce the
glare illusion, glare in photography arises naturally as the result of light scattering
in lenses (referred to aslens flare) and can be further enhanced by cross screen or
diffusion filters.

A large number of papers in computer graphics have proposed advanced visual
models (diffraction and diffusion in the eye optics) to generate a realistic glare
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illusion [Nakamae et al. 1990, Rokita 1993, Spencer et al. 1995, Ward Larson et al.
1997, Kakimoto et al. 2005]. However, both painters and photographers have been
able to produce stunning glare illusions without any knowledge about the optical
effects in the eye. Accurate visual models are also rarely used in practice, for
example in game engines, as they are computationally too expensive. Instead,
game artists hand-tune their digital filters to produce the best effect, even though
the resulting convolution kernel is very different to the actual visual models. In
this paper, we compare both approaches: an ad-hoc approach that involves the
convolution with a Gaussian filter, and a physically-based approach that employs
a Point Spread Function (PSF) of the eye. We measure the brightness boost that
can be achieved with both methods and discuss the problems that may arise, such
as deformation of the “glaring” objects due to clipping of high pixel values and
undesirable Mach-band illusion that forms a bright outlinearound the modified
objects [Yoshida et al. 2008a].

It should be noted, that the glare illusion we investigate inthis research is different
from disability glareand theillusionary glareeffect. The glare effect consists of
an illusionary glow (blooming), concentric rings of different colors (corona), and
radial streaks (flare) that we can observe around bright objects and light sources.
The glare effect causes the so-calleddisability glare, which is the loss of contrast
visibility in the presence of strong light sources. The glare illusion, on the other
hand, evokes an illusion in the center of an object rather than in its surround as
the presence of a smooth gradient around an object can cause the object to appear
brighter and self-luminous.

In the following sections, we introduce the related work about the glare illusion
in Section7.2. Section7.4contains stimuli and apparatus for our psychophysical
experiment. Preliminary experiments and the main experimental setup and pro-
cedure are described in Sections7.3 – 7.5. Results and discussion of our experi-
ments are summarized in Sections7.6and7.7. In the end, Section7.8concludes
this work.

7.2 Previous Work

Rendering Glare A number of methods have been proposed for the glare ren-
dering in computer graphics. Nakamae et al. introduced a rendering technique
by considering diffraction effects at the pupil and eyelashes in images with high
intensity lights [Nakamae et al. 1990]. Rokita proposed a technique to render
high intensity lights, blooming and glare [Rokita 1993]. His method dealt with
the spectrum of the incoming light and diffraction at the lens and on particles in
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the eye. Spencer et al. presented a quantitative model to render glare [Spencer
et al. 1995] (see Figure7.2). They reviewed the physical mechanism of glare and
modelled it by a PSF for each of photopic, mesopic, and scotopic cases. They also
reported that the glare effects enhance the brightness of light sources. Ward Lar-
son et al. employed Moon and Spencer’s adaptation model [Moon and Spencer
1945] in their tone reproduction operator to enhance bright objects [Ward Larson
et al. 1997]. Kakimoto et al. attributed the main source of glare to the diffraction
on the eyelashes and pupil and simulated it using wave optics[Kakimoto et al.
2005]. Van den Berg et al. proposed a physical model to simulate theciliary
corona found by Simpson [Simpson 1953] that often accompanies the perception
of real glare sources [van den Berg et al. 2005]. They assumed that the incoming
light is scattered on small particles situated in the lens and the vitreous in the eye.

(a) PSFs for (a) photopic and (b) scotopic scenes.

(b) Examples of Spencer et al.’s model.

Figure 7.2: Perceptual model of rendering glare proposed bySpencer et al.
[Spencer et al. 1995].
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Glare in Games All of the above methods render glare effects by simulating
optics of the eye. Kawase proposed a method to render glare bycombining several
Gaussian convolutions with different kernel sizes [Kawase 2005] (see Figure7.3).
This method has no perceptual background, still, since thisapproach is simple and
computationally inexpensive, it is often used in computer games.

Figure 7.3: Generating glare in computer games by using multiple Gaussian
filters and magnifying them with a weighting function used in[Kawase 2005].

Appearance of Glare Although much attention was put to physical and op-
tical aspects of the glare effects and modelling disabilityglare [Vos 2003], the
brightness boosting glare illusion has not been well studied. Zavagno and Ca-
puto conducted psychophysical experiments to measure the impression of self-
luminosity of glare [Zavagno 1999, Zavagno and Caputo 2001]. They asked sub-
jects to increase the gradient of ramps between a bright patch and four surrounding
dark squares until the center patch started being perceivedas self-luminous. They
found that there was a linear relation between the background luminance and the
ramp gradient.

Visual Illusions The glare illusion often coexists with other illusions, which
can either raise or lower perceived luminance.Simultaneous contrastcauses a
perceptual shift in color appearance when the color of the stimulus background is
changed [Gerrits and Vendrik 1970, Adelson 1993] [Fairchild 1998, Chapter 6].
A stimulus is perceived as darker on a light background whilethe same stimulus
is perceived brighter on a dark background (see Figure2.11).

Furthermore, the steep gradient of the glare profile and its abrupt termination by
clipping can elicit theMach-bandillusion [Ratliff 1965, Lotto et al. 1999], which
is visible as a bright outline around the glaring object (seeFigure2.12). Finally,
the convolution kernel used to produce glare can cause an object to grow or to
change shape (see the first column of Figures7.6 – 7.8), which results in an
increase of brightness, since larger objects often appear to be brighter [Li and
Gilchrist 1999]. Refer to Section2.4for simultaneous contrast and Mach bands.
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7.3 Preliminary Experiments

Although perceived luminance is usually measured by using magnitude estima-
tion, magnitude production, or brightness matching methods, we found that these
methods resulted in too noisy data to interpret with high inter- and intra-observer
variance. One possible reason for the high variance is that the illusion is often
subtle and not much larger than the discrimination threshold. To reduce the dis-
crimination threshold, we increased the background luminance from almost black
(1 cd/m2) to a much higher level (150cd/m2) with the constant disk luminance
at 220cd/m2 in our pilot studies. This should have helped to reduce the discrim-
ination threshold, as it is known that it increases with the luminance difference
between a background and a target disk [Whittle 1986].

We also increased the disk size and reduced the distance between reference and
target images, as larger stimuli that are closer to each other are easier to com-
pare. In addition, we experimented with temporal comparison, however, we dis-
missed this idea of experimental procedure because the measurements could be
affected by the Gelb effect (see [Gilchrist et al. 1999] for details on the Gelb
effect). To improve accuracy, we also tried to employ stricter procedures, such
as two-alternative forced choice (2AFC) combined with Parameter Estimation by
Sequential Testing (PEST) [Taylor and Creelman 1967], but we did not observe a
reduction in variance.

7.4 Experimental Setup for Measuring
Brightness of the Glare Illusion

7.4.1 Apparatus for All Experiments

We conducted psychophysical experiments to measure the boost in brightness
caused by glare illusion. The input images used in our experiments consisted
of a disk (0.3, 0.6, . . . , 1.5 vis deg) displayed on a background image (3.2 vis deg)
containing a cloudy sky. The complex background introducedboth contrast and
context, which was more natural setting than a flat background. The average lu-
minance of the background was set atLbg = 50, 100, . . . , 200 cd/m2. A reference
image with the glare illusion rendered around the disk was shown in the center
and two target images without any glare were presented on both sides, as shown
in Figure7.4. The maximum luminance of the reference image was kept constant
at Ldmax = 220 cd/m2 to simulate the maximum luminance of a typical display,
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Figure 7.4: A screenshot of a single trial of the experiment.A reference
image (middle) and two target disks (left and right) are shown at each trial.
The black line under the target images indicates which image is activated to
modify. A subject was asked to adjust the perceived luminance of the target
disks which looked slightly but visibly darker (left) or bri ghter (right) than
that of given reference image.

but the disk luminance of the target images could be increased up to the actual
maximum luminance of the display used for our experiments (433 cd/m2).

The images were displayed on a 20.8′′ Barco 10-bit LCD display (Coronis Color
3MP Diagnostic Luminance1). The 10-bit precision eliminated potential contour-
ing artifacts on smooth gradients, which could have been observed on an 8-bit
display. The Barco display was carefully calibrated by measuring its luminance
response for a range of input values using the MINOLTA LS-100light meter2.

7.4.2 Methods for Generating the Glare Illusion

To generate the glare illusion for the reference image, we used two strategies: a
method that employed Gaussian convolution, commonly used in game engines
(Method I); and the method proposed by Spencer et al. [Spencer et al. 1995] that
employs a PSF of the human eye (Method II). Our input is a linear luminance
imageL (not gamma corrected). In both methods, we first compute for each pixel
the luminance that exceeds the maximum luminance of a typical displayLdmax as

∆L =

{

L − Ldmax if L > Ldmax

0 otherwise.
(7.1)

1
www.barco.com/corporate/en/products/product specs.asp specs.asp?element=2882#

2
www.konicaminolta.com/instruments/products/light/luminance-meter/ls100-ls110/index.html
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Next,∆L is convolved with an appropriate 2D digital filter. There aretwo reasons
for applying convolution only to the values greater thanLdmax. Firstly, we do not
want to blur the entire image; and secondly, only the pixels whose luminance can
not be displayed should be boosted in brightness.

For Method I, the convolution kernel is given by

F (x, y) =
1

k
exp

(

−
x2 + y2

2 σ2

)

(7.2)

wherex, y are pixel indices (from−s/2 to s/2, wheres is the stimulus size),
σ = 0.34 vis deg, andk is a normalization factor computed as the sum of all
kernel elements. For Method II, similarly as in [Spencer et al. 1995], we employ
the PSF proposed by Vos [Vos 1984]:

PSF (θ) = 0.384 f0(θ) + 0.478 f1(θ) + 0.138 f2(θ) (7.3)

whereθ is the angle between the primary object and the glare source in degrees
andf0 . . . f2 are given as

f0(θ) = 2.61 × 106e−( θ
0.02

)2 , (7.4)

f1(θ) =
20.91

(θ + 0.02)3
, (7.5)

f2(θ) =
72.37

(θ + 0.02)2
. (7.6)

We compute the digital filter by integrating the proposed PSFof the eye using
trapezoidal numerical integration over ten samples for each pixel. The result of
the convolution is added back to the original luminance mapL and all values are
clamped to the maximum valueLdmax.

A lookup table generated by the MINOLTA LS-100 light meter for display cali-
bration is used to map the resulting luminance values to the display pixel values.
We generate stimuli of twice the resolution as required and then filter and subsam-
ple them to avoid aliasing artifacts.

7.4.3 Stimuli for Experiment I

To vary the strength of the glare illusion, the input disk luminance levels for
the glare rendering are set asLdisk = 220, 1165, 2110, 3055, 4000, 7000 cd/m2

(labeled as “A” – “F” respectively) for Method I and, for Method II, Ldisk =
220, 1480, 2740, 4000, 7000, 10000 cd/m2 (“a” – “f” respectively). The size of
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the center disk was set at 0.3 vis deg, and the average background luminance was
set atLbg = 150 cd/m2. Note that theLdisk parameter is abstract and the same
value of this parameter can result in different strengths ofthe glare illusion for
Methods I and II. However, we selected the valuesLdisk so that the stimuli “C”
and “c” do not differ visibly in size from the original disk, and the entire usable
range of thisLdisk is examined. All reference images used in the experiments are
shown in Figure7.5.

7.4.4 Stimuli for Experiments II, III, and IV

After conducting Experiment I, we extended a variety of background luminances.
The average background luminances were set atLbg = 50 cd/m2 for Exper-
iment II, Lbg = 100 cd/m2 for Experiment III, andLbg = 200 cd/m2 for
Experiment IV. The other setup of an experiment was kept as same as that of Ex-
periment I. The input disk luminance for the glare renderingwereLdisk = 220,
1165, 2110, 3055, 4000, and 7000 cd/m2 (labeled as “A” – “F” respectively)
for Method I (Gaussian) andLdisk = 220, 1480, 2740, 4000, 7000, and10000
cd/m2 (“a” – “f”) for Method II (Spencer et al.). The center disk wasremained
same as Experiment I: 220cd/m2 and 0.3 visual degree. All stimuli and their
profiles are shown in Figure7.6 for Experiment II, Figure7.7 for Experiment III
and Figure7.8for Experiment IV.

7.5 Experimental Procedure for Measuring
Brightness of the Glare Illusion

To further reduce the randomness in the subjective responses, we employed an
arranged increment/decrement method. Subjects were askedto adjust the target
images such that the perceived luminance of the left disk wasas close as possible
to that of the reference disk but slightly and visiblydarker. Likewise, the right
disk should be adjusted to be perceived as slightly but visibly brighter. Then, the
matching perceived luminance is assumed to be the mean of both left and right
target disk luminance, thereby producing a measure that is more robust against
outliers (see Figure7.4).

When the Mach-band illusion was seen on the reference disk, the subject was
asked to ignore the Mach-band and adjust the target disks to the brightness in-
side the illusionary ring. As a hint of how to adjust brightness of target disks, a
subject was instructed as follows: “You could try to adjust the brightness of the
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Figure 7.5: Experimental stimuli and their profiles at Lbg = 150cd/m2.
The images in the left column show the stimuli and profiles for Method I
(Gaussian), while those for Method II (Spencer et al.) are arranged at the
right side. The characters between stimuli and profiles (“A” –“F” and “a” –
“f”) indicate the luminance of the reference disksLdisk(refer to Section7.4.3
for details).
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Method I (Gaussian) Method II (Spencer et al.)
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Figure 7.6: Experimental stimuli and their profiles at Lbg = 50 cd/m2.
The images in the left column show the stimuli and profiles for Method I
(Gaussian), while those for Method II (Spencer et al.) are arranged at the
right side. The characters between stimuli and profiles (“A” –“F” and “a” –
“f”) indicate the luminance of the reference disksLdisk (refer to Section7.4.4
for details).
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Figure 7.7: Experimental stimuli and their profiles at Lbg = 100 cd/m2.
The images in the left column show the stimuli and profiles for Method I
(Gaussian), while those for Method II (Spencer et al.) are arranged at the
right side. The characters between stimuli and profiles (“A” –“F” and “a” –
“f”) indicate the luminance of the reference disksLdisk (refer to Section7.4.4
for details).
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Method I (Gaussian) Method II (Spencer et al.)
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Figure 7.8: Experimental stimuli and their profiles at Lbg = 200 cd/m2. The
images in the left column show the stimuli and profiles for Method I (Gaus-
sian), while those for Method II (Spencer et al.) are arrangedat the right
side. The characters between stimuli and profiles (“A” – “F” and “a” – “f”)
indicate the luminance of the reference disksLdisk (refer to Section7.4.4for
details).
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target disks as same as that of the reference and then go down/up until you start
seeing the difference.” Both target disks were initially setto significantly different
luminance levels (100 and 400cd/m2 for “darker” and “brighter” target images,
respectively).

After adjusting the luminance of the target disks, a questionnaire followed each
trial. All questions were asked for each reference image andcould be answered
by “yes” or “no”.

Q1: Does the reference image glow? [y/n]

Q2: Do you see a bright ring (a.k.a. Mach-band) on the reference disk? [y/n]

Q3: Are the sizes of the reference and target disks the same? [y/n]

10 subjects (7 males and 3 females) at the average age of 30 (between 26 – 40
years old) participated in our experiment. All subjects were näıve about the pur-
pose of the experiment and had either normal or corrected-to-normal vision. The
subjects were seated at a distance of 1 m from the display under dim lighting con-
dition (60 lux). Each subject read a written instruction of the experiment, passed
a training session, and then took the main part of the experiment. The whole
procedure took approximately 20 minutes for a single subject.

7.6 Results

7.6.1 Experiment I: Measuring Brightness of Glare Illu-
sion at Lbg = 150 cd/m2

The results of Experiment I are plotted in Figures7.9 and 7.10. As shown in
Figure7.10, the glare effect can raise the perceived luminance by20− 35% com-
pared to the actual luminance 220cd/m2, and Method I boosts the perceived
luminance more than Method II. Apparently, perceived luminance levels increase
with increasing luminance of the diskLdisk that enters both methods as the main
parameter. The growing trend of perceived luminance as a function of Ldisk does
not appear to be linear: while small and medium values ofLdisk have strong effects
on perceived luminance, this effect saturates for large values ofLdisk.

It is apparent from Figure7.9, that the upper and the lower bounds of the perceived
luminance do not differ qualitatively since the general shape of the curves are
close to parallel in all cases. Therefore, the measuring accuracy can be increased
by using the mean of these two thresholds instead of the two separate values. In



124 Chapter 7: Brightness of the Glare Illusion

0 2000 4000 6000 8000

200
220

250

300

350

400

A B
C

D E F

M
at

ch
in

g 
Lu

m
in

an
ce

 [c
d/

m
2 ]

Luminance of Disks (L
disk

)

Gaussian, Background 150 cd/m 2

−10

0

10

20

30

40

50

A
B

C

D
E

F

a

b

c d
e

f

Stimuli

In
cr

ea
se

 o
f P

er
ce

iv
ed

 L
um

in
an

ce
 [%

]

Background 150 cd/m 2

 

 

Method I (Gaussian)
Method II (Spencer et al.)

Figure 7.9: Results of the experiment on measuring brightness of glare illu-
sion for Lbg = 150 cd/m2. The characters (“A” – “F” and “a” – “f”) indicate
the setting of theLdisk parameter (refer to Section7.4.3for details).
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Figure 7.10: Percentage of increase for the mean perceived luminance levels
at the background levelLbg = 150 cd/m2 for Methods I (Gaussian) and II
(Spencer et al.) with errorbars of SEM. The characters (“A” – “F” and “a”
– “f”) indicate the setting of the Ldisk parameter (refer to Section7.4.3 for
details).
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the analyzes reported in the following, only the mean of the two thresholds is used
as a dependant variable.

To analyze the data, we conduct a6 (disk luminanceLdisk) × 2 (method) Analysis
of Variance (ANOVA), treating disk luminance and method as repeated measure-
ment factors. Because the scale of the parameterLdisk is not comparable for the
two Methods, the analysis treats different levels (“A” – “F”and “a” – “f” for
Methods I and II, respectively) rather than numerical values ofLdisk as equivalent.
These values are assumed to be of ordinal scale. There is a significant main effect
of Ldisk, F (5) = 23.68, p < .001, indicating that the luminance of the center disk
(which entered the algorithms as the main parameter) has an influence on how
bright it was perceived to be. The main effect of factor “Method” is not signif-
icant,F (1, 9) = 1.64, showing that the two Methods do not differ in brightness
boost over all levels. However, theLdisk ×Method interaction reaches signifi-
cance,F (5) = 7.77, p < .001, indicating that the Methods differ at some, or at
least one, of the levels ofLdisk.

To narrow down this effect, further analyzes are carried out. From the visual
inspection of the data (Figure7.10), it is suspected that the two Methods dif-
fer only for large values of the parameterLdisk. Therefore, two ANOVAs which
are similar to the one above are conducted for levels{A, B, C} and{D, E, F}
separately. As expected, the main effect for “Method” in theANOVA for the
first group of levels{A, B, C} remains not significant (F (1, 9) = 1.4), while
the Method factor reaches significance for the second group of levels {D, E,
F} (F (1) = 11.96, p < .01). There are no other significant effects, in partic-
ular the Method×Ldisk interaction does not reach significance in both analyzes
(F (2) = 1.34 andF (2) = 0.28), indicating that the interaction effect from the
global analysis is sufficiently explained by this separation.

Pairwiset-tests of the two Methods for the levels D, E and F ofLdisk are performed
and reveal that, for all cases, the Gaussian method producesstronger perceived
luminance (t(14) = 1.71, p = .05, t(14) = 1.73, p = .05, t(14) = 1.96, p < .05,
for D, E and F).

To further investigate the relationship between perceivedluminance andLdisk,
pairwise contrasts between levels ofLdisk are computed for both methods. To
control the family-wise error rate, thep-values are adjusted, using the method
proposed by Holm [Holm 1979]. The results of this analysis are illustrated in Fig-
ure7.11. The indicated sets depict levels for which the perceived luminance values
are statistically indistinguishable on a95% significance level. For the Gaussian
method, a “jump” in perceived luminance between the third and the fourth level
arises, after which an increase in luminance does not further elevate perceived lu-
minance. For Spencer et al.’s method, the increase occurs earlier between level B
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and C.

A B C D E F

(a) Method I (Gaussian)

a b c d e f

(b) Method II (Spencer et al.)

Figure 7.11: Similarity groups of the Ldisk levels atLbg = 150 cd as revealed
by post-hoc contrasts at a95% significance level for the Gaussian method (a)
and Spencer’s method (b). Items in the same set were statistically indistin-
guishable.

Method I (Gaussian),Lbg = 150 cd/m2.
Luminance of disksLdisk A B C D E F

Q1: Does the reference image glow? 0 60 90 100 100 100
Q2: Do you see a bright ring (a.k.a. Mach-band)? 0 10 20 50 80 90
Q3: Are the sizes of reference and target disks the same?90 100 30 10 0 0

Method II (Spencer et al.),Lbg = 150 cd/m2.
Luminance of disksLdisk a b c d e f

Q1: Does the reference image glow? 0 100 90 100 100 100
Q2: Do you see a bright ring (a.k.a. Mach-band)? 0 70 80 80 80 90
Q3: Are the sizes of reference and target disks the same?90 80 30 0 0 0

Table 7.1: Results of the questionnaire in percentages of the answer ’yes’ for
Lbg = 150 cd/m2. Colors indicate either above (red) or below (blue) 50%.

The answers of the subjects to the questionnaire presented after each trial are
summarized in Table7.1. For both Methods, the application of the glare models
produces a “glowing” impression of the disk and is independent on how strong
the glare is rendered. The results from Question 2 indicate that Method II is more
likely to induce a Mach-band effect, which might be one aspect of an explanation
of why Method II does not produce as strong an effect as MethodI. However,
another factor that probably helps to induce the differencebetween the Methods
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is the size of the disk that increases with growingLdisk for Method I much stronger
than for Method II (see Figure7.5). This fact is also highlighted by the results for
Question 3 of the questionnaire.

7.6.2 Experiments II – IV: Measuring Brightness of Glare
Illusion at Lbg = 50, 100, 200 cd/m2

The results of Experiments II – IV are shown in Figures7.12 and 7.13 (Ex-
periment II:Lbg = 50 cd/m2), Figures7.14 and 7.15 (Experiment III:Lbg =
100 cd/m2), and Figures7.16 7.17(Experiment IV:Lbg = 200 cd/m2). They are
also analyzed by conducting 6 (Ldisk) ×2 (methods) ANOVA with different levels
(“A” - “F” and “a” - “f” for Methods I and II respectively) ofLdisk rather than
numerical values ofLdisk.

In Experiment II atLbg = 50 cd/m2, ANOVA indicates that the main effect of
Methods is not significant,F (1) = 3.64, p = 0.0608. Unlike Experiment I, the
main effect ofLdisk(F (5, 60) = 2.88, p = 0.0213) is also not significant, while
the interaction of Methods andLdisk (F (4, 55) = 4.8, p = 0.0022) is highly
significant.

In Experiment III atLbg = 100 cd/m2, the main effect of Methods is not signif-
icant (F (1, 75) = 1.18, p = 0.28) as well as Experiments I and II. On the other
hand, both the main effect ofLdisk and the interaction of Methods andLdisk are
very significant:F (5, 71) = 12.87, p << 0.01 (the main effect of Methods) and
F (4, 66) = 4.52, p = 0.0027 (interaction).

The results of Experiment IV atLbg = 200 cd/m2 also show the same tendency
that the main effect of Methods is not significant (F (1, 75) = 0.54, p = 0.46),
but the main effects ofLdisk (F (5, 71) = 13.18, p << 0.01) and the interaction
(F (4, 66) = 3.97, p = 0.006) are both significant.

Tables7.2, 7.3, and7.4 summarize the answers of our subjects to the question-
naire for each trial. The answers for Experiments II – IV follow the same manner
as that of Experiment I. the application of the glare models produces a glowing
impression and is independent on the strength of the glare rendering (Question 1).
According to the answers of Question 2, Mathod II (Spencer) produce more ef-
fects of Mach-band as well as Experiment I. Again, this couldbe an explanation
why Method II does not produce as strong glare illusion as Method I because
Mach-bands reduce brightness at the center relatively. This fact of the strength of
glare illusion can be also seen in the answers of Question 3.
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Figure 7.12: Results of the experiment on measuring brightness of glare illu-
sion for Lbg = 50 cd/m2. The characters (“A” – “F” and “a” – “f”) indicate
the setting of theLdisk parameter (refer to Section7.4.4for details).
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Figure 7.13: Percentage of increase for the mean perceived luminance levels
at the background levelLbg = 50 cd/m2 for Methods I (Gaussian) and II
(Spencer et al.) with errorbars of SEM. The characters (“A” – “F” and “a”
– “f”) indicate the setting of the Ldisk parameter (refer to Section7.4.4 for
details).
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Figure 7.14: Results of the experiment on measuring brightness of glare illu-
sion for Lbg = 100 cd/m2. The characters (“A” – “F” and “a” – “f”) indicate
the setting of theLdisk parameter (refer to Section7.4.4for details).
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Figure 7.15: Percentage of increase for the mean perceived luminance levels
at the background levelLbg = 100 cd/m2 for Methods I (Gaussian) and II
(Spencer et al.) with errorbars of SEM. The characters (“A” – “F” and “a”
– “f”) indicate the setting of the Ldisk parameter (refer to Section7.4.4 for
details).



130 Chapter 7: Brightness of the Glare Illusion

0 2000 4000 6000 8000

200
220

250

300

350

400

A B
C D E F

M
at

ch
in

g 
Lu

m
in

an
ce

 [c
d/

m
2 ]

Luminance of Disks (L
disk

)

Gaussian, Background 200 cd/m 2

0 5000 10000 15000

200
220

250

300

350

400

a
b c d e f

M
at

ch
in

g 
Lu

m
in

an
ce

 [c
d/

m
2 ]

Luminance of Disks (L
disk

)

Spencer et al., Background 200 cd/m 2

Figure 7.16: Results of the experiment on measuring brightness of glare illu-
sion for Lbg = 200 cd/m2. The characters (“A” – “F” and “a” – “f”) indicate
the setting of theLdisk parameter (refer to Section7.4.4for details).
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Figure 7.17: Percentage of increase for the mean perceived luminance levels
at the background levelLbg = 200 cd/m2 for Methods I (Gaussian) and II
(Spencer et al.) with errorbars of SEM. The characters (“A” – “F” and “a”
– “f”) indicate the setting of the Ldisk parameter (refer to Section7.4.4 for
details).
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Method I (Gaussian),Lbg = 50 cd/m2.
Luminance of disksLdisk A B C D E F

Q1: Does the reference image glow? 0 100 100 100 100 100
Q2: Do you see a bright ring (a.k.a. Mach-band)? 0 0 33 83 83 83
Q3: Are the sizes of reference and target disks the same?83 100 83 0 0 0

Method II (Spencer et al.),Lbg = 50 cd/m2.
Luminance of disksLdisk a b c d e f

Q1: Does the reference image glow? 100 100 100 100 100 0
Q2: Do you see a bright ring (a.k.a. Mach-band)? 67 100 100 83 83 0
Q3: Are the sizes of reference and target disks the same?100 67 17 0 0 0

Table 7.2: Results of the questionnaire in percentages of the answer ’yes’ for
Lbg = 50 cd/m2. Colors indicate either above (red) or below (blue) 50%.

Method I (Gaussian),Lbg = 100 cd/m2.
Luminance of disksLdisk A B C D E F

Q1: Does the reference image glow? 0 86 100 100 100 100
Q2: Do you see a bright ring (a.k.a. Mach-band)? 14 14 43 86 100 100
Q3: Are the sizes of reference and target disks the same?86 86 100 0 0 0

Method II (Spencer et al.),Lbg = 100 cd/m2.
Luminance of disksLdisk a b c d e f

Q1: Does the reference image glow? 86 100 100 100 100 0
Q2: Do you see a bright ring (a.k.a. Mach-band)? 71 100 100 100 86 0
Q3: Are the sizes of reference and target disks the same?71 29 0 0 0 0

Table 7.3: Results of the questionnaire in percentages of the answer ’yes’ for
Lbg = 100 cd/m2. Colors indicate either above (red) or below (blue) 50%.

Method II (Gaussian),Lbg = 200 cd/m2.
Luminance of disksLdisk A B C D E F

Q1: Does the reference image glow? 0 86 100 100 100 100
Q2: Do you see a bright ring (a.k.a. Mach-band)? 0 0 14 71 71 51
Q3: Are the sizes of reference and target disks the same?100 100 0 0 0 0

Method II (Spencer et al.),Lbg = 200 cd/m2.
Luminance of disksLdisk a b c d e f

Q1: Does the reference image glow? 100 100 100 100 100 0
Q2: Do you see a bright ring (a.k.a. Mach-band)? 71 71 71 71 71 0
Q3: Are the sizes of reference and target disks the same?86 14 0 0 0 0

Table 7.4: Results of the questionnaire in percentages of the answer ’yes’ for
Lbg = 200 cd/m2. Colors indicate either above (red) or below (blue) 50%.
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7.7 Discussion

In our psychophysical experiment, we employ Spencer et al.’s model [Spencer
et al. 1995] and Gaussian convolution model to produce glare illusion at different
background luminancesLbg = 50, 100, 150, 200 cd/m2. Both Methods succeed
in producing a strong glare illusion. It is shown that an increase in the chosen
parameter results in a larger amount of perceived luminance. For high values of
the luminance of the disks, the Gaussian Method produces a stronger boost in
perceived luminance than Spencer et al.’s method.

However, the Gaussian method results in a stronger increaseof disk size when
large parameter values are chosen. Therefore, the finding that Gaussian kernels
produce a stronger illusion should be taken with a pinch of salt since larger areas
are often perceived as brighter [Li and Gilchrist 1999]. It is therefore possible, that
the apparent advantage of the Gaussian method is due to the increase of the size
of the glare source rather than an advantage of the Gaussian method per se. We
therefore conclude, that both Methods produce a comparableincrease in perceived
luminance when reasonable parameters are chosen. This is interesting also from
a practical point of view, since a convolution with a separable Gaussian kernel is
much faster than in case of non-separable kernels required for the eye’s PSF.

Yet, there are differences in how the two Methods behave in terms of potential
side-effects. While the Gaussian method is relatively susceptible to distort the
shape and size of the convolved object, Spencer et al.’s method is more robust
regarding the choice of the parameter and therefore less likely to produce this
effect (even though it does change the disk shape with growing Ldisk, see Figure
7.5). On the other hand, Spencer et al.’s method is more likely toexcite a Mach-
band effect, which is often perceived as objectionable. This might be caused by
the steeper gradient in the glare image rendered with Spencer et al.’s method (see
scanlines in Figure7.5) as shown in [Ratliff 1965, pp. 85].

It is interesting to note that models of the optics in the human eye [Stiehl et al.
1983, Spencer et al. 1995] do not outperform the simple Gaussian convolution ap-
proach in terms of pure effectiveness of boosting the perceived luminance. These
results allow the speculation that the scattering light in human’s eye is not the
only factor in the Human Visual Systems (HVS) that contributes to elicit the glare
illusion. Possibly, neural centers later in the visual pathway that are not captured
in this type of model contribute to the perception of glare sources. Under this as-
sumption, a model for rendering glare sources based purely on empirical evidence
could be more appropriate.
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7.8 Summary

If rendered properly, the glare illusion can increase the perceived luminance and
therefore also the dynamic range of a display by 20–35%. Although the glare
illusion is believed to be related to optical distortions inthe eye, our experiment
indicates that faithful simulation of the eye’s optics is not necessary to achieve a
strong brightness boost. The glare illusion produced by a Gaussian convolution
can give the same increase of perceived luminance as a complex PSF of the eye, is
less likely to cause undesirable Mach-band effects and is faster to render. On the
other hand, the spiky profile of the eye’s PSF does not change the object’s shape
and size as much as the Gaussian kernel.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

The work presented in this dissertation is mainly focused onevaluation of tone
mapping operators (TMOs) and enhancement of contrast and brightness for high
dynamic range (HDR) images. Since the human visual system (HVS) exhibits
strongly non-linear behavior across such wide range of luminance, we often have
to run psychophysical experiments ourselves to understandbetter the HVS char-
acteristics in the context of HDR image perception.

As a solution for displaying HDR images on low dynamic range (LDR) display
devices, a number of TMOs have been developed, however, there was no sys-
tematic evaluation to show how tone mapped images are perceived differently by
human observers, and which attributes of image appearance take into account the
difference between TMOs yet. We conducted a psychophysicalexperiment with
seven TMOs which were not directly compared to each other as in other studies.
The tone mapped images were compared and rated against theircorresponding
real-world views at the position where the HDR image was shot. Our result shows
that qualitative differences between TMOs have a systematic effect on the human
perception. However, it also turns out that it is hard to select one TMO which
performs consistently the best in terms of image fidelity because those TMOs are
too complicated to clarify a relationship among TMO parameter settings, an input
HDR image, and the final tone mapped images (Chapter4).

After this result, we went back to a simple setting of a generic TMO which em-
ploys the three most important parameters: brightness, contrast, and color satura-
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tion of an image. A series of image preference and fidelity experiments have been
conducted with several types of limited dynamic range of displays, in which the
human subjects adjusted those parameters, to better understand the performance
of users on TMO parameter settings. The results show that this generic TMO is
strongly affected by two factors: anchor white and contrast. Subjects set refer-
ence white (anchor white) to a bit lower value than the maximum luminance of
an image, if the image contains large self-luminous objects. Unlike anchor white,
contrast factor is more subjective, therefore users shouldhave a control to adjust
it. It is also shown that the parameters can be automaticallyestimated based on the
characteristics of an image for best-guessing results. Forexample, contrast can be
predicted based on the dynamic range of an image, and the anchor white has a
relation to the image key value. In addition, the outcome from emulating several
types of limited dynamic range of displays depicts that the resulting images de-
pend on the purpose of the TMO: the best-looking (preferencetask) or the best
fidelity task. These results of a simple and fundamental TMO will be applicable
for more complex TMOs (Chapter5).

The above two studies focused on evaluation of image appearance in HDR. We
also studied the enhancement of contrast and brightness of an image in HDR. A
usual way to scale contrast in image processing such as gammacorrection gives
a constant change of contrast in the whole image, however, such simple scaling
leads to non-uniform perceived change in contrast because of the lower contrast
sensitivity of the human eyes for the low luminances. Based onthis fact and HDR
display technology which can reproduce much lower luminance than that of con-
ventional LDR displays, we conducted two perceptual experiments of perceived
contrast over a complex image. Perceived contrast scaling was presented with re-
spect to given physical contrast and different adaptation luminances. The results
of contrast scaling experiment were converted to just noticeable difference (JND)
units to construct a model to provide uniformly changing perceived contrast in
complex images (Chapter6).

Finally, we measured the brightness enhancement caused by the glare illusion.
We observe that an object in an image looks much brighter, if it is surrounded by
smooth profiles, and we call it the glare illusion. To evoke the glare illusion, we
employed two convolution methods: a point spread function (PSF) of the human
eye and a Gaussian kernel. The outcome of this work shows thatthe glare illusion
increases the perceived luminance (brightness) by 20 – 35 %.It indicates that the
glare illusion can visually expand the maximum luminance ofa display device by
20 – 35 %. This result was obtained for both convolution methods of Gaussian
kernel and PSF. This means that, although it is believed the glare illusion is related
to some optical systems, faithful simulation of the human eyes is not necessary to
achieve a strong brightness boost caused by the glare illusion because the Gaus-
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sian kernel which has no theoretical background of human perception evokes the
brightness boosts of similar strength as the PSF (Chapter7).

8.2 Future Work

For human visual perception in high dynamic range imaging (HDRI), there are a
number of unsolved problems. As we have investigated TMOs inChapters4 and
5, there is still no TMO which perform the best consistently interms of image
fidelity. Additionally, an optional parameter setting may depend on the contents
of an image for all image classification. Automatic selection of the best TMO and
its parameter settings for a given image is an open question.

There are also a number of improvements and extensions for enhancement of
contrast and brightness in an image. In contrast enhancement study, we plan to
extend our experiments with more representative group of test images. Then, the
revised contrast enhancement model for HDR images as proposed in this disser-
tation should be then even more robust. Additionally, how todefine contrast in
complex images by a single number in an absolute unit is stilla big open ques-
tion.

In the study of brightness boost by the glare illusion, we have proposed a funda-
mental approach to investigate the glare illusion. Therefore, there are still several
factors which were not measured in this dissertation, for example, the extent of the
glare profile and the size of the object. A model which includes all of these factors
would allow to render the glare illusion with desired strength and appearance.
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