KreYol

Maximilian Dylla
Chalmers University of Technology

8th KeY Symposium 2009, Speyer



Creol

e executable OO modelling language
e verifyable by design

o developed at University of Oslo



1st Level of Parallelism: System

distributed system of objects O

message passing

communication via (co)interfaces e

asynchronous communication: Q
Network

label ! obj.meth(x,y); OIZI

R ™

label ? (y) ™~ Q

only assumption on network: Q

Messages are delivered eventually



2nd Level of Parallelism: Inside an Object

thread creation on method invocation
at most one active thread at the time

communication via shared variables

cooperative scheduling
= release points:

thread thread

release

await exp

no assumptions on scheduling strategy



Verifying Release Points

Class Invariant

e ensures properties of class attributes

e must hold on a thread switch
= must hold at release points

= /nVcIass = UA(Vattr)(/nVclass - <W>¢)
= (release; w)¢

e no other threads considered



Verifying a Method

e interface contains contract

e class invariant must hold before and after

op meth(in a:lInt; out b:Bool) = body

=> Premetn(a) A Inveass — (0ody) Postmern(b) A Invijass



Verifying Method Calls

History H

e system wide communication log containing:

e invocation messages
e completion messages
® new object messages

e ordered by sending time (the only known order)

Verifying a Class

e local history H/this as a ghost class attribute
= class invariant talks about local history

e ensure well formedness of history (similar to reachable state)

Verifying the System

e given H /o for all classes, show IH



Local History

Problem: Arriving messages

e sending time unknown
e sending order unknown

e number unknown

Solution

e model the history with uncertainty

e assert existance of seen messages



Local History: Example

ho < hy < hy < h3
—Invoc(hg, 1) Invoc(hy, 1) Invoc(hy, 1) Invoc(hs, I)
—Comp(ho, 1) —Comp(hy, 1) Comp(hs, 1)
T llo.m(x); - 1?(y);

= 0 # null AN Wf(hpre)
- WF(h) A Bpre < h A Invoc(hpre, 1)
= {H := some h. A =lInvoc(h, 1) A =Comp(h, 1) (Prem(x) A (w)@)

= (1to.m(x); w)¢

= 1 % null AN WFf (hpre) A Invoc(hpre, )
= {H := some h.Wf(h) A hpre < h A Comp(h, )} Ua(y)(Post(y) — (w)¢)

= (17(y); w)¢o



Hybrid History

Problem

e only assertions about existance of messages possible

Solution
e order of sending is known
= divide into: Hopj and Heend 1= Hopj/this_,

o keep Hsend as a list of messages (between release points)
e drawback: consistency checks



Hybrid History: Example

hog < hoy < hoo
—Invoc(hog, I) Invoc(hoy, 1) Invoc(hoy, 1)
—Comp(hog, ) —Comp(hoy, ) Comp(hoy, 1)
hs hs := hs F [this — o0.m(x)]

T llo.m(x) 1?(y)



Case study

class Buffer
begin
var cell
with Any
op put(in a :Any)

Any;

op get(out b :Any)

end

await cell=null;

cell:=a
await celll=null;
b:=cell; cell:=null

o Prepy(a) :=a # null
o Postget(b) := b # null

o Inve = <

—cell = null « (H & [caller < this.put()])
Acell = null — (H & [caller < this.get(

3]]) ) APrefix(H)



KeY Creol

Prototype Version

e standart rules working
e rules involving histories need adaptions to specific example

e no support for program loading



Implementation

package lines of code (without strategy)
key.lang.clang | 25k

key.lang.creol | 3k

key.java 50k

e data structures created on startup
= configurable, but slower

e one class for AST
= e.g. ifThenElse.getCondition() impossible

e pushdown automaton for AST creation



Good luck with HATS!



