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Abstract—We investigate a novel approach of computing mulas denote a class of propositional lineage formulas hwhic
confidence bounds for top-k ranking queries in probabilistic can be factorized (in polynomial time) into a form where gver
databases withnon-materialized viewsUnlike related approaches, ,5riaple representing a database tuple appears at most once
we present an exact pruning algorithm for finding the top- th . it fficient fid tati
ranked query answers according to their marginal probabilities us a}galn permitling eflicient conndence cpmpu ations.
without the need to first materialize all answer candidates via ~ While safe plans focus on the characteristics of the query
the views. Specifically, we consider conjunctive queries over structure, and read-once formulas focus on the logical mepe
multiple levels of select-project-join views, the latter of which dencies among individual data objects, togtyle pruning
are cast into Datalog rules which we ground in a top-down g,5r5aches, which are the subject of this work, have recentl

fashion directly at query processing time. To our knowledge, b d It ti to add fid
this work is the first to address integrated data and confidence een proposed as an aiternative way 10 address confidence

computationsfor intensional query evaluations in the context of Computations in PDBs [5], [6], [7]. These approaches aim
probabilistic databases by considering confidence bounds over to efficiently identify the topkt most probable answers, us-

first-order lineage formulas. We extend our query processing ing lower and upper bounds for their marginal probabilities
techniques by a tool-suite ofscheduling strategiesbased on \yithout the need to compute the exact probabilities of these

selectivity estimation and the expected impact on confidence . . . -
bounds. Further extensions to our query processing strategies answers. Suciu et al. [3], [7] addressed this by approxmgati

include improved top-k bounds in the case whersorted relations the probabilities of the top- answers using Monte-Carlo-
are available as input, as well as the consideration ofecursive style sampling technigues. Olteanu and Wen [6] have further

rules. Experiments with large datasets demonstrate significant developed their idea of decomposing propositional forsula
runtime improvements of our approach compared to both exact ¢ geriving confidence bounds based on partially expanded,
and sampling-based top-k methods over probabilistic data. ordered binary decision diagrams (OBDDs) [8], which can
again be exploited by top-algorithms for early candidate
pruning. In particular the latter top-algorithm [6] can effec-
Managing uncertain data via probabilistic databases (fDRBively circumvent the need for exact confidence computation
has evolved as an established field of research in recerd,yeand can still—in many cases—return the top-ranked query
with a plethora of applications ranging from scientific datanswers in an exact way. However, as opposed toktop-
management, sensor networks, data integration, to kngelecépproaches in traditional DB5s [9], [10], none of the former
management systems [1]. Despite the polynomial runtinsaves upon the data computation step needed to find the answer
complexity for the data computation step involved in findingandidates. Thus, extensive data materialization is reduor
probabilistic answer candidates, confidence computations queries with multiple nested subqueries or over multiplele
these answers are known to b&-#ard already for fairly of potentially convoluted views.
simple select-project-join (SPJ) queries [2], [3]. Thuficent In this paper, we specifically focus on the case whienvs
strategies for confidence computation and early pruning afe not materialized We are aiming to identify the top-
low-confidence query answers remain a key challenge for ttenked query answers, based on their marginal probabilitie
scalable management of uncertain data. before all input tuples that would be needed to compute the
Recent work on efficient confidence computations in PDBgiery answers in an exhaustive way have been seen by the
has addressed this problem mainly from two ends, namejyery processor. Following the line of works on intensional
by restricting the class of queries, i.e., by focusing oguery evaluation [1], [11], [12], [13], we employ lineage
safe query plang2], or by considering a specific class offormulas to capture the logical dependencies between query
tuple-dependencies, commonly referred taead-once func- answers and the input tuples that were employed to derive
tions[4]. Intuitively, safe query plans denote a class of querighese answers via the views. In contrast to all lineage nsodel
for which confidence computations can directly be coupldahown to us, which consider lineage as purely propositional
with the relational operators and thus be performed by &ormulas [1], [14], and where each formula represents aeing
extensional query plan [1]. On the other hand, read-once fguery answer, we more generally introddirst-order lineage

I. INTRODUCTION
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Director|Movie D Actor [Movie D KnownFo;lﬂ(X,Crtme)
t1 [CoppolalApocalypseNow | 0.8 t4 [Brando |[ApocalypseNowO0.6 OR
to [Coppola|Godfather 0.9 t5 [Pacino |Godfather 0.3
ts [TarantingPulpFiction 0.7 tg [TarantingPulpFiction 0.4 v1 37 AND vy : 37 AND

WonAward Category

Mowie Award P Movie Category| p Category(Z,Crime)
t7 |ApocalypseNoyBestScript | 0.3 ¢1;|[ApocalypseNowVar 0.9 |BestDirector(X,2)
tg |Godfather BestDirector0.8 t¢12|Godfather Crime 0.5 WonAward(Z, BestPicture) Categorv(Z, Crime)
tg |Godfather BestPicture| 0.4 t13[PulpFiction Crime 0.9 ActedOnly(X.2)
t10[PulpFiction BestPicture| 0.9 t¢14[Inception Drama | 0.6 ’

v1 : VX,Y KnownFor(X,Y) :—3Z BestDirector(X,Z), Category(Z,Y)

v2 : VX, Y KnownFor(X,Y) :—3Z WonAward(Z, BestPicture), ActedOnly(X, Z), Category(Z,Y)
v3 : VX,Y BestDirector(X,Y) :— Directed(X,Y), WonAward(Y, BestDirector)

va : VX,Y ActedOnly(X,Y) = ActedIn(X,Y), =Directed(X,Y)

Fig. 1. A Movie Database and a Partially Grounded Lineagenkita for the QueryKnownFor(X, Crime)

formulas, where each formula may represent an esgteof probability of an individual query answer, or for an entire
guery answersOur main observation is that each intermediate set of query answers if not all query variables are bound
step of query processing can be unambiguously described andto constants yet. We show that both our lower and upper
thus be captured by such a first-order lineage formula, which boundsconverge monotonicallio the final confidences of

is our key for combining data and confidence computations the query answers as we gradually expand these formulas.

in a probabilistic database setting. We illustrate this bg t 4 oyr approach allows for plugging idifferent schedulers

following example. _ o which aim to select the subgoal (represented by a first-
~Example 1:Fig. 1 depicts a probabilistic database that con- order literal inside a lineage formula) that is most benefi-
sists of the extensional I‘elatIOIﬁBI’eCted ACtedln Ca.tegory cial for topﬂl{; pruning at each query processing Step_

and WonAward as well as views/;—v, in Datalog notation
which define the intensional relatioAsiownFor, BestDirector
and ActedOnly (We explicitly show the variable quantifiers
in the views as they will be needed to construct the first- ) . ]
order lineage formulas.) View,, for example, expresses that ® We present an extensive experimental evaluation and com-
directors are known for a movie category if they occur in the Parison to existing top- pruning strategies in probabilistic
relation BestDirectortogether with a movie of that category. ~databases. In particular, we are the first to report an
Likewise, viewr, expresses that actors are known for movies IMmproved runtime of our to-algorithm in a probabilistic
that won a best picture award, but only if they appear togethe database setting in comparison to full query .evaluatlons in
in the ActedOnlyrelation. Fig[ 1 also depicts a partially eval- & corresponding deterministic database setting.

uated lineage formula for the quedynownFor(X, Crime) Il. COMPUTATIONAL MODEL

over the views and base tuples of our example, thus askin
for directors or actors who are known forCrime movies.

e We extend our algorithm for the case whsgorted input
listsfor extensional relations are available, and for adapting
our top4 pruning techniques teecursive rules

qn this section, we introduce our data model, which fol-

As is shown by the figure, the lineage encodes a first-ochg\rNS the common possible-worlds semantics [15] over tuple-

formula that captures an intermediate step of processiag %ﬁgezflli '3\??)3;Frtziaﬁ;lrl]zt'gfdﬁi(giﬁj djgingovl\jfigrf g?;%nal
guery via the views in a top-down fashion. Bath and v, : P

have only been partially resolved to their body Iiteralsa(.akmOdel builds upon (and thus is consistent with) prior work on

p . - probabilistic databases [7], [16], [17], [18], and spea@illig
tﬁgb"gncg;el?sZﬁﬂ?r?e;?{grlggogy)’ but the remaining pairt upon the one considered in the contexuatertain databases

with lineage [12], [13], which is known to beclosed and

A. Contributions completeunder the common semantics of relational operations.

e To our knowledge, our approach is the first to considéy. Probabilistic Database
integrated data and confidence computatidos queries  We define atuple-independent probabilistic database with
that do not permit safe query plans and hence do not allmews DB = (7,V, p) as a triplet consisting of a set base
for efficient extensional query evaluations [1], [2]. Thustuples 7, a set ofviews V, and aprobability measurep :
early pruning of low-confidence answer candidates may — (0,1] which assigns a probability valug(t) to each
yield significantly reduced data computation and storagecertain base tuple < Tl Asin a regular database, we
costs in PDBs with non-materialized views. assume the set of base tuplEgo be partitioned into a set of

e We present a generic bounding approach for confidenc
P . 9 fi der Ii 9 ]E)p | 0 | quuaIIy a PDB is defined as a probability distribution oversgible
computations ovefirst-order lineageformulas. Our algo- instances of the database. In the case of a tuple-indeperi2B, this

rithm provideslower and upper boundgor the marginal distribution corresponds to the one defined by Equation (1).



extensional relationsThe probability valuep(t) denotes the tinguished”) variables, which we will refer to as tlgery
confidence in the existence of the tuple in the database, ivariables Again, every variable occurring in a negated literal
a higher valuep(t) denotes a higher confidence inbeing must also occur in at least one of the non-negated literals.
valid. Uncertainty of base tuples is modeled by associatifigiples of constants, which become bound to tuples of query
a Boolean random variabl&; with each base tuplé € 7. variables by the grounding procedure, yield the query arswe
The case wherk; = true denotes the probabilistic event that

t is present in the probabilistic database. We assume gjoball

unigue identifiers for base tuples. For convenience of imstat D. Lineage

and if it is clear from the context, we will ugeto denote both

the identifier and the random variabl associated with. In contrast to base tuples, which are assumed to be inde-
Possible Worlds SemanticsA possible worldy C T is a Pendent, a derived tuple is completely defined via (and thus
subset of base tuples ifi. Since we assume independencéependent of) the base tuples that were employed to deate th
among all Boolean random variables associated with tuplédple. Thus, when completely grounded against the basesupl
the probability P(W) of a possible world is defined as We Will refer to a derived tuple directly via its propositional

follows. lineage formulag;.
PW) = H p(t) H (1-p(t)) (1) As opposed to all probabilistic database approaches we are
tew tEW aware of (see, e.g., [1], [12], [14]), which consider lineag

Intuitively, all tuples in )V are valid (i.e.,true) in the only in propositional form, we more generally allow lineage
possible world W, whereas all tuples ir7\ W are false to be a well-formed formula@ over a restricted class of first-
(i.e., they are not contained ). In the absence of further order predicate logic. Awell-formed lineage formulamay
constraints restricting the set of possible worlds, eadfssu incorporate the Boolean constartisie and falsg Boolean
of base tuplesV € 27 forms a valid possible world. Hence,connectives A, V, —), Boolean (random) variables denoting
there are exponentially many such possible worlds. tuplest € T, existential quantifiersd), and first-order literals
B. Views of the form R7(X). Following common Datalog terminology,
we refer to a first-order literaR”(X) as asubgoa) whereR
Senotes the relation name aidis a tuple consisting of both

onstants and variables. Subgoals represent yet unedplore
(i.e., not yet grounded) parts of the lineage formula. We
employ adornmentsn the form of a superscript to denote
which variables of a subgoal are bound or free.

As opposed to propositional lineage, a first-order lineage
formula is able to capture any intermediate step of a top-
gown grounding procedure. If at least one query variable in a

rules; however, no extensional relation may occur as the hd§St-order lineage formula is not yet bound to a constar, th
literal of a rule. Variables occurring in the head literak ar'iN®@ge formula represents a (potentially empty) set ofryjue

universally quantified, while variables occurring only et 2nSWers. In the example in Fig. 1, the single query variable
body literals are existentially quantified (see, exg.andvs in X is not yet bound, and hence the lineage formula captures

Fig. 1). Following common Datalog conventions, each vaeiab®!! @answers which can be obtained by bindiligto constants.
that occurs in the head literal or in a negated body literal
must also occur in at least one of the positive body literals. ) . .
This form of safe Datalogprograms ensures that grounding™ Deductive Grounding & Lineage
terminates, and the variables are properly bound to cotsstan
after grounding the rules. For the rest of the paper, we W,g

use the termsiew andrule interchangeably. and uncertain base tuplés. The definition is based on two

We remark that we do not focus on safg query plans [2]_’ arr]g/vriting rules which follow the general course of a top-
hence we do not pose any further restrictions on the view,

Fown grounding procedure. We choose top-down groundin
shape. Also, we note that this class of safe, non-recurs 9 gp P 9 9

X . I5’\‘7fer bottom-up grounding [19] in order to be able to save
Datalog programs with negation corresponds to the class

queries expressible in unrestricted relational algeboavéver dta computations, i.e., o avoid_touching ba_se tupleswoilo .

without grouping and aggregations) [19]. For any given inr_anked answers whenever possible. In Set_tﬁorj V, we.prowde

stance of non-recursive Datalog rL;I'es thé data compleiaxityf'jl grounding algorithm, bas.e.d BLD resolution[19], which
’ implements these two rewriting rules.

of polynomial time in the size of the base tuples|[20]. _
poly ples [20] Rule (1) (Disjunctive Lineage)Let R?(X) be a subgoal, and

C. Queries let X be a tuple of constants and variables not bound.in
We consider aqueryas a conjunction of first-order literalsThen grounding?” (X ) over views) and base tupleg yields
whose arguments are tuples of constants and free (aka. “disdisjunction over the lineages of base tuples or tupleveléri

We represent a view € V as a rule in Datalog notation.
HenceV together with the set of base tuples (aka. “facts’
7T is also called aDatalog program We will denote the
deductive query processing steps applied for processieggth
rules asdeductive groundingSyntactically, a Datalog rule is a
disjunctive clause with a positive head literal and a cociiom
of both positive and negative literals in its body (see Fi¢prl
examples). The views’ head literals define a senténsional
relations An intensional relation may be defined via multipl

We next provide an inductive definition diheage which
obtained from grounding a subgoRl (X) over views)



from views that unify withR(X). worlds (and only those) for which a query answer exists. SLD
. . . resolution yields this “all-proofs” semantics [21].
V, (@) I;rf?j ;feérllt(eyr;s;ofnyale v Example 2:For the queryKnownFor (X, Crime) over the
unifies with R7(X) base tuples and views of Fig. 1, we observe that the head
literals of both v; and v, unify with this query literal.

®(R(X)) := Vi&i ¢ |fa£;s€e§<-teunnsi;%nsal Applying one step of SLD resolution along with the two
with R7(X) Iineage rewriting rulgs, Rule (1) and (2), to t_he query ater
false o else yields the following lineage formula (also depicted in Flg.
Rule (2) (Conjunctive Lineage).et RY(X) be a subgoal, and =V ( BEStDmCtor(X.’ 2) )
let X be a tuple of constants and variables not bound.in A Category(Z, Crime)
Further, let

v: VX' R(Xo) = 3X" L1(X1),..., Lo(X,) A ActedOnly(X, Z)

WonAward(Z, BestPicture)
=V
A Category(Z,Crime)

be a safe Datalog rule whose head litefa(X,) unifies
with R7(X), and let X,,...,X,, be tuples of constants In the nexttwo SLD steps, we resolve the two remaining inten-
and existentially quantified variables. Then groundiif X) sional subgoalsBestDirector(X,Z) and ActedOnly(X, Z)
againstr yields a conjunction over the lineages of literalvia viewsvs andvy, respectively.

Ly,...,L, in the body ofv. Directed(X, Z)
=V A WonAward(Z, BestDirector)

® (R (X;)) oif L = Ri) A Category(Z, Crime)

¢ (v) :=3X" (/\Z'—L...,n {_\ (@ (RZ(Xi))) oif L, =—R;

Query Processing.For a subgoaR” (X) over an extensional WonAward(Z, BestPicture)
relation R, only Rule (1) applies. It replace®”(X) by 3Z | N (Acted(X, Z) N —~Directed (X, Z))

either a disjunction of Boolean variables representingebas A Category(Z, Crime)

tuples or by the constari&lse if no such tuples exist (which Finally, by applying the first rewriting rule, Rule (1), to
corresponds to the common “negation-as-failure” semantig,e remaining extensional subgoals, we obtain the two
in Datalog [19]). If R is intensional, Rule (1) is utilized to possible query answer& nownFor(Coppola, Crime) and
create a disjunction over all rules whose head literal Lmiﬁ‘?(nownFor(Tamntmo, Crime) with lineages(ts A ts A t1s)

with the subgoal. Then, the subsequent application of RA)le Gnd (¢, A (tg A —t3) A ty3), respectivelyo
results in a conjunction of literals in each such rule’s hody

where existential quantifiers over the variables that odour F. Confidence Computations
the rule’s body are added to the lineage. In SLD resolution, g, 4 propositional lineage formulg, let M(¢) be the

this process is repeated by using the body literals of the ey o possible worlds (aka. “models”) satisfying Then, the
as new subqueries in the subsequent grounding steps.  aginal probability P(¢) of a derived tuple (represented by
Creating Query Answers. If a tuple of argumentsX of s nropositional lineage formuld) is defined as the sum of the

a subgoal R7(X) becomes bound to one or more tupleg,qpapilities of all the possible worlds for which evaluates
of constantsCi,...,C,, we distinguish two cases. First, 'fto true.

R7(X) relates to a top-level query literal, then each distinct .
tuple C; corresponds to a new query answer and its lineage P(e) = Z P) 3)
is copied correspondingly. Second Xf contains existentially
guantified variables, then these can be eliminated through\& note that the above sum may range over exponentially
standard quantifier elimination step [19]. In general, i€ thmany terms because there are exponentially many possible
bindings to a variableX in ® are Ci,...,C,, then we worlds. In fact, computing®(¢) is known to be#P-hard for
transformd into a disjunction of formula® y_., as follows. general propositional formulas [2], [3].
Alternatively, to avoid computing the sum of Equation (3),

AXP=Dpy—cy Vo V Px—c) @ we can compute marginals by incrementally decomposing the
In this case, no new answers are introduced, but the quaiopositional lineage formulas into variable-disjointbar-
fier elimination results in a corresponding disjunction fire t mulas [8], [22]. Generally, for two propositional formulas
lineage formula that is currently being processed. ¢, 1 over disjoint sets of independent random variables, the
Complete Lineage.In a non-probabilistic Datalog setting, itfollowing relationships hold:
is sufficient to find a single deductive proof for an answer )
to show that this answer exists. In contrast, for Dataloggul P A9):=P(¢) - P(¥) )
over probabilistic dataall such proofs over the given rules and PloVy):=1—(1-P(¢)) (1-P)) (5)
base tuples are required to correctly capture all the plessib P(=¢):=1— P(¢) (6)

WeM(¢)



If the above principles are not directly applicable¢tand Proposition 2: Let ¢, ¢ be two propositional, conjunc-
1 due to a shared variablg this variable can be eliminatedtive clauses. It holds, that(¢) C M(%) if and only if
by a Shannon expansiofThis is based on the equivalence Literals(¢) D Literals(v) [22].
The above statement expresses that adding literals to a con-
0= (A G—irue) V (Tt A Dpi—gaise) junction ¢ removes satisfying worlds fromA(¢).
where gy, ;-] denotes the restriction af to the case when Example 4:For the two clauses, A, andty, it holds that
t is true, i.e., all occurrences of in ¢j;_.¢., are substituted Literals(ti Ata) 2 Literals(t;) and thusM (t1Ata) CM(t1). ©
by the constantrue. Then, it holds that: Disjunctive Normal Form. Moreover, we say that a proposi-
tional formula¢ is in disjunctive normal forn{DNF), if it is
P(¢) = P(t) P(¢t—true) + (1 = P(t)) P(1i—saise)) (7)  a disjunction of conjunctive clauses.

Repeated Shannon expansions can increase the size of lffmma 1:For two propositional DNF formulag and <,
formula exponentially. This issue can be addressed to sofh80lds that
extent by incremental decompositions as shown in [22]. M(¢) C M(¢) < Vo' € ¢ W' € : M(¢') C M(y)

I1l. CONFIDENCEBOUNDS where¢’ andv’ are conjunctive clausgg2], [23].

In this section, we develop lower and upper bounds for tHde lemma establishes a relationship between two formolas i
marginal probability of any query answer that can be obthin®NF. If we can map all clauses’ of a formula¢ to a clause
from grounding a first-order lineage formula. We will prodee?’ of ¢ with more satisfying worlds, i.eM(¢') € M(¢'),
by constructing two propositional lineage formulag,, and theni has more satisfying worlds thap This mapping of
dup from a given first-order lineage formul@. Then, the clauses is established via Proposition 2.
confidences ofp;,,, and ¢,, will serve as lower and upper Example 5:For the propositional DNF formula = (t; A
bounds on the confidences of all query answers capturedtbyV (t1 At3) Vts, we can map each clausedrto a clause in
®. More formally, if ¢1,..., ¢, represent all query answersy = ¢V t4. Hencey) has more models thap, i.e., M(¢) C
we would obtain by fully groundingp, then it holds that: M(1p). ©

‘ Thus, Lemma 1 together with Propositioh 1 enables us to
Vie{l,...,n}: P(¢ow) < P(¢i) < P(dup) compare the marginal probabilities of propositional fokasu

Building upon results of [8]; [22], [23], we next develop twd" DNF based on their clause structure.
theorems, which (1) provide a mechanism for obtaining lower ANy propositional formula can equivalently be transformed
and upper bounds for formulas with first-order literals, anto DNF by iteratively applying De Morgan's law and there-
which (2) guarantee that these bounds converge monottynic&fter the distributive law.

to the marginal probabilitie®(¢;) of each query answep; Obsgr.vation 1:If a variable ¢ occurs exactly once in a

as we continue to ground. propositional formulap, then all occurrences of in the DNF
" . of ¢ have the same sign.

A. Bounds for Propositional Lineage The reason is that the sign of a variablehanges only by

As a first step, we relate the confidence of two propositiona$ing De Morgan’s law. However, when applying De Morgan’s
lineage formulasy and+) via their sets of modeld/1(¢) and law, no variables are duplicated. When utilizing the distrive
M(3), i.e., the sets of possible worlds over whighand+y law, variables are duplicated but preserve their signs.
evaluate tarue, respectively.

Proposition 1: Following [22], for two propositional lin-
eage formulag and+, it holds that: Analogously to the DNF for propositional formulas, any

M(p) S M) = P(¢) < P@) first-order formula can equivalently be transformed intergax
normal form by pulling all quantifiers in front of the formula

That is, M(¢) includes all possible worlds for which The remaining formula can again be transformed into DNF,
evaluates tdrue. Since we assum@/(¢) C M(v), the same \hich is then called prenex DNF (PDNF). For our following
worlds satisfy) as well. However, there might be more worldgonstructions on first-order formulas, we will assume thet-fir
fUlfl”lng ¢ but not(b. This mlght y|8|d more terms over WhiChorder formulas to be given in PDNFE. In generaL such a
the sum of Equation (3) ranges, and thus we obfaid) < normalization may lead to an exponential increase of the siz
P(y). of the formula. However, this construction is employed for

Example 3:Consider the two propositional formulas=  theoretical considerations only, and never actually néede
tiandy =ty Vio. From M(t) C M(ty V to) it follows  performed by the algorithms described in Section V.
that P(t1) < P(t1 V t2), which we can easily verify using  Assume we are given a first-order lineage formbijawhich
Equation(3).c is in propositional form except for one subga@l (X). We
Conjunctive Clauses.To turn Proposition [1 into upper andg|so require the grounding aR?(X) (see Section II-D) to
lower bounds, we proceed by considerit@njunctive clauses yield only propositional terms, i.e., Boolean variablefereng
in the form of ConjUnCtionS of prOpOSitional literals, wher to base tup|esl Hence, we referq]@, ..., ¢n as the proposi_
Literals(¢) denotes the set of literals contained in a clausetonal formulas, which we obtain by groundity (X) in @ 5.

B. Bounds for First-Order Lineage



Following ideas for propositional lineage formulas from[2 original query, and letb,, correspond to the lineage formula

Theorem 1 provides bounds on eakli);) by means ofbr. before the last grounding step, from which we obtain the final
Theorem 1:Given a first-order lineage formukag, which  propositional formulap.

is in propositional form except for one subgada! (X), and Theorem 2:Let ®4,...,®, denote a series of first-order

propositional lineage formulag, . . ., ¢,,, which are obtained formulas obtained from iteratively grounding a conjunetiv

from ®x by groundingR” (X). query via SLD resolution. Then, rewriting eadh to ¢; ;0.

We constructp,,, by substitutingR”(X) with and ¢, ., according to Theorem|1 creates a monotonic se-
e trueif R7(X) occurs positive in the PDNF by, or ries of lower and upper bound8(¢; iow), P(¢iup) for the

e falseif R7(X) occurs negated in the PDNF df. marginal probabilityP(¢). That is:

We constructpy,,, by substitutingR” (X) with 0 < P(1,00) <+ < P(dn,iow) < P(0)
e falseif R7(X) occurs positive in the PDNF cbp, or < Pldnup) <0 < Plrup) <1
e trueif R7(X) occurs negated in the PDNF @fy. Proof: We prove the theorem by induction, wheie

. . denotes the number of grounding steps taken.
Then |tv?(;kﬁ that.n}. Pbiow) < P(é1) < Pléuy) Basisi = n: P(¢n,iow) < P(¢) < P(¢nup) is covered by
e low) = = up one application of Theorem 1. That is, we have exactly one
Proof: Choose an arbitrary but fixed € {1,...,n}. occurrence of a subgod”(X) in @,, which we replace with
W.l.o.g., we assumé@p and¢; to be in PDNF. The PDNF of eithertrue or false to obtain ¢, o.,, and ¢, .,, respectively,
®x may consist of one or more clauses that conir{X), such thatP (¢, i,w) < P(¢) and P(¢p,up) > P(6).
which are either of the fornty A R7(X)) or (¢ A—~RY(X)). Stepi — i — 1. By the hypothesis, we are given a formdia
For each of these clauses; may contain a number (due towith bounds characterized b§(¢; .,) and P(¢;. 10w ).
Equation|(2)) of clauses of the forw A ). Here, the literals ~ Let us consider the grounding step which ledbto In ®;_,
¢ correspond to groundings a@t” (X). a subgoalR”(X) must have been processed from which we
When substitutingR”(X) by true or false as stated in obtained®;. Let ®;_; = ¥ R?(X) ¥/, where¥, ¥’ are a
Theorem 1®z's clauses turn intgy A true) and (¢ A false) — prefix and suffix of®; ;. One step of groundingz” (X) via
for the upper and lower bounds, respectively. SubsequyentB.D resolution thus leads to the formule; = ¥ & V',
considering the upper bound, we employ Proposition 2 whisthere @’ is a first-order formula that consists of one or
yields M (¢ A @) C M(¢ A true), since Literals(y) A ) 2 more subgoals or ground terms (including the constamis
Literals(¢ A true). Next, from Lemma 1 it follows that andfalsg). If we replace every occurrence & (X) in the
M(¢;) € M(bup). This matches exactly the precondition ofonjunctive clauses of the PDNF &;_; by @}, we obtain a
Proposition_1, from which we obtaif*(¢;) < P(¢$.,). The formula that is equivalent t@; (but which is not necessarily
case for the lower bouné(¢;,,,) follows analogously. m in PDNF), and whose clauses contain more terms than the
Example 6:For the first-order lineage formula clauses in®,_; and hence are more specific. From this, it
®p = t11 A 3X ActedIn(Brando, X) follows that applying Theprelﬁ 1lto al! _subgoals in the actual
PDNF's of ®; and ®;_; yields propositional formulag; .,
the upper bound is given by’(t11 A true) = P(ti1) = and ¢;—1,up, such thatM(¢; up) S M(pi—1.4p). That is,

p(ti1) and the lower bound isP(ti1 A false) = P(¢iup) < P(pi—1.4p)- Again, the case for the lower bounds
P(false) = 0. Thus, for any set of tuples, ..., ¢, matching P(¢; ..,) follows analogously. ]
3X ActedIn(Brando, X ), we havep = (t11 A (t1V -+ Vi,))
With 0 < P(t11 A (£1 V- V1)) < P(ti1). © V. SUBGOAL SCHEDULING
Since R7(X) has exactly one occurrence g, all oc- We now present our scheduling techniques for determining

currences ofR”(X) in the PDNF of®x have the same signthe benefit of exploring a particular subgoal. A major differ
(see Observation 1). Therefore, we replace all occurreatesence of Datalog to a traditional DB setting is the lack of éista
R(X) in the PDNF of®p by eithertrue or false query plan. Instead, we aim tdynamically and adaptively
More generally, for a general first-order lineage formuldetermine the best join order among the literals in a rule’s
®, which contains multiple distinct subgoals, we can applyody at each grounding step. As in a deterministic setting,
the substitution provided by Theorem 1 multiple times twe aim to ground subgoals with a low selectivity first. Given
obtain these lower and upper bounds. That is, we replacg eveur probabilistic setting, we moreover prioritize thosbguoals
occurrence of a subgoat”(X) in ® by one application of that also have a high impact on the confidence of the answers.
Theorem 1's substitution to obtaify,.,, and ¢, of ®. o o
Convergence of BoundsOur last step is to show that, forA- Selectivity Estimation
a fixed query answer (see Section II-E), the confidence Selectivity estimation aims at computing how many answers
bounds converge monotonically to the marginal probabdity are expected from the database when a subgoal is expanded.
the propositional lineage formul®(¢) with each SLD step. We employ a simple probabilistic model defined over both
The argument follows from the execution of the groundinthe view structure and the extensional relations, with jrete
procedure, but backwards. In the following, {&t denote the dence assumptions for joins and unions. We will express this



by a functionS : & — [0, 1] that reflects the likelihood of Lemma 2:For a propositional formulap, if we fix the
obtaining results whe® is grounded. confidences of all variables exceptit holds that
We recu.rswely define thesele_ctlvny S(®) of a lineage P(®) = ¢ p(t) + ¢
formula @ involving only extensional subgoals of the form
RY(X') with binding patterry and Boolean connectives, V'  wherec and¢’ are two constants that are independenp(@j.

and — as follows: Proof: One step of Shannon Expansion bresults in:
S(RY(X)) := s} if Ris extensional G=(t A Pt true]) V (78 A Bt fatse])
S(—®) = 1-9(9) N
S(/\Z'Lzl P;) = H?:1 S(®;) Plo) — P P
S(\/?:l (I)l) = 1 - H?:l (]_ — S((I)z)) (¢) _p(t) (¢[t—>true]) + (]- _p(t)) (¢[t—>false])

Here, s, denotes the selectivity of a subgaal (X) over an =P PO true)) = PGi—sotse))) + PlO1e—saisel)

extensional relatiom? given the binding pattern. To avoid ¢ <

computings}, for all constants that could possibly occuryn S ) ]

we approximate it as follows. Given an extensional relafipn ~ Thus, to compute the above derivative, it suffices to compute

we take the average amount of tuplesirthat match the free ¢ A general first-order lineage formulé, however, may

variables ofy grouped by the constants in this set of tuple§ontain subgoals which makes the above sensitivity arglysi

and divide this value by the size of the databiBe not directly applicable t@. Again, by substituting all subgoals
Example 7:Let us again consider the two intensional sugh ® according to Theorem 1, we can quantify the impact of a

goals BestDirector(X, Z) and ActedOnly(X, Z) (with bind- Subgoalk” (X)) on both the upper and lower boun$¢;o., ),

ing patterny; = {Y= Crime}), which we obtain from £ (¢up) in the corresponding propositional formulag.., ¢.,

grounding the querynownFor (X, Crime) over viewsy;—, Of ®. That is, to quantify the impact ak”(X) on the upper

in Fig./1. After resolving the subgoals to extensional iels bound, we substitute all other subgoals to obtajp and then

via the views, selectivity estimation proceeds as follofer COmMputec by substituting?”(X) once by the constarttue

the selectivity of BestDirector(X, Z), we obtain and once byalse . .
S (BestDirector™ (X, 7)) Example 8:Consider the first-order lineage formula
= S (Directed™ (X, Z) N WonAward"2(Z, BestDirector)) (BestDirector( Coppola, Godfather) A t13)
=2 . 4~ 0020 y tg A\ ActedOnly(Coppola, Godfather)

A Category( Godfather, Crime)

wherey, = {Y= Crime} and 2 results from the fact that

14 . .
Directed returns 3 tuples over a total ofi4 in the database with  the subgoals BestDirector(Coppola, Godfather),

when none of the arguments are bound. Inst&sdnAward ActedOnly(Coppola, Godfather), and Category(Godfather,
on average returnél + 1 + 2)/3 = 4/3 tuples (again over Crime) (which _corresponds tq the first query answer of Ex-
a total of 14 in the database) when the second argument plel2). The impact oBestDirector(Coppola, Godfather)

bound. For the selectivity aftctedOnly(X, Z), we obtain ~ ©" the formula’s upper bound is calculated as:
S (ActedOnly™ (X, Z)) 1— (1 — P(true) - p(t12))(1 — p(ty) - P(true) - P(true))—
= S (Acted"* (X, Z) A ~Directed”* (X, Z)) (1 = (1 — P(false) - p(t12))(1 — p(tg) - P(true) - P(true)))
=3 .(1-3)~0.168 =1-(1-1-05)(1-04-1-1)—
1 1 ' (1—(1-0-05)(1—04-1-1))
where againy, = {Y'= Crime} and 3 results from the fact =1 - 0.3 — (1-0.6) =0.3 o
thaf[ both Acted and Directed return 3 tl_JpIes over a total of ~ ganefit-oriented Subgoal Scheduling
14 in the database when none of their arguments are bound. ] ] ] )
Notice that the algorithm takes into account the propagatio VWe now define the combindsenefitof scheduling a subgoal
of binding patterns fromy,; to . at the subsequent groundingf?’ 0ccurring in a lineage formulé as
step via SLD resolution (see also Algorithm 2). | (B, RY)| + im0 (@, RY)|

ben(®, R") :
B. Impact of Subgoals ( ) 1+ S(RY)

In the next step, we aim to quantify the impact of th&hereim,,(®, RY) and im,,(®, R”) denote the impact of
confidencep(t) of a Boolean variablet on the marginal 127 on the upper and lower bound lineage formulasboive
probability P(¢) of a propositional formulap in which ¢+ obtain from Theorem|1. As an additional scheduling rule, we
occurs. Later, the scheduler will exploit this to choose trlways prefer intensional over extensional subgoals, ihaxee
subgoal with the highest impact on the confidence boundstbe choice among both types of subgoals, and we perform one
¢. Following results from [5], [25], this impact measure ca®LD step at a time to resolve the intensional subgoals. We

be captured by the following derivative. remark that, albeit this form of scheduling employs a fairly
OP(¢)  P(bpu—truc)) — P(Dpt—faise]) simple form of selectivity estimation for joins and uniotiis,
ap(t) = - ‘1 =0 - can be applied also to recursive Datalog rules, which is an

extension of our data model we consider in Section VI-B.



V. TOP-K ALGORITHM Next, we add all newly created subgoals (due to new answers
Our top# algorithm primarily operates on the |ineagé)rthe grounding of rules) t@. Last, the impact of all subgoals

formulas of answer candidates. Specifically, subgoals frgRRPearing in the same lineage formula &%,,,(X) might

all answer candidates are kept in a priority quéderdered Nave changed (see Section IV-B), and hence their priority in
according toben, the benefit function described in Section IviS updated. Algorithm 1 terminates when the threshold-thase
Moreover, we maintain two disjoint sets of answer candslat@"®aking condition (Line 7) of the algorithm holds, or when
Ayop and Acgnq. Following the seminal line of thresholdthe candidate sedl.,q runs out of valid answer candidates.
algorithms|[9],4,,, comprises the current top-answers with . S ]

respect to the lower confidence bounds, whilg,.; consists B- SLD Resolution with Lineage Tracing

of all remaining answer candidates whose upper confidencealgorithm [2 covers a single SLD step and is called as a
bounds are still higher than the worst lower bound of any @libroutine of Algorithm 1. During each SLD step, a subgoal
the top% answers. As an additional constraint, the toget RY(X) is replaced by new subgoals obtained from grounding
Ayop consists only of query answers whose lower bound {Be rules that defin&” (X), such that an updated version of all
greater than 0. This coincides with those answers, for whigiswers’ lineages that shaRe (X) is returned. The algorithm

all query variables have already been bound to constantseby ¢orresponds to Rules (1) and (2) introduced in Section II-E.
grounding procedure, i.e., those for which we have at le@st o

proof, but not necessarily all proofs yet. The candidate@et Algorithm 2 SLD(V, T, ®, R (X))

the other hand, may also hold answer candidates with a lower —

. . . [mput: Views V), uncertain tupleq, a first-order lineage formul@,
confidence bound of O, i.e., also those for which the query subgoalR” (X) containgd in® g

variables are not yet bound to constants. Output: Updated lineage formulé
1: if R extensionathen
Algorithm 1 Top-.(V, T, ®,, k) 22 M:={(t,v) | t andy unify to v, }
— - - - 3: else L
Input: Views V, uncertain tuples’, an intensional query,, and ' _ v=R"X)=body € V,R =R,
an integer valuek 4 M:=q () o
. . i ~ and~’ unify to v,
Output: Top-k answersA,,, for &, according to their lower confi- ,
dence bounds 5.0 M =0 theq _
1: Initialize a global priority queue) with subgoals fromd,, 6 ReplaceR™(X) in @ by false > Rule (1)
2: Aoy =10 > Current topk answers /- fetum &
3 Acana = {®4} > Answer candidates 8 for v € bindings(M) do _
4: while Agana # 0 do 9:  if o, binds new variables iry then
5 min-k := mine, e a,,, { P($i,i0u), 0} > Thm.[1 10 ® := expand® utilizing Eqn. (2) _ _
6: max-cand= maxae,c A, , P(Giup) > Thm.[1 1% L:=R"(X) > Created in previous step
7:  if min-k > max-candthen 12 else _
8: break 13: L:=R'(X)
9 (Ppest, R, (X)) == 14:  if R is extensionathen
arg max(q)iEAtopuAmnd’Ri(X>EQ)ben(<I>i, Ri(X)) 15: ReplaceL by \/@m)e]\lm:m X > Rule (1)
> Eqn./IV-C 16 else s .
10: @ := SLDY, 7, Bpest, R, (X)) > Alg. 2| 17: B :={body | (R™ (X):— body,vu) €M, yu = vu}
11:  UpdateAy,p, Acnd, andQ using ® 18: for body e Bdo _
12: return Ay, 19: Propaggteyu to bindings inbodys literals
20: ReplaceL in ® by \/bodyEB body > Rules (1),(2)
21: return @

A. Top-k with Dynamic Subgoal Scheduling

At each processing step, the scheduler chooses the cyrrentlif R is extensional, we collect all matching tuples id
best subgoal?] ., (X) from the subgoal queu® (Line(9), (Line 2). Otherwise, we gather all rules whose relatiBh
and, by using Algorithm 2, we expand the lineage formuleoincides withR and whose bindings’ unify with v (Line[4).
of this subgoal by performing a single SLD step over bothhus, the sef/ holds a pair consisting of both the rule and the
VY and 7 (Line[10) as described in Section II-E. Then, weinified bindingsy,. If there are no matching rules or tuples,
updateA;,,, and A .4 (Line[11) due to the following. First, that isM = (), we replace the subgoal glseand return the
expandingR]._ ., (X) can change the confidence bounds of thaltered® (Line|7). The loop in Line 8 ranges over all different
answer. Second, if there are no matcheR}g,,(X), neitherin bindings ~;; obtained from unifying the subgoal’s bindings
7 nor inV, the answer candidates corresponding?fo,,(X) ~ with the bindingsy” occurring in the head of a matching
may be deleted (and hence their lineage evaluatedals®). rule. If v binds more variables tham, then in Line[ 10 we
And third, if a query variable was bound to more than oni@stantiate the quantifiers that hold the newly bound vée&b
constant, one or more new tdpanswer candidates are createcaccording to Equation|2. Afterwards, the copy’(X) of

We iteratively updatey (Line[11) to keep the subgoals itRY(X) is saved inL (Line[11). If R*« matches tuples from
contains consistent withl,,, and A..q. First, all subgoals 7, we replacel in @ by a disjunction of variableg; in Line
occurring in deleted answer candidates are dropped fgom 15. Otherwisel is substituted by a disjunction over the bodies



of all rules with headR"« (Line[20). For an illustration of the applying an independent-project operation [1] to the retat
algorithm, we refer the reader to Example 2. as a preprocessing step (for all required projection®)pf

C. Final Result Ranking B. Recursive Rules

Many applications that employ tdpgueries require a com- In t_his subsectipn, we dgvelop an algqrithmi_c extensio.n for
plete ranking of the tof answers. When Alg.]1 terminateshandling rules with recur_swely defined mtgnsmnal rgias.
the marginal probabilities of the tap-answers may however 10 ensure a safe semantics for the deductive grounding, steps
not be known exactly—but only the bounds thereof. Similarly® require the set of recursive rulesto bestratifiable [19].
to the strategies in [6], we can tackle this either by iteedgi ' hat is, it is not allowed to deduce a tuple from its own
running topi,..., top% queries, where an inspection of thegation. Stratifiability is a pure syntactic check on thb ru
k answer sets yields the desired ranking, or by continuifgfucture and can be done prior to query processing. We
the grounding and decomposition steps until the confident@mark that the combined complexity (in terms of the size

bounds of the tog: answers do not overlap anymore. of both the data and the rules) for Datalog programs with a
single, recursive, non-linear rule is known to be EXPTIME-
VI. EXTENSIONS complete [20]. Although we cannot improve upon this worst-

A. Sorted Input Relations case bound, we argue that téppruning may also help to

Iimprove the runtime for many recursive queries in practice.
Recursion poses a challenging problem for any grounding
%Ilgorithm. In our setting, the lineage formula of an answer
uld grow infinitely large if a cycle arises within the rules
us, we develop a theorem ensuring the finiteness of a lmeag
mula ®, without altering the possible worlds that satigfy

A powerful technique in tog approaches for extensional
data [9], [10], [26] is to store each relation in decreasindeo
of local ranks and to use the rank at the current scan positi
as an upper bound for the ranks of all remaining tuples. Alo
with a monotonic score aggregation function, this allows f(% ;

the computation of monotonically decreasing upper bourids formally define acycle to be a subgoal” (X) whose

answer candidates. In our setting, we rank query answers D expansion results in a formulg containing subgoals
their marginal probabilities which generally does not teso = = > 2
gina’ p g y (X)), ..., R(X,), such that (v, X1),- -, (n, X»)

to such a monotonic form of score aggregation. However, ghnd or contain the same constants(asX) but the names
extensional relation? may still contain a large amount of ! ' (8sX), bu

tuples that unify with a subgodt”(X). For example, for the of the unbound variables in thE;’s may differ.

: — Theorem 3:Let ® = URY(X)¥' be a lineage formula
top-2 answers .OfDm."ecw‘i(X’ Y)in Fig. L, we cpuld FeIUM 2nd let the expansiod?em(RW()(_())) of RY(X) yield the cycle
only ¢t; andty if Directed is sorted in decreasing order of N . )

5 U, (RY(X))¥'. Then it holds that:

p(t;). In Theorem 1, we replaced a subgdl(X) by true (or o _ ,
falseif the subgoal is negated) to obtain an upper bound for the Uy (RT (X)W = WP ey (P (R (X)) W
lineage formula containing” (X). This corresponds to using  In other words, expanding a cycle more than once does not
1 as a conservative upper bound ¥ (X), sinceP(true) = change the validity of a lineage formula, which agrees with
1. According to the following observation, we can lower thigarlier results in the context of probabilistic Datalog][27
upper bound for a subgoal over an extensional relation by Proof: W.l.o.g., we assume all formulas to be in prenex
exploiting this decreasing order of local ranks. form. Furthermore, le®’ v \/,(®/ A R?(X)) be the DNF

Observation 2:Let R be an extensional relation with tuplesof ®.,(R”(X)). That is®’ is a DNF formula,®; are con-
sorted in decreasing order pft;), let R7(X) be a subgoal junctions of literals and both do not contai® (X). Due
over R, and letty,...,t, be tuples inR that unify with to stratification, RY(X) must occur positively in the above
RY(X). Then, when groundind?” (X), we can set the upper formula. Now, we can rewrit&®., (®.,(R*(X)))¥’ through
confidence bound of each tuple € R, with i < j < m, to the following series of algebraic transformations:

min{p(t1),...,p(t;)}, if and only if all unbound variables of U,y (Bey (R (X))
RY(X) are query variables and there exist no data duplicates = V'V V(9] A (D V V(@] ART(X)))W
in R with respect toR"(X). = Vo'V V(D) A @)V, (PY APT ART(X))W

The key for this observation is that binding a query variable = 0o’ VYV, (@] NPT ARY(X))Y )
yields a new query answer, while binding existentially guan= ¥’ v \/,(®/ A ® A R (X)) Vv V(87 A @7 A RY (X))’
tified variables introduced by a rule results in a disjunctio =¥V V(97 A RY(X)) VV,; (] AP A RY(X))¥’
in the lineage formula due to a quantifier elimination. This =we' vV, (¥ AR(X))
disjunction may result in a higher confidence than that of the = Vo, (R (X)W
individual input tuples due to Equatioh (5). For example, ifhis again yields the form of the first expansion Bf (X).
two independent tuples, ¢, with a confidence of).5 each [ |

match a single subgoal with non-query variables, then weln our implementation of SLD resolution with dynamic
obtain1 — (1 — 0.5) - (1 — 0.5) = 0.75 > 0.5. Thus, using subgoal scheduling, we block those subgoals that form the
an upper bound 06.5 would be incorrect. Also notice thatroot of a cycle in our priority queue. If all subgoals in the
this strategy assumeB not to contain any data duplicatedineage formula of an answer are blocked, no new results can

with regard toR”(X). If necessary, we can enforce this bye obtained, and we replace their lineageddige
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Fig. 2. Experiments

VII. EXPERIMENTS instantiate into up to 1,000 individual queries by inseytian-

We performed our experiments on an 8-core Intel Xeon 2dPmly chosen constants into the query literals, each emgpati
GHz with 48 GB of RAM. Our probabilistic top-algorithm €ast50 answerg. We report average runtimes over warm disk
(coined ProbTop#) is implemented in Java and utilizes &aches by running each query 4 times in a row, and report the
PostgreSQL DB as storage backend. We employ two wefiverage runtime of the latter 3 runs. For presentation pargo
known PDB engines for comparison purposéisyBMS and We depict runtimes of only up to 100 seconds for all systems.
Tria3, both computing all answers and their probabilitiesB Results

Additionally, we implemented the multi-simulation algiwrin _ _ )
of [5], which we refer to asMultiSim We also include Safe vs. Unsafe Queriesie first focus on four established

comparisons against a purely deterministic DB, denoted @4ery classes [1], [2], [6] in PDBs, namelyon-repeating
PostgreSQL by storing confidence values in all relations bufierarchical repeating hierarchical non-repeating head-hie-
omitting the actual confidence computations. FrestgreSQL rarchical, and general unsafejueries, which are represented
baseline thus serves also as a lower bound for any pro¥-guery patterng)1, @2, @3 and @4, respectively. Only the
bilistic top-k approach, including [5], [6], that requires fullfirst class is guaranteed to yield safe query plans while the

data materialization (and lineage tracing for intensianadry |atier are unsafe. Each query pattern is instantiated oL
evaluations). different queries. The run-times for the IMDB dataset with

_ o uniform confidences are shown in Fig. 2(a). Additionally th

A. Data Sets, Confidence Distributions, and Queries table in Fig! 2(g) depicts the fraction of base tuples our/op

We use two different datasets based on IMDB and YAG@pproach reads in comparison to the number of base tuples
The IMDB movie dataset consists of téerelationsdirected necessary for computing all answers. For the non-repeating
acted edited produced written, and hasCategorysumming hierarchical queries¢f1), our top£ approach outperforms all
up to 26 - 10° tuples. Since this data is deterministic, weystems including the deterministic one. We mainly benefit
sample confidence values from three synthetic distribstiorbecause by far not all base tuples need to be scanned, and con-
namelyuniform Gaussian andexponentialto instantiate our fidences can be computed extensionallf. contains repeated
probabilistic relations. Our second dataset is derivednfrorelations and the gains in data computations are partially
the YAGO [28] knowledge base with32 - 10° tuples, where diminished by the Shannon expansions needed for computing
we also sample confidences using a uniform distribution. Vlee bounds(@3 includes expensive data computations caused
consider 15 different query patterdgsl-Q15, which we each by a subquery that is shared among all answers. Since the

2MayBMS: http://maybms.sourceforge.net/ 4All details on the query patterns and views can be found i4.[29
3Trio: |http://infolab.stanford.eduftrio/ Q12 and Q13 have been omitted due to space constraints.


http://maybms.sourceforge.net/
http://infolab.stanford.edu/trio/

subquery is not required to rank the results, our approasélectivity and impact based scheduler.

reads only very few base tuples (Fig. 2(g)). Here, our top- Recursive Rules.Fig. 2(e) depicts how our top-approach

k algorithm successfully terminates and even outperformperforms over the YAGO data set using the recursive query
the deterministicPostgreSQLbaseline.Q4 contains both a patterns@14 and 15, which were instantiated t80 queries
subquery with expensive confidence computations as well @ach. We also include the runtime forfall grounding ap-

a subquery with major data computations. However, we camoach corresponding to an SLD grounding algorithm with
prune answers even before the expensive subqueries are flileage tracing, but without any confidence computatigjist
evaluated. computes ancestors of persons utilizing HasChildrelation,

Performance Factors.We next highlight the different fac- whereasQ15 asks for politicians of nations by transitively
tors that impact how our top-approach performs against thefollowing the hasSuccessorelation. ForQ14, the runtime
competitors. Fig. 2(b) depicts runtimes on the IMDB datas@tcreases withk, since more ancestors being generations away
for four additional query pattern@5, @6, Q7, and@8, which from the queried person have to be computed. ®56 our
are again instantiated intd,000 queries each@5 yields top-k algorithm takes the same amount of time for &k,
exactly one proof for each answer candidate and no prunisigce more thar0 politicians are known per country and are
in terms of omitting a proof is possible for ProbTépAlso, ranked in the top-0 results. For the full grounding, the lineage
the proof involves an existentially quantified variable @i computation of all answers becomes very expensive.
limits the use of sorted input lists. As a result, our system Table Materialization. Last, we compare our top-ap-
computes most answers aMhyBMSs bottom-up grounding proach against a full materialization of all answers peried
and confidence computation of all answers is much moby both MayBMS and PostgreSQL We focus on howk
efficient. In @6, the possibility of three proofs per answemaffects runtime. The query asks for directors of comedies
enables pruning and the lack of existential quantifiers puts (a join between théirected and hasCategoryrelations with
approach in favor of the other@7 is a join of two existential uniform confidences). Our top-system computes the top-
relations and shows where sorted input lists can provideranked answers for different’s. In contrast,MayBMS and
significant performance gain. Finally, B8 each answer has PostgreSQLfully materialize a table containing all results
up to three proofs, however the joined relations overlap aEostgreSQLignores the confidence computation). Whers
thus require Shannon expansions. Since we repeatedlyenvbklow 50, our top% approach outperforms the others, but for
these expansions to determine the bounds, the advantagekmfer values, the bookkeeping overhead starts dominating
top-k pruning even out with the competitors.

Confidence Distributions. We so far focused on a uniform
distribution of confidences. We now explore how different The increasing amount of uncertain data that has become
distributions can affect our performance by comparing un&vailable practically at Web-scale has driven the devetagm
form, Gaussian, and exponential. Fig. 2(c) shows the esulf various PDB engines in recent years, including systekes i
for a join query on two existential relations over IMBD. AsMystiQ [7], Trio [12], MayBMS [16], Orion [18], PrDB|[30]

k grows, uniform yields the highest increase in runtime whiland SPROUT [1]7]. Works on intensional query evaluation such
exponential has the slowest grow, since only few tuples haas [1], [11], [12], [13], [14] capture the lineage of derived

high confidences. Gaussian shows a jumg at 40 as more tuples as propositional formulas and have been shown to be
answer candidates with similar probabilities are found. closed and complete under the relational model. To cope with

Subgoal Schedulingln Fig./2(d), we evaluate our schedul-the challenge of confidence computations, recent work has
ing techniques based on selectivity estimati@elj and im- concentrated on exploitingafe query plan§2] and read-once
pact (mp.). Our first baseline for dynamic subgoal schedulindprmulas[4]. In [2], Dalvi and Suciu define a dichotomy of
called “most-bound-first’NIBF) (aka. “bound-is-easier’ [19]), query plans for which confidence computations can be done
chooses the subgoal with the maximum number of argumeeither in polynomial time or are7hard.
bound at each SLD grounding step. For the second baselineAs an alternative way of addressing confidence computa-
we obtained PostgreSQL’s static query plan for these qudigns in PDBs, topk style pruning approaches [5], [6], [26],
patterns and forced our system to adhere to this plan (d&nof8l], [32] have also been proposed. In relational DBs, the
as Postgres’ Plain. Using the YAGO dataset, the three querynost influential work for extensional data still is given by
patterns9, @10, and@11 were instantiated by 100 constantshe family of threshold algorithms by Fagin et al. [9]. A
each. We order the query patterns by increasing nestindrdeppmprehensive survey of tdp-queries for relational DBs
of their subqueries, such thg9, @10, and Q11 come with is found in [10]. Most topk approaches in the context of
nesting depths of 1, 2, and 3, respectively. kg9, MBF PDBs consider separate numerical attributes for captuhiag
is outperformed by bothPostgres’ Planand our scheduler confidence and the score of tuples, where usually only the
using selectivity estimatesSél). Here, adding the impact latter is used for ranking. Soliman et al. [31] were the ficst t
calculations to the selectivity estimation does not yiefty a discuss the different semantics, under which one can irgerp
performance gains, but even results in slight losses. Hewewncertain topk queries, and thus defindd-topK queries and
when moving to the higher nesting depths(@f0 and @11, U-kRanksjueries. Recently, Ge et al. [32] studied the tradeoffs
the impact calculations start improving the performancthef between reporting tuples of a high score and tuples of a high
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probability, while Li et al. [[26] proposed a unified ranking [e]

approach by considering both the scores and the confidences.

Very few works however consider tdp-ranking by the
marginal probabilities of query answerse Bt al. [5] compute
the top% answers using MCMC-style sampling techniques .
Recently, Olteanu and Wen [6] have further developed the idé ]
of decomposing propositional formulas for deriving boundg9]
based on a combination of partially expanded OBDDs a?l%]
shared query plans, which can be exploited by kopi-
gorithms for early candidate pruning. While our bounding
approach for propositional formulas is related to [6], wereno [11]
generally consider bounds for first-order lineage formutass [12]
having a focus on the case when views are not materialized.
In [33], static probability thresholds are incorporatetbithe 13]
query algebra, allowing for early pruning of low confidencé
tuples. However, their approach does not support full icaat
algebra with duplicate elimination. For computing bounds d14]
confidences of lineage formulas, there are four major worh%]
[81, [22], [23], [24], which we build upon for the propositial
lineage case. However, we found the consideration of firﬁ-
order lineage formulas to be a key to also incorporate pguni
techniques known from managing extensional data [9] info7]
a PDB setting. Very recently, MarkoViews [34] have been
proposed, which allow for encoding complex tuple correladi 18]
via views and provide an interesting translation from Marko
Logic Networks[35] to unions of conjunctive queries [1] ove
a tuple-independent PDB for query evaluation.

(7]

(19]
(20]

21
We presented efficient processing strategies for prolstibili 2]
top-, queries which lie at the intersection of probabilistid22]

databases and probabilistic Datalog. Our approach does
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