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ABSTRACT

In this paper we will address the problem of fast construction of
spatial hierarchies for ray tracing with applications in animated en-
vironments including non-rigid animations. We will discuss the
properties of currently used techniques with O(N logN) construc-
tion time for kd-trees and bounding volume hierarchies. Further,
we will propose a hybrid data structure blending a spatial kd-tree
with bounding volume primitives. We will keep our novel hierar-
chical data structures algorithmically efficient and comparable with
kd-trees by using a cost model based on surface area heuristics. Al-
though the time complexity O(N logN) is a lower bound required
for construction of any spatial hierarchy that corresponds to sorting
based on comparisons, using approximate method based on space
discretization, we propose novel hierarchical data structures with
an expected O(N log logN) time complexity. We will also discuss
constants behind the construction algorithms of spatial hierarchies
important in practice. We have documented the performance of our
algorithms by results obtained from implementation on nine scenes.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—[Visible line/surface algorithms, Raytrac-
ing, Animation]

Keywords: ray shooting, ray tracing, animation, time complexity,
hierarchical data structures, spatial sorting, approximate algorithms

1 INTRODUCTION

Nowadays, thanks to the algorithmic progress in spatial data struc-
tures (DS) and ever better performance of computer hardware, we
achieve interactive and real time ray tracing of primary and shadow
rays for static scenes [28]. This requires efficient hierarchical DS
which results in the logarithmic complexity of ray tracing, such
as kd-trees [11, 20, 28] built with surface area heuristics (SAH).
The preprocessing time for hierarchical DS has been shown to be
O(N logN).

In practice, kd-trees have been used in interactive ray tracing for
static walkthroughs [35]. So far only special settings of dynamic
and semi-dynamic scenes [41, 42] where only a small portion of
objects is moving or object instantiation is used, have been success-
fully addressed. The fully realtime or the interactive preprocessing
of spatial hierarchies for non-rigid animations, also referred to as
unstructured motion, is a difficult problem. It was achieved only
for a small number of objects (≈ 10,000 for year 2005). We lift
these limitations using several techniques. Firstly, we show how
spatial kd-trees (SKD-trees) [23] can be used for ray tracing in-
stead of classical kd-trees. Secondly, we show that it is convenient
to combine the spatial kd-trees with bounding volumes (BVs), in a
sparse way, resulting in a hybrid DS with O(N logN) preprocessing
time and O(N) storage.

We also lift the assumption on O(N logN) time complexity for
preprocessing to O(N log logN) by discretization in the space of
splitting planes. Radix sort (bucket/distribution sort etc.) [15]
which relies on the limited precision of input data achieves O(N)
time complexity for sorting instead of O(N logN) based on com-
parisons. Similarly, we can construct an efficient spatial hierarchy
for ray tracing in a discrete setting with the expected time com-
plexity O(N log logN) time instead of O(N logN). The construc-
tion assumes that the representation of axis-aligned bounding boxes
tightly encompassing the objects is restricted to b bits. Furthermore
we assume that the objects do not vary much in size and that the
distribution of objects is not highly skewed.

This paper is further organized as follows. In Section 2 we de-
scribe previous work on ray tracing dynamic scenes. In Section 3
we provide an algorithmic consideration for efficient algorithms.
In Section 4 we recall the SKD-trees developed for databases and
the DS built in O(N log logN) time in the community of theoretical
computer science. In Section 5 we describe the discretization for
evaluation of SAH in a one-dimensional setting. In Section 6 we
describe the hybrid tree combining SKD-trees with BVs. In Sec-
tion 7 we describe how the discretization can be extended to three
dimensions using a 3D summed area table. In Section 8 we describe
briefly the modifications to the traversal algorithm. We present the
experimental results in Section 9. We conclude the paper with a
summary of contributions and future work.

2 PREVIOUS WORK

In this section we briefly recall the previous work on ray tracing
that relates to our paper.

2.1 Dynamic Data Structures for Ray Tracing

While much effort has been devoted to the optimization of ray trac-
ing techniques for static scenes (surveys in [2, 4, 11, 34]), the DS
for animated scenes have not been investigated in depth. In the
early work Parker et al. [25] allow a few objects to be moved in-
teractively. The ray tracing for a single ray is decomposed into
two phases. In the first phase the intersection with static objects is
computed using standard spatial DS. In the second phase the ray
is intersected with dynamic objects. Then the results of the two
phases are combined together taking the closest intersection. This
method allows the rendering of only a few simple dynamic objects
in practice. Later, Reinhard et al. [27] show how to extend the grid-
like structures duplicating the boundary of grids virtually in order
to enlarge the spatial extent accessible by objects. More recently,
Lext et al. [19] proposed a benchmark for the ray tracing of ani-
mated scenes containing three datasets. Although they propose a
classification of motion types and provide a very good motivation
for such a benchmark, they do not describe any particular algorithm
to solve the problem. Their classification of motion involves two
types. Firstly, hierarchical motion is generated from a hierarchical
scene graph and hence preserves some hierarchical spatial relation-
ship among objects from frame to frame. Secondly, unstructured
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Figure 1: Six static scenes used for testing of our algorithm. (a) Conference Room (b) Bunny (c) Armadillo (d) Dragon (e) Buddha (f) Blade.

motion as a more general case corresponds to non-rigid data ani-
mation where fewer or no assumptions can be made. The proposed
benchmark data containing three scenes addresses different issues
for the two types of motion and several challenges that new DS
designed for ray tracing of animated scenes should solve.

Wald et al. [42], motivated by the algorithm of Lext and
Möller [17], present a technique with two-level DS based on kd-
trees exploiting the modeling hierarchy. The bottom level contains
single individual objects consisting of many primitives. Such ob-
jects have their own locally precomputed kd-trees and can be an-
imated in the global space by a single transformation matrix with
optional instantiation over basic object data. The upper level kd-
tree is built over bottom level objects enclosed by boxes for every
frame. If the number of objects at the upper level is small (in order
of hundreds to thousands), then the upper-level kd-tree construction
achieves interactive rates. However, this solution is not suited for
the unstructured motion of individual object primitives. In the same
year, Szecsi et al. [37] proposed an interesting extension to the “se-
quential” method of Parker et al. They suggest to construct two
kd-trees, one kd-tree over static data and one kd-tree over dynamic
objects. Instead of traversing the trees in sequential order and later
combining results, they propose to traverse the two trees simulta-
neously by a special traversal algorithm over two trees. Another
paper by Adams et al. [1] focuses on the use of spatial and tempo-
ral coherence for an efficient update of bounding sphere hierarchy
for deforming point-sampled surfaces. A discussion on several im-
portant issues and motivation for dynamic DS has been presented
in [41].

2.2 Collision Detection and Visibility

Another related field that deals with animated geometric data is
collision detection and general visibility algorithms. The focus of
the techniques presented so far has been on updating DS (mostly
BVHs) from frame to frame. For a survey of techniques on colli-
sion handling we refer to the excellent tutorial [40]. The most rel-
evant techniques in visibility deal with the update of dynamic data
structures [5, 36]. More recently, Shagam and Pfeiffer [32] pro-
pose to use dynamically updated octrees in the context of visibility
culling. We will not discuss the details of these techniques which
are only related to the update of DS and not to the construction of
the hierarchies from scratch as presented in this paper.

3 ALGORITHMIC MOTIVATION

Below we briefly discuss algorithmic issues of spatial hierarchies
relevant to unstructured motion. If we have N moving objects
with unstructured (=mutually independent) motion, then the lower
bound to construct or reconstruct DS is Ω(N). This can be achieved
for grid-like DS such as uniform subdivisions. The preprocessing
time for grid-like DS is O(N ·P), where N is the number of objects,
and P is the average number of references per one object in grid
cells. Since a single object can reside in more than one cell, for
large objects it can result in high preprocessing time and hence is

highly dependent on the scene. More importantly, for skewed dis-
tributions the performance of grid-like structures is not competitive
with kd-trees built with SAH [12, 38]. This could perhaps be alle-
viated by recursive grids [13]. However, it seems to be generally
difficult to predict the memory requirements and hence the prepro-
cessing time of recursive grids [4, 12].

In collision detection, the dynamic update of bounding volume
hierarchies (BVHs) such as dynamic collision of unstructured mo-
tion [16] is addressed. This is efficient for collision detection where
the query domain corresponds to an expanding sphere. For ray trac-
ing however, where the query is formed by a line, different prob-
lems can be expected for dynamic updates. The dynamic updates
are localized on lower levels of the hierarchy similarly to collision
detection, at best only in leaves, where objects are moved to new
positions. The changes are propagated upwards in the hierarchy.
By repetitive local updates, the global structure can become poten-
tially less and less efficient, since upper levels of the hierarchy do
not reflect the changes as efficiently as the construction from the
scratch. Therefore, the performance of updated DS can degrade
with repetitive updates due to the lack of update in the higher levels
of the hierarchy. The moment when a subtree rooted at a particular
node needs to be rebuilt due to its lack of efficiency has to be rec-
ognized. This requires keeping the auxiliary information in nodes
about hierarchy rooted in the nodes to decide when to rebuild a hi-
erarchy completely. This in principle can cause stalls from time to
time during rendering if such an update is located close to the root
node.

The second problem for unstructured motion is the time com-
plexity of such a rebuilding algorithm. For hierarchical (i.e. struc-
tured, organized) motion or scenes with only a small part of mov-
ing objects the update for one object (object primitive) in a hier-
archy can be computed in O(logN) time. This is advantageous
only for scenes where only small number of objects need to be
updated. If the number of moving objects is P then hence P �
N 7−→ P logN � N logN. If we move majority of objects inde-
pendently, then the update of DS starts to be a serious bottleneck
since P ≈ N. It could perhaps be alleviated by bulk updating sev-
eral objects at once. However, such an algorithm has to be designed
very carefully, since updating a hierarchy without knowing the new
positions of the neighboring objects makes the problem rather dif-
ficult. A trivial algorithm that updates all objects one by one by
locally rebuilding the hierarchy (including deferred rebuilding) for
each change has the time complexity O(N logN). This has the same
time complexity as rebuilding the hierarchy from scratch. However,
an algorithm updating the hierarchical DS does not guarantee the
same efficiency as an algorithm which completely rebuilds DS for
every frame.

Based on the analysis above, we can argue that one viable al-
gorithm for unstructured motion is an algorithm that can construct
the DS very efficiently from scratch for every frame of the anima-
tion. Such a solution, if it exists, avoids storing auxiliary data in
the nodes of the tree to be updated and guarantees good perfor-
mance for every frame in the animation. Clearly, it can also be used
for static scenes to decrease the preprocessing time. Therefore in



order to overcome an algorithmic complexity, we address the fast
construction of DS by discretization of the problem setting, which
results in a small decrease of their performance during searching.

4 ALGORITHMIC BACKGROUND

In this section we describe algorithmic preliminaries developed in
the field of databases and theoretical computer science. We believe
that the concepts described below are not well known in the com-
puter graphics community. We consider it necessary to recall them
briefly to justify our algorithm design.

4.1 SKD-trees and Related Data Structures

Kd-trees were designed by Bentley [3] as underlying DS for ef-
ficient indexing of multidimensional point data. A tree is con-
structed recursively, having interior nodes and leaves embedded in
axis-aligned splitting planes.

In order to address efficient indexing of non-point data, Ooi
et al. [23] have proposed an extension to kd-trees called spatial
kd-trees (SKD-trees). Several other extensions to kd-trees were
proposed in several papers from other authors, we refer to sur-
veys [7,24]. The proposal of SKD-trees is similar to BVHs [14,29]
and R-trees [10], but SKD-trees are more memory efficient. Instead
of implementing a hierarchy by representing a single splitting plane
in an interior node as in kd-trees, the interior nodes of SKD-trees
contain two splitting planes. It subdivides the original region into
two either overlapping or disjoint subregions. A node of the SKD-
tree is shown in Figure 2. The closest concept to SKD-tree nodes is
Kay and Kajiya’s method of slabs [14] which are used to represent
BVs in BVHs.

Figure 2: An organization of splitting planes inside SKD-node. Two
splitting planes in the node defines spatial extents of two children
(left) the child nodes overlap (right) the child nodes are disjoint.

During the subdivision step, every object is fully contained in the
spatial extent in one of the two child nodes. Every interior node de-
scribes both axis-aligned splitting planes and references to children.
The tree is constructed recursively in a top-down fashion. The re-
cursion is terminated by a construction of a leaf node containing the
reference to a single object residing in the spatial extent of the leaf.
We base our ray tracing algorithm on SKD-tree nodes and combine
them with BV nodes.

We would like to mention that there are many variants to kd-trees
and BVHs (and hence R-trees [10]) generalizing the concept of a hi-
erarchy in various ways. For the ray tracing, two basic concepts are
used. The first one allows overlapping of spatial regions (BVHs,
R-trees, SKD-trees etc) by building up the hierarchy over objects,
often referred to as object hierarchies. The second concept forms

strictly disjoint spatial regions, using for example a set of subdivid-
ing hyperplanes (kd-trees, octrees, grid-like data etc.). This is often
referred to as spatial subdivision. A few hybrid methods combin-
ing the two concepts have also been proposed. Since this is a very
broad topic, we refer to excellent surveys [7, 24, 30].

4.2 Fast Construction of Spatial Hierarchies

Motivated by the linear time complexity of multipole algorithm in
computational physics, Reif, Tate, and Xu [26, 39] have addressed
an important related problem, namely that of the fast construction of
spatial decompositions for point data to solve closest pair, k-nearest
neighbor, and n-body problems. Assuming that the input point data
are represented with limited precision, namely O(c logN) for all
coordinates of a single point (c = const) in D-dimensional space,
they propose a method for construction of spatial subdivisions in
O(D2N log logN) time. Since we have been motivated by their ap-
proach, we describe their method briefly to show the differences
later. In the first step a complete regular support tree of height h
(so all leaves at the depth h, spatial median, cyclic order of axes
for splitting planes) is constructed. In the second step all the input
points represented in a finite representation are mapped to the leaves
of the support tree in constant time. In the third step, the partial tree
is processed by moving from the leaves to the root merging empty
leaves until each leaf contains at least a single point. This bottom-
up merging continues until the tree is created. For leaves containing
more than one point, the algorithm recurses and a new partial tree is
created and linked to the parent partial tree. By carefully selecting
the height of the support tree for every level of recursion and per-
forming the search in the tree by bitwise operations in constant time
for each point, the time complexity is shown to be O(N log logN).
For details, experimental results, and related work on this subject,
please refer to the excellent exposition in [26, 39].

5 SKD-TREES CONSTRUCTED WITH DISCRETIZED SAH
COMPUTATION IN 1D

In this paper we focus on SKD-trees described in Section 4.1. Obvi-
ously, for SKD-trees we could use the spatial median strategy simi-
lar to other data structures [14,33,44]. However, it has been shown
on kd-trees that spatial median results in an inferior performance of
ray tracing for skewed distributions compared to the methods based
on the SAH cost model [11, 20]. For this reason we have decided
to apply the cost model based on SAH to construct efficient SKD-
trees. While a precise construction algorithm with time complexity
O(N logN) could be used, motivated by the method of Reif and
Tate [26] we discretize the evaluation of a cost function along the
axis to be subdivided.

In this section we describe the construction of SKD-tree based
on the cost model using surface area heuristics. This model was
described by Goldsdmith and Salmon [8]. They use an integral ge-
ometry measure to estimate the probability of rays intersecting a
spatial region such as a box. This is usually referred to as surface
area heuristics (SAH). Using the cost model based on SAH, they
construct BVH in a randomized way inserting objects one by one,
changing the shape of the constructed hierarchical tree on the fly.
It has been shown independently by experiments that this method
leads to an inferior performance compared to top-down construc-
tion [12, 21, 22].

A cost model based on the geometric probability of shooting rays
has been applied later with success to kd-trees [20]. Such a kd-tree
is constructed in top-down fashion where a cost model based on
SAH is evaluated to select the splitting plane position in interior
nodes. This method has been shown to produce efficient kd-trees
for ray tracing scenes with uniform as well as the skewed distribu-
tion of objects [11, 20]. An efficient construction algorithm based



on the plane-sweep paradigm with time complexity O(N logN) for
kd-trees has been described in [11, page 80] and detailed in [43].

Figure 3: A spatial extent of the kd-tree node of width w, height h,
and depth d split into two spatial regions at w ·α.

Below we consider the geometry depicted in Figure 3. To cre-
ate an interior node of a kd-tree we have a box of size w× h× d
containing N objects which is subdivided along w by a splitting
plane at the position α · w, α ∈ (0,1). If NL(α) and NR(α) is
the number of objects on the left respectively right of the split-
ting plane, and NS(α) objects are straddling the splitting plane
(N = NL(α) + NR(α) + NS(α)), we can formulate the quality of
a subdivision step q(α) for a splitting plane at α by computing
the ratio of the cost after and before subdivision in the following
way [11, page 68]:

SA = (w · (h+d)+h ·d),
CL(α) = (NL(α)+NS(α)) · (w ·α · (h+d)+h ·d)/SA,

CR(α) = (NR(α)+NS(α)) · (w · (1−α) · (h+d)+h ·d)/SA,

q(α) = (CL(α)+CR(α))/N,

where CL(α) and CR(α) is a linear estimate of the cost of the left
subtree and right subtree to be constructed, respectively. A typical
graph of q(α) for large N is shown in Figure 4. The local greedy
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Figure 4: A graph with the typical behavior of q(α) representing the
cost reduction for subdivision at position α for a large number of
objects (N=100,000) based on real data. Although in principle the
cost function is discontinuous, for many small objects the discontinu-
ities are smoothed away. (red) Uniform distribution. (green) Skewed
distribution.

heuristics with the cost model based on SAH can be used for all hi-
erarchical DS constructed in a top-down fashion. This was used for
example to optimize octrees [45]. Recently, Mahovsky [21, page
58] proposed to use the cost model also for BVH, but neither ex-
perimental nor theoretical results are presented.

We have investigated if a cost function can be computed in a dis-
cretized setting. We have found out to be convenient for a larger
number of objects. There are two reasons behind this. Firstly, the
cost function shows a single global minimum for a large number

of objects as discontinuities are smoothed out due to a large num-
ber of overlapping objects. Secondly, the cost function is relatively
smooth and flat around the global minimum of the function because
of its integral form. For a small number of objects the cost function
shows strong discontinuities and the selection of a splitting plane
has to be handled more carefully.

To implement discretization we create M buckets subdividing the
spatial extent along the width of the box w. Each bucket contains
the representation of three axis-aligned bounding boxes A, AL, and
AR and the number of objects in the bucket. In the first step we
initialize all bounding boxes and counters in all buckets. In the
second step every object is inserted one by one into a bucket i based
on the centroid of the bounding box of the object updating A(i) (i ∈
〈0,M−1〉). The use of the box centroids is necessary since objects
are non-point data and we need to assign them to buckets in a unique
way. In the third step we carry out a plane-sweep from right to
left to compute the minimum box on the right of each bucket b as
AR(b) =

⋃M−1
m=b A(m), so AR(b) = A(b)

⋃
AR(b + 1) and AR(M−

1) = A(M−1). In the fourth step we carry out a plane-sweep from
left to right to compute the minimum box on the left for bucket b
as AL(b) =

⋃b
m=0 A(m), so AL(b) = A(b)

⋃
AL(b−1) and AL(0) =

A(0). This allows us to compute in O(M) time a tight axis-aligned
box for all the objects assigned to the bucket b in range 〈0,b〉 and
〈b,M− 1〉. The number of objects NL(b) associated with all the
buckets on the left of bucket b is summed during the plane-sweep
operation from left to right of bucket b.

We can subsequently evaluate the cost function for M− 1 posi-
tions. We computed a spatial extent (box) on the left of bucket b in
AL(b) and the number of objects in NL(b). We also computed a box
on the right of b in AR(b) and the number of objects on the right
as N−NL(b). Then we evaluated the cost function C(b) based on
SAH as follows:

CL(b) = NL(b) ·SAL(b)/SA,

CR(b+1) = (N−NL(b)) ·SAR(b+1)/SA,

C(b) = CL(b)+CR(b+1), (1)

where SAL(b) is the surface area of the tight box AL(b) and SAR(b)
is the surface area of box AR(b). We evaluate the cost function for
M−1 positions. We select such bm which has the minimum value
of the estimated cost C(bm). Spatial extents for the two children
along axis a to be subdivided create two values for the SKD-tree
node: Maxa(AL(bm)) for the left subtree and Mina(AR(bm)) for the
right subtree.

The construction of a SKD-tree is carried out recursively in a
top-down fashion, distributing objects to buckets and splitting ob-
jects into two child nodes in each step. This results in O(N logN)
time complexity for construction. Even if it is equivalent to an
O(N logN) algorithm for kd-trees [11], there are different multi-
plicative factors hidden in big O notation. Firstly, for SKD-trees
there is no fragmentation during splitting, so the number of refer-
ences to objects is strictly N. For kd-trees the number of references
to objects is r ·N (r≥ 1), according to our experience approximately
in range 1.8− 3.5 as it depends on the scene and termination cri-
teria used. This influences the number of evaluations of the cost
function. Secondly, an O(N logN) algorithm for kd-trees requires
the splitting of three lists to six lists based on the position of the
splitting plane, preceded by the evaluation of a cost model. This is
two to three times more costly than the simple bucketing described
above.

Clearly, the discretized evaluation of a cost function results in a
smaller precision. It means that less efficient spatial hierarchies are
constructed due to discretization. We show that this trade-off is ac-
ceptable if our concern is the total running time of the application
(construction of DS + rendering based on ray tracing using the data
structures). The second source of inefficiency is the overlapping of



sibling SKD-nodes. We have to traverse all spatially overlapping
nodes to ensure we find the nearest object. Increased number of
traversal steps could result in decreased performance. This is par-
tially compensated by a smaller height of SKD-trees compared to
kd-trees and by single references to objects in the leaves of hierar-
chy.

6 H-TREES = SKD-TREES + BVS

During early experiments with SKD-trees described above, we have
found out that SKD-nodes do not separate empty space sufficiently.
The performance of ray tracing with a tree containing only SKD-
nodes and leaves is far behind the performance of kd-trees, by about
1000% in some scenes we tested. Below we propose the combina-
tion of SKD-trees and BVHs called H-tree. Its efficiency is then
comparable to kd-trees.

6.1 H-trees Description

The memory representation of traditional BVH nodes requires stor-
ing the axis-aligned bounding box (six values). There are two dis-
advantages to this. Firstly, storing the whole box for every interior
node uses up rather a lot of memory (a single interior node takes
32 Bytes if the pointers and floating point values are represented
by 4 Bytes). Secondly, the ray traversal algorithm for BVHs re-
quires to compute up to six ray plane intersections to determine if a
ray intersect the box. This intersection test is relatively costly (kd-
trees require computing a single ray-plane intersection and evaluat-
ing only two conditions). During our study of pure SKD-trees for
ray tracing, we found out that a pure SKD-tree node does not bound
the objects associated with the nodes tightly enough. Therefore we
propose a hybrid DS combining SKD-tree nodes and bounding vol-
ume nodes in a hybrid hierarchy. In principle our bounding volume
nodes are equivalent to cutting off empty spaces in kd-trees. When
empty space is cut away, the ray traversal algorithm can proceed
such spatial regions more efficiently.

Figure 5: Bounding volume nodes used in our H-tree depicted in 2D
space, (top) BV2: two-plane bounding node, (bottom) BV6: six-
plane bounding node.

We distinguish between two current spatial extents associated
with node ν represented by a box. Firstly, we define the enclosing
spatial box BE(ν) as the minimum box enclosing all the objects as-
sociated with ν . Secondly, during traversal, a traversal box BT (ν)
is formed by limiting the spatial extent of the node when traversing
all the interior nodes on the path from root to node ν . Obviously,
∀ν : BE(ν) ∈ BT (ν) forms a necessary condition for any correct
spatial hierarchy. Based on the relationship between BE(ν) and

BT (ν) and assuming axis-aligned planes are used in the bounding
primitives, we can enumerate the options for bounding nodes rep-
resenting a bounding volume (BV):

• BV1: a single plane splitting node as in a kd-tree, used to cut
away an empty space on either side of the plane.

• BV2: a two-plane bounding node defining a spatial extent of
objects along one axis. This is complementary to the defini-
tion of the spatial tree node and corresponds to slabs [14] as
an infinite region between two parallel planes. The concept of
the node is shown in Figure 5 (top).

• BV6: a six-plane bounding node (traditional axis-aligned
bounding box), shown in Figure 5 (bottom).

• BVO (others): we can form a bounding volume node by
combining any of six axis-aligned bounding planes. In total
having one, two, three, four, five, or six axis-aligned planes
(this includes options in the categories mentioned above BV1,
BV2, and BV6).

In total we could have 63 types of bounding nodes as it can be
shown by variational calculus. However, using all the nodes would
complicate implementing the algorithm. Such an approach, though
theoretically viable, is likely to have small practical merit. In order
to keep both construction and traversal algorithm simple, we have
implemented only variants BV2 and BV6 simultaneously. As a re-
sult, we have an H-tree that can contain these nine types of nodes:

• a leaf node containing a pointer to a single object,

• a six-plane bounding node – traditional bounding box node, a
single child is referenced in DFS order,

• a two-plane bounding node – a bounding box node with two
planes, in total three nodes (one for each axis x,y,z),

• a SKD-tree node, in total three nodes (one for each axis x,y,z),

• a link node from a current address to another address to be
used for a fixed size memory allocator, if we allocate the
memory in chunks of the fixed size.

6.2 The Memory Layout of H-trees

The important aspect is the layout of nodes in the memory of a
computer. Such alignment in main memory, L2 cache, and L1 cache
is important to achieve high performance on current processors [28]
and [11, page 125].

The design of H-trees can use a depth-first-search (DFS) or-
dering of nodes in the memory. It allows the alignment of nodes
on the 16 Bytes boundary assuming 32-bit computer architecture.
The SKD-tree nodes and leaves take 16 Bytes, two-plane nodes 16
Bytes, and six-plane nodes 32 Bytes.

Since we know the maximum number of nodes in advance, we
can preallocate the maximum possible size required by the tree N ·
16 · (1 + 1 + 2) for N objects. We have N leaves (1× 16), N −
1 interior SKD-nodes (1× 16), and at most N six-plane bounding
nodes (2× 16). To minimize wasting unused allocated memory,
we subsequently allocate memory in chunks of a fixed size such
as 16 KBytes. We use link nodes from the current address to the
beginning of a new chunk when the memory in the current chunk is
exhausted.



6.3 H-trees Construction

The construction of an H-tree is started by a precomputation of a
tight bounding box over all objects (BE(root)). We set the traver-
sal box to BT (root) and initialize it with infinite size. Then we
start building up a tree with termination at leaves containing single
objects. The type of the interior node to be created is chosen by
evaluating the cost model described below. This model determines
whether or not the most appropriate is to insert a six-plane bounding
node (automatically for root node), a two-plane bounding node, or
most frequently a SKD-tree node (also automatically for the child
of the root node). Since the expected traversal cost of a node is es-
timated in a similar way as for kd-trees, we omit the notation of a
node ν to keep formulas simpler.

• For the SKD-tree node the cost induced by a two plane sepa-
ration is:

CSKD = CT
SKD +CIT /SA(BT ) · (2)(
NL(b) ·SA(BT

L (b))+NR(b) ·SA(BT
R(b+1))

)
,

where CT
SKD is the estimated cost to traverse the node and

BT
L (b) and BT

R(b+1) is a traversal box of the left or right child
respectively induced by objects in buckets 〈0,b〉 and bucket
〈b + 1,M−1〉. Furthermore, CIT is an estimated cost for ray
object intersection and SA(BT ) denotes surface area of BT .
The difference to Eq. 1 is the different surface area of tight
boxes (Eq. 1) and traversal boxes (Eq. 2). The estimated cost
of traversing the node CT

SKD is also plugged into the formula.

• For the two-plane bounding node BV2, we compute the cost
as follows:

C2PN = CT
2PN +CIT ·SA(BT

2PN)/SA(BT ) ·N, (3)

where CT
2PN is the estimated cost of traversing the node with

two planes and BT
2PN is a new traversal box after bounding

with the two planes.

• For the six-planes bounding node BV6, we compute the cost:

C6PN = CT
6PN +CIT ·SA(BT

6PN)/SA(BT ) ·N, (4)

where CT
6PN is the estimated cost of traversing the node with

six planes and BT
6PN is a new traversal box (= tight box) after

bounding with six planes.

The traversal costs CT
SKD, CT

2PN , and CT
6PN and an average inter-

section cost CIT are obtained from measurements before construc-
tion, creating random nodes and traversing them by a set of random
rays as proposed in [4].

7 AH-TREES IN EXPECTED O(N log logN) VIA APPROXIMA-
TION

In this section we describe the basic version of the construction al-
gorithm to decrease the complexity from O(N logN) to expected
O(N log logN). Our technique is based on discretization similar to
sorting by radix sort, which allows sorting in O(N) time, assum-
ing limited precision of the input data. We call the proposed data
structures AH-trees.

Below we briefly discuss the motivation for AH-trees. The dis-
cretization of the cost function computation along one axis de-
scribed in Section 5 does not help us to reduce the algorithmic com-
plexity of preprocessing, even if the reduction of constants behind
big O notation is important in practice. We explain the reasons
behind O(N logN) complexity required by sorting necessary in the

construction of spatial hierarchies. Firstly, a key concept of a spatial
hierarchy is sorting and it takes Ω(N logN) [15]. Assuming limited
precision of the data representation, radix sort allows time complex-
ity in O(N) time. This could be used in the preprocessing phase to
sort all object boundaries for all three axes [11, 43]. Secondly, the
rest of the build algorithm for kd-trees splits three lists containing
object boundaries into six lists in each interior node. This avoids
repetitive sorting in interior nodes, however, we still need for split-
ting O(N) time for every interior node with N objects. The time
complexity then remains O(N logN) for a tree of depth O(logN),
even if presorting took O(N) time.

Below we show how it is possible to overcome O(N logN) by
discretization, firstly for a limited size of objects and secondly for
arbitrary size of objects.

7.1 AH-trees for A Limited Size of Objects

In order to overcome the algorithmic complexity issue, we address
the problem similarly to Reif and Tate [26, 39] using limited pre-
cision also for position of splitting planes by discretization of the
whole 3D domain. However, instead of constructing a tree from
bottom to top as they do, we use construction in a top-down fash-
ion. It allows us to decide on a splitting plane at the discrete po-
sitions using the cost model based on SAH. Another issue to be
solved is handling of large objects, since the Reif and Tate method
is designed only for point data. We propose a solution in the next
section.

Firstly, we compute a tight box over the scene objects. Then we
create a 3D grid of arbitrary resolution preferably creating cubic-
like cells. All the cells of the 3D grid have the same size. If the size
of the cell is C (cx,cy,cz), we then define a “small object” as one
whose bounding box B of size (bx,by,bz) completely fits by size
in C (i.e. bx ≤ cx ∧ by ≤ cy ∧ bz ≤ cz). This allows us to limit the
spatial extent of the object as shown in Figure 6.

In each cell of the grid we store the following data: a list of ob-
jects assigned to the cell, the ’object count’ assigned to the list, and
’aggregate count’. We distribute all objects into the grid cells based
on the position of the centroids of objects. Then we construct a
3D summed area table over ’object count’ storing the precomputed
prefix sum to ’aggregate count’ of cells. The precomputation for N
objects and M×M×M buckets is computed in O(N +M3) = O(N)
time, since we take M = const · 3

√
N.

The use of 3D summed area table makes a difference to the Reif
and Tate method [26], since they in fact use preallocated regular
octree. The 3D summed area tables allows us to evaluate a number
of objects on the left and on the right for discrete positions of the
splitting plane in constant time. However, two spatial extents asso-
ciated with the children can overlap by one bucket along the split
axis. As we bound the size of the object to the size of the cell, the
maximum size of the box tightly enclosing all the objects inside the
cell is also limited. The cell box is extended for axis a on both sides
by ca/2 for all three axes as depicted in Figure 6.

The discretization also allows us to implement the evaluation of
the cost function in a discrete setting. We know the number of ob-
jects on the left and on the right for a selected bucket. We can
compute the minimum of a cost function in expected O(log logM)
time by interpolation-binary search [31]. Briefly, an interpolation-
binary search consists of one phase of interpolation search [15] and
one phase of a binary search. We evaluate the cost for the left and
right subtree until the bucket with the minimum total cost is found.
Due to the discretization we loose also the advantage of knowing
the tight boxes for the left and right children. Although we can-
not compute the exact tight boxes for objects in constant time, we
can easily detect if the box can be shrunk by the extent in any of
the six bounding planes. This is important for scenes with skewed
distributions that contain a great deal of empty space.



Figure 6: The concept of maximum bounding boxes for objects in a
cell. Since the size of the objects is limited and objects are distributed
according to their centroids, the traversal box is extended by half the
size of the grid cell size. The box is depicted by dashed line.

The construction algorithm proceeds recursively until a single
cell is accessed. If this is a cell with only a single object, we create
a leaf. Otherwise, based on the number of objects in a single cell
we either recurse the algorithm with the discretization or use the
algorithm described in Section 6. In practice for a low number of
objects (≈ 100) we use the algorithm described in Section 6.

Below we discuss the time complexity of the AH-tree construc-
tion algorithm. In the analysis we relate M to N by formula
M = 3

√
N, resulting in M3 cells. We also assume that the precision of

the objects is limited by c logN. Each level of the discretization to
a 3D grid over N objects resolves the tree construction in 3 · log 3

√
N

bits in all coordinates of object positions (hence object centroids).
Then we just need a constant number of grid levels (independent
of N) to address the limited resolution c logN, including worst case
distributions. Further, we have assumed in this section that the ob-
jects fulfill the condition of the ”small objects” above. Under these
assumptions we can compute the time complexity as follows. We
create a tree with exactly N leaves. The number of interior nodes
is also O(N) (if bounding nodes are inserted, then we have at most
2 ·N−2 interior nodes). To determine splitting positions for SKD-
nodes closest to the root, we need O(log log 3

√
N) = O(log logN)

steps. In total we carry out N searches of splitting plane positions.
By summing N terms with the loglogN term, we get O(N log logN)
complexity (some constants are left in big O notation). Recall that
the factor log logN is in practice limited to 6 for N ≤ 264. If we
abuse the big O notation as discussed in [26], we could say that the
construction under the condition of small objects for every level of
the grid hierarchy is O(N).

7.2 AH-Tree for All Object Sizes

In this section we describe an extension of the basic algorithm de-
scribed above to handle arbitrary objects. We utilize a method in-
troduced by Günther and Noltemeier [9] developed in the context
of spatial databases. They propose a concept called oversize shelves
of extra storage space for large spatial objects attached to the inte-
rior nodes of a tree to avoid an excessive fragmentation in spatial
subdivision schemes. When inserting objects into a tree, the over-
size objects are detected and put into extra (ternary) child nodes.
Günther and Noltemeier propose this method for a cell tree, but the
idea of oversize shelves can be used in principle for any hierarchical
DS.

Our DS are not created incrementally and we do not know the
shape of the tree in advance. We add two auxiliary steps to the con-
struction algorithm of our AH-tree with oversize objects: location
and oversize shelves construction. We insert all the objects based
on the centroids to corresponding cells. In a cell of a grid we mark
oversize objects. When we access a single cell C to process node

ν (we create a leaf, or recurse, or create H-tree without discretiza-
tion), we process all the oversize objects associated with C in two
steps as described below.

Location: For every oversize object Oc we traverse up the tree
to the root starting at node ν . We insert Oc into a temporary list
L(νinsert) associated with the first SKD-tree node νinsert we found
on the traversal path from ν to the root where the bounding box of
Oc is fully contained in the traversal box BT (νinsert).

Oversize Shelves Construction: When traversing up the tree
from SKD-tree node ν , after both child subtrees are constructed,
we check every node whether the list L(ν) of oversize objects is
empty. If the list contains some objects, we create a new tree T
over all objects in L(ν) in the traversal box BT (ν). We link T as a
ternary child of ν . In practice, we have to extend the nodes to allow
ternary child nodes1.

Figure 7: Oversize shelves concept: a part of H-tree with a single
ternary child for oversize objects.

A part of the AH-tree with ternary nodes containing oversize ob-
jects is depicted in Figure 7. We can prove that the oversize shelves
concept leads to correct DS. Each object Oi found in a cell C is used
in one of three cases:

• to create a leaf with one object, if a cell contains only a single
object,

• in a recursion that constructs a AH-tree rooted at ν for all
objects found in the cell,

• in list L(νinsert) of oversize objects of the node νinsert on the
path from ν to the root node.

If a list L(ν) containing oversize objects associated with node
ν is not empty, we construct a tree. We use recursively either the
same algorithm described in this section (e.g. Section 7) (if the
number of objects is high and the discretization pays off) or an al-
gorithm described in Section 6 (if the number of oversize objects is
small, which is typical case). The construction algorithm for over-
size objects, is also fully recursive, since the tree T2 constructed
over oversize objects in tree T1 can also invoke a construction of
tree T3 for oversize objects in any node of T2.

The discretization method for oversize objects has to be imple-
mented carefully. It may happen that the boxes of the objects only
overlap and the discretization does not separate objects, since the
centroids of the objects are located in a single cell. When we detect
such a case, we resort to O(N logN) algorithm described in Sec-
tion 5. This however happens rarely for densely occupied scene
regions, where all the objects span across the whole bounding box
of the scene. As a result the complexity of this algorithm stays
O(N logN) for the worst case, but in practice, exhibits expected
O(N log logN) for realistic input geometric data that overlap in ac-
ceptable way, please refer to [6].

1This still fits to 16 Bytes for a SKD-node if implemented efficiently.



8 TRAVERSAL ALGORITHM FOR H-TREE AND AH-TREE

The use of H-tree nodes requires making changes to the ray traver-
sal algorithm. We use an interval clipping algorithm along a ray
implemented with a stack similarly to kd-trees. A SKD-tree node
traversal forms two (disjoint or overlapping) intervals along the ray
from which the closest child is traversed first. The bounding nodes
only clip the current interval along a ray by two or six planes. The
SKD-tree nodes with ternary children first traverse the subtree con-
structed over oversize objects, since there is a higher probability of
ray object intersections.

9 RESULTS

We have implemented several ray tracing algorithms. We are con-
cerned with the construction times of the DS and the performance
of the ray tracing. As a reference we use standard kd-trees con-
structed with SAH and automatic termination criteria implemented
by following course notes [35] and [11]. For these kd-trees we
do not use split clipping [11, page 71] in order to minimize its con-
struction time. For the same reason we evaluate the cost model only
for a single axis. We would like to stress that our reference kd-tree
construction algorithm is highly optimized. If we compare its per-
formance to the recent publication [43] using the same scenes, our
kd-tree construction is typically twice as fast than the one in [43].
This is also since we do not use split clipping. The performance of
ray tracing with kd-trees is comparable to [35,43] for shooting indi-
vidual rays. In tests we used a PC equipped with AMD Athlon(tm)
64 X2 Dual Core Processor 3800+, but for both construction and
rendering we exploit only a single CPU core and single thread.

Table 1 shows the experimental results achieved. We use six
static scenes shown in Figure 1 and three benchmark scenes for an-
imated ray tracing (BART [18]). Three scenes have highly skewed
distribution of objects which concerns the positioning and sizes of
objects (scene “Conference Room”, “Robots”, and “Museum”).

The first row of results refers to kd-tree. The second row denoted
’UG’ refers to uniform grid with cubic-like cells where the num-
ber of voxels is five times higher than the number of objects. The
third row denoted ’BVH-Med’ is the bounding volume hierarchy
constructed with the spatial median in top-down fashion similarly
to [33]. However our implementation is highly optimized (by fac-
tor from 3 to 5 compared with [33]). The fourth row denoted by
’BVH-SAH’ is the bounding volume hierarchy extended by a dis-
crete evaluation of the SAH based cost model in 1D as described in
Section 5. The fifth row denoted ’H-tree’ follows Section 6 and the
last row denoted ’AH-tree’ follows Section 7.2.

From the speedups for the construction time we conclude that
construction of H-trees is by a factor of 4.3 (from 2.4 to 11.7) faster
than construction of kd-trees, the more complex scene the better
speedup. If we consider the total time needed to get the image
(construction + rendering), we achieve average speedup about 4.0
(from 1.12 to 6.23). The performance of ray tracing with H-trees is
comparable to kd-trees, H-trees are on average 3% faster (speedup
from 0.62 to 1.30).

The approximation of sorting on a higher level for AH-trees
leads to even faster construction times to the detriment of the ray
tracing performance, in particular for highly skewed distribution of
objects. While for relatively uniform distribution of objects in the
scene the performance of ray tracing is comparable to H-trees and
kd-trees, for highly skewed distributions of objects (scene confer-
ence room, robots, kitchen) the performance drops by factor 0.23.
The time for construction DS and time for ray tracing make a clear
trade-off; we cannot accelerate sorting required in the construction
of spatial hierarchy than O(N logN) while keeping the same perfor-
mance of traversal algorithm through this hierarchy.

The construction time for H-trees has low variance over all

frames of the animation for BART scenes. Our method then al-
lows us to render the images by ray casting (only primary rays) on
current PC hardware with dual core processors approximately at 3
to 5 frames per second, when the first CPU core is used to construct
data structures and the second CPU core ray traces an image.

We have been positively surprised by the results of Kay and Ka-
jiya’s algorithm redesigned in [33]. There are two reasons for its
good performance. Firstly, we have highly optimized the algorithm
and its implementation of both the construction and traversal code
given in [33], by about 300 to 500%. Secondly, some scenes shown
in Table 1 have relatively uniform distribution of object primitives.
In this case SAH-based construction is equivalent to spatial median
based construction, but it is about twice as fast as constructing a
hierarchy with a spatial median than that with the cost model based
on SAH. This is justified by the number of operations we have to
carry out that tightly corresponds to the source code.

10 CONCLUSION AND FUTURE WORK

In this paper we have focused on the fast construction of efficient
spatial hierarchical data structures for ray tracing with the appli-
cations in rendering via ray tracing. We have addressed the prob-
lem in several ways by: decreasing constants behind the big O no-
tation while keeping O(N logN) complexity, extending bounding
volume hierarchies in a top-down fashion by surface area heuris-
tics, relaxing bounding volume primitives from boxes to two-plane
slabs, and by designing a hybrid tree (H-tree) that efficiently com-
bines the properties of spatial subdivisions and bounding volume
hierarchies. Furthermore, we have proposed an approximate con-
struction of AH-trees via discretization of spatial sorting that de-
creases the algorithmic complexity from O(N logN) to expected
O(N log logN) assuming objects of limited size and distributions.
AH-trees handle objects of arbitrary sizes, in the worst case result-
ing in O(N logN) time complexity.

We tested both our novel data structures on six static scenes and
three animated scenes. The ray tracing based on H-trees handles
well uniform and also highly skewed distributions of objects in gen-
eral scenes. The performance of ray tracing with H-trees is some-
times slightly faster (by up to ≈ 33%) sometimes slower (by up to
≈ 33%) than that one for kd-trees (as the state of the art technique),
on average 3% faster. However, the speedup for the construction of
H-trees yields from 2.4 to 11.7, which allows application in inter-
active scenarios.

Thanks to discretization the AH-trees can be constructed up to
twice as fast as H-trees. However, the decreased precision of split-
ting plane selections decreases the performance of ray tracing for
highly skewed distributions of objects in the scene. On the other
hand, AH-trees seem to be perfectly suited to individual animated
meshes, where the performance for ray tracing is comparable with
kd-trees, but the construction is 4 to 20 times faster. In practice
we can construct efficient data structures for meshes with 100,000
to 200,000 objects in less than 300 milliseconds (hardware of year
2005) on a single CPU core (it is ≈ 3 frames per second).

The proposed data structures can be used in general visibility
preprocessing relying on spatial hierarchies for example in occlu-
sion culling where queries are also organized along lines as in ray
tracing. We plan to study more deeply the relation between preci-
sion of splitting plane determination and the performance of result-
ing data structures, since making this unusual trade-off is also an al-
gorithmic contribution described in this paper. It is almost obvious
that an efficient SSE implementation of a ray-packet traversal for
kd-trees [35,44] can be implemented for H-trees and AH-trees. Fur-
thermore, we assume the hierarchical version of ray casting [11,28]
for primary and shadow rays can also be implemented on the pro-
posed data structures.
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Method NNS[×103] NE [×103] NER[×103] NIT NT S NET S TC[s] TR[s] TT [s] s(TC) s(TR) s(TT )
Static Scenes

Scene - Conference Room - 17,936 triangles, 500×500 pixels
kd-tree 80.2 29.3 70.9 11.99 49.74 10.32 0.12 0.81 0.93 1.00 1.00 1.00
UG 179.3 89.6 75.2 25.88 63.28 63.28 0.07 0.95 1.03 1.71 0.85 0.90
BVH-Med 35.9 17.9 17.9 10.40 89.84 10.40 0.02 1.15 1.17 6.00 0.70 0.79
BVH-SAH 35.9 17.9 17.9 5.27 60.86 5.27 0.05 0.93 0.97 2.40 0.87 0.96
H-tree 42.1 17.9 17.9 5.50 54.41 5.50 0.05 0.78 0.83 2.40 1.03 1.12
AH-tree 41.7 18.0 18.0 34.51 141.60 34.51 0.03 1.62 1.65 4.00 0.50 0.56

Scene - Bunny - 69,451 triangles, 500×500 pixels
kd-tree 663.8 241.6 408.4 5.58 34.21 6.30 0.76 0.35 1.11 1.00 1.00 1.00
UG 663.8 345.3 245.1 16.42 32.65 32.65 0.26 0.38 0.64 2.92 0.92 1.73
BVH-Med 138.9 69.4 69.4 2.62 35.58 2.62 0.08 0.40 0.48 9.50 0.88 2.31
BVH-SAH 138.9 69.4 69.4 2.36 33.36 2.36 0.20 0.38 0.57 3.80 0.92 1.95
H-tree 153.3 69.4 69.4 2.80 26.65 2.80 0.20 0.30 0.49 3.80 1.17 2.27
AH-tree 153.3 69.4 69.4 3.57 37.85 3.57 0.11 0.39 0.50 6.91 0.89 2.22

Scene - Armadillo - 345,944 triangles, 500×500 pixels
kd-tree 2891.1 1076.7 837.4 1.94 29.04 5.30 3.73 0.30 4.03 1.00 1.00 1.00
UG 3447.8 1723.9 833.5 11.78 58.29 58.29 1.51 0.47 1.98 2.47 0.64 2.04
BVH-Med 691.9 345.9 345.9 1.25 24.35 1.25 0.44 0.30 0.75 8.48 1.00 5.37
BVH-SAH 691.9 345.9 345.9 1.13 23.60 1.13 1.07 0.29 1.36 3.49 1.03 2.96
H-tree 783.2 345.9 345.9 1.19 17.39 1.19 1.07 0.23 1.30 3.49 1.30 3.10
AH-tree 777.8 345.9 345.9 1.29 29.02 1.29 0.54 0.33 0.86 6.91 0.91 4.69

Scene - Dragon - 844,037 triangles, 500×500 pixels
kd-tree 4426.7 2213.3 3827.2 11.20 50.93 9.62 9.65 0.63 10.28 1.00 1.00 1.00
UG 4260.3 4260.3 3834.4 33.20 94.79 94.79 3.50 0.94 4.44 2.76 0.67 2.32
BVH-Med 1688.0 844.0 844.0 5.90 55.36 5.90 1.10 0.71 1.81 8.77 0.89 5.68
BVH-SAH 1688.0 844.0 844.0 5.49 51.61 5.49 2.62 0.68 3.29 3.68 0.93 3.12
H-tree 1921.3 844.0 844.0 6.43 44.75 6.43 2.60 0.55 3.14 3.71 1.14 3.27
AH-tree 1895.7 844.0 844.0 8.26 64.84 8.26 1.25 0.75 2.00 7.72 0.84 5.14

Scene - Happy Buddha - 1,051,739 triangles, 500×500 pixels
kd-tree 2675.6 1542.8 8114.4 28.18 25.04 4.50 14.73 0.72 15.45 1.00 1.00 1.00
UG 5306.6 5306.6 10613.1 38.12 38.60 38.60 5.79 0.79 6.58 2.54 0.91 2.35
BVH-Med 2103.5 1051.7 1051.7 8.38 44.54 8.38 1.37 0.68 2.05 10.75 1.06 7.54
BVH-SAH 2103.5 1051.7 1051.7 8.13 43.20 8.13 3.13 0.67 3.80 4.71 1.07 4.07
H-tree 2335.4 1051.7 1051.7 9.19 39.53 9.19 3.11 0.54 3.65 4.74 1.33 4.23
AH-tree 2314.6 1051.7 1051.7 11.56 56.51 11.56 1.50 0.72 2.22 9.82 1.00 6.96

Scene - Blade - 1,765,388 triangles, 500×500 pixels
kd-tree 14984.3 7492.2 3388.4 1.98 33.28 5.72 16.45 0.34 16.80 1.00 1.00 1.00
UG 8862.8 8862.8 5369.6 13.93 76.42 76.42 6.85 0.64 7.50 2.40 0.53 2.24
BVH-Med 3530.8 1765.4 1765.4 1.89 33.28 1.89 2.31 0.43 2.75 7.12 0.79 6.11
BVH-SAH 3530.8 1765.4 1765.4 1.76 30.76 1.76 5.78 0.41 6.19 2.85 0.83 2.71
H-tree 4119.5 1765.4 1765.4 1.87 21.89 1.87 5.71 0.28 5.99 2.88 1.21 2.80
AH-tree 4064.7 1765.4 1765.4 2.15 42.24 2.15 2.51 0.45 2.96 6.55 0.76 5.68

Dynamic Scenes
Scene - Robots - 71,580 primitives, 400×300 pixels

kd-tree 506.3 186.5 356.3 7.55 58.38 9.43 0.75 0.24 0.99 1.00 1.00 1.00
UG 358.9 358.9 229.4 1074.98 13.99 13.99 0.73 5.30 6.03 1.03 0.05 0.16
BVH-Med 143.2 71.6 71.6 9.56 115.97 9.56 0.11 0.54 0.65 6.82 0.44 1.52
BVH-SAH 143.2 71.6 71.6 5.15 81.68 5.15 0.23 0.41 0.64 3.26 0.59 1.55
H-tree 166.9 71.6 71.6 9.22 86.36 9.22 0.22 0.36 0.58 3.41 0.67 1.71
AH-tree 165.2 71.6 71.6 43.48 262.17 43.48 0.13 1.06 1.19 5.77 0.23 0.83

Scene - Museum - 75,687 primitives, 400×300 pixels
kd-tree 313.6 156.8 1782.3 10.17 30.68 4.48 2.57 0.16 2.74 1.00 1.00 1.00
UG 378.0 378.0 271.6 14.69 43.56 43.56 0.79 0.20 0.99 3.25 0.80 2.77
BVH-Med 151.4 75.7 75.7 8.94 49.96 8.94 0.10 0.25 0.35 25.70 0.64 7.83
BVH-SAH 151.4 75.7 75.7 9.81 57.84 9.81 0.22 0.28 0.50 11.68 0.58 5.48
H-tree 163.4 75.7 75.7 9.88 55.44 9.88 0.22 0.21 0.44 11.68 0.76 6.23
AH-tree 163.9 75.7 75.7 14.71 60.88 14.71 0.13 0.27 0.40 19.77 0.59 6.85

Scene - Kitchen - 110,540 primitives, 400×300 pixels
kd-tree 335.6 167.8 353.7 6.29 56.59 8.60 1.03 0.22 1.25 1.00 1.00 1.00
UG 555.1 555.1 233.7 278.16 38.57 38.57 0.79 1.36 2.15 1.30 0.16 0.58
BVH-Med 221.1 110.5 110.5 7.22 106.91 7.22 0.15 0.50 0.64 6.87 0.44 1.95
BVH-SAH 221.1 110.5 110.5 5.21 87.50 5.21 0.35 0.42 0.76 2.94 0.52 1.64
H-tree 250.2 110.5 110.5 7.58 71.42 7.58 0.34 0.35 0.69 3.03 0.62 1.81
AH-tree 251.5 110.5 110.5 29.82 205.32 29.82 0.19 0.86 1.04 5.42 0.26 1.20

Table 1: Results for six static scenes and three dynamic scenes. For dynamic scenes we report average values per frame. NNS is the number of
all nodes in the data structure, NE is the number of non-hierarchical (leaf) nodes, NER is the number of references to objects. Furthermore, NIT
is the number of ray-object intersection per ray, NT S is the number of traversed nodes per ray, NET S is the number of traversed non-hierarchical
nodes per ray. Timings are given as: TC is the time for the data structure construction, TR is the rendering time for 500×500 or 400×300 pixels
image, TT = TC +TR is the total time (construction + rendering time). Speedups are: s(TC) is the speedup for construction time with respect to
kd-trees, s(TR) is the speedup of the rendering only, s(TT ) is the total speedup for construction + rendering time.


