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Abstract

Learning the parameters of complex probabilistic-relational models from la-
beled training data is a standard technique in machine learning, which has
been intensively studied in the subfield of Statistical Relational Learning
(SRL), but—so far—this is still an under-investigated topic in the context
of Probabilistic Databases (PDBs). In this paper, we focus on learning the
probability values of base tuples in a PDB from query answers, the latter of
which are represented as labeled lineage formulas. Specifically, we consider
labels in the form of pairs, each consisting of a Boolean lineage formula and
a marginal probability that comes attached to the corresponding query an-
swer. The resulting learning problem can be viewed as the inverse problem
to confidence computations in PDBs: given a set of labeled query answers,
learn the probability values of the base tuples, such that the marginal prob-
abilities of the query answers again yield in the assigned probability labels.
We analyze the learning problem from a theoretical perspective, devise two
optimization-based objectives, and provide an efficient algorithm (based on
Stochastic Gradient Descent) for solving these objectives. Finally, we con-
clude this work by an experimental evaluation on three real-world and one
synthetic dataset, while competing with various techniques from SRL, rea-
soning in information extraction, and optimization.
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1 Introduction

The increasing availability of large, uncertain datasets, for example aris-
ing from imprecise sensor readings, information extraction or data integra-
tion applications, has led to a recent advent in the research on probabilis-
tic databases (PDBs) [44]. PDBs adopt scalable techniques for processing
queries expressed in SQL, Relational Algebra or Datalog from their deter-
ministic counterparts. However, already for fairly simple select-project-join
(SPJ) queries, computing a query answer’s confidence (in the form of a mar-
ginal probability) remains a #P-hard problem [10, 11]. Consequently, the
majority of scientific works in this area is centered around the problem of
confidence computation, either by investigating tractable subclasses of query
plans [10, 11, 44], various knowledge compilation techniques [27], or general
approximation techniques [35]. Moreover, nearly all the works we are aware
of (except [43]) assume the probability values of base tuples stored in the
PDB to be given. Although stated as a major challenge already in [8] by
Dalvi, Ré and Suciu, to this date, incorporating user feedback in order to
create, update, or clean a PDB has been left as future work.

Problem Setting. In this work, we address the problem of updating or
cleaning a PDB by learning tuple probabilities from labeled lineage formulas.
This problem can be seen as the inverse problem to confidence computations
in PDBs: given a set of Boolean lineage formulas, each labeled with a prob-
ability, learn the probability values associated with the base tuples in this
PDB, such that the marginal probabilities of the lineage formulas again yield
their probability labels. The labels serving as input can equally result from
human feedback, an application running on top of the PDB, or they can be
obtained from a provided set of consistency constraints.

Related Techniques. Our work is closely related to learning the parame-
ters (i.e., weights) of probabilistic-relational models in the field of Statistical
Relational Learning (SRL) [20]. SRL comes with a plethora of individual
approaches (such as Markov Logic [31, 38, 42] and the probabilistic logic-
programming engine ProbLog [13]), but due to the generality of these tech-
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niques, which are designed to support large fragments of first-order logic,
it is also difficult to scale these techniques to database-like instances with
millions of tuples and hundreds of thousands of labeled training data.

In this work, we focus on relational (and probabilistic) data as input
and on the core operations expressible in Relational Algebra or Datalog for
query processing. Moreover, we show how our approach relates to previously
raised problems of deriving PDBs from incomplete databases [43] as well as
of enforcing constraints over PDBs via conditioning the base tuples onto a
given set of consistency constraints [30]. We illustrate our setting by the
following running example.

Example 1 Our running example resembles a simple information-extraction
setting, in which we employ a set of textual patterns to extract facts from var-
ious Web domains. The references to the involved patterns and the domains,
as well as the extracted facts, together form the PDB shown in Figure 1.1.
The fact captured by t1, for example, expresses that Spielberg won an Acade-

WonPrizeExtraction
Subject Object Pid Did p

t1 Spielberg AcademyAward 1 1 0.6
t2 Spielberg AcademyAward 2 1 0.3

BornInExtraction
Subject Object Pid Did p

t3 Spielberg Cinncinati 3 1 0.7
t4 Spielberg LosAngeles 3 2 0.4
UsingPattern FromDomain
Pid Pattern p Did Domain p

t5 1 Received ? t8 1 Wikipedia.org ?
t6 2 Won ? t9 2 Imdb.com ?
t7 3 Born ?

Figure 1.1: An Example Probabilistic Database

myAward with a given probability value of 0.6, which we consider to be pro-
vided as input to our database. In contrast, the probability values of tuples in
UsingPattern and FromDomain are unknown (as indicated by the question
marks). We thus are unsure about the reliability—or trustworthiness—of the
extraction patterns and the Web domains that led to the extraction of our
remaining facts, respectively. Learning these missing probabilities from the
labeled query answers is the subject of this work.

By joining the WonPrizeExtraction relation with UsingPattern and From-
Domain on Pid and Did, respectively, we can see that t1 was extracted from
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Wikipedia.org using the textual pattern Received. We express this join via
the following deduction rule (in Datalog-style syntax):

WonPrize(S,O)←

WonPrizeExtraction(S,O,Pid ,Did)
∧UsingPattern(Pid , P )
∧FromDomain(Did , D)

 (1.1)

Analogously, we reconcile fact extractions for the BornIn relation as follows:

BornIn(S,O)←

BornInExtraction(S,O,Pid ,Did)
∧UsingPattern(Pid , P )
∧FromDomain(Did , D)

 (1.2)

Instantiating (i.e., “grounding”) Rules (1.1) and (1.2) against the base tuples
of Figure 1.1 yields the new tuples BornIn(Spielberg, Cinncinati), BornIn(
Spielberg, LosAngeles), and WonPrize(Spielberg, AcademyAward). Figure
1.2 shows these new tuples along with their Boolean lineage formulas, which
capture their logical dependencies between the base tuples and the query an-
swers derived from the two rules. A closer look at the new tuples reveals,

Figure 1.2: Example Lineages and Labels

however, that not all of them are correct. For instance, BornIn(Spielberg,
LosAngeles) is wrong, so we label it with a probability of 0.0. Moreover, Won-
Prize(Spielberg, AcademyAward) is likely correct, hence we label it with the
probability of 0.7, as shown on top of Figure 1.2.

Given the probability labels of the query answers, the goal of the learning
procedure is to learn the base tuples’ unknown probability values for UsingPat-
tern and FromDomain (while leaving the ones for WonPrizeExtraction and
BornInExtraction unchanged), such that the lineage formulas again produce
the given probability labels.
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Contributions. We summarize the contributions of this work as follows.

• To our knowledge, we present the first work to tackle the problem of
learning unknown (or missing) tuple probabilities from labeled lineage
formulas in the context of PDBs. In Section 4, we formally define the
learning problem and analyze its properties from a theoretical perspec-
tive.

• We formulate the learning problem as an optimization problem, devise
two different objective functions for solving it, and discuss both in
Section 5.

• In Section 6, we present a learning algorithm based on stochastic gradi-
ent descent, which scales to problem instances with hundreds of thou-
sands of labeled lineage formulas and millions of tuples to learn the
probability values for.

• In Section 7, we show that the learning problem supports prior prob-
abilities of base tuples which can be incorporated to update and clean
PDBs. Also, we demonstrate how the learning problem relates to both
learning from incomplete databases [43] and to applying constraints to
PDBs [30].

• Additionally, we perform an experimental evaluation on three different
real world datasets as well as on synthetic data, where we compare our
approach to various techniques based on SRL, reasoning in information
extraction, and optimization (Section 8).
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2 Related Work

In the following, we briefly review a number of related works from the areas
of SRL and PDBs, which we believe are closest to our work.

Machine Learning. Many machine learning approaches have been applied
to large scale data sets (see [3] for an overview). However, the scalable
methods tend to not offer a declarative language (similar to deduction rules
or constraints) in order to induce correlations among facts, as queries and
lineage do in PDBs. In contrast, in the subfield of SRL [20], correlations
between ground atoms (similar to base tuples in PDBs) are often induced
by logical formulas (similar to lineage in PDBs). But in turn, these meth-
ods lack scalability. Markov Logic Networks (MLNs) [38] (and their learning
techniques [31, 42]) employ an open-world assumption, which often results
in a blow-up of the grounded network structure that does not permit their
application to database-like instance sizes. Even a very efficient implementa-
tion of MLNs, Markov: TheBeast [39], hardly meets the scalability required
for typical database applications (see Section 8.3). As opposed to MLNs,
ProbLog [13] computes marginal probabilities while relying on SLD proofs,
which makes it very similar to PDBs with their closed-world assumption and
deductive grounding techniques. However, also its learning procedure [24]
does not scale well to large datasets (see Section 8.3). Within the ProbLog
framework, [23] proposes the most similar approach to ours, however lacking
both a theoretical analysis and large scale experiments.

Probabilistic Databases. A number of PDB engines, includingMystiQ [7],
MayBMS [2], and Trio [5] have been released as open-source prototypes in
recent years and found a wide recognition in the database community. Due
to the hardness of computing probabilities for query answers, a main focus of
these approaches lies in finding tractable subclasses of query plans [10, 11, 44]
for which probability computations can be done in polynomial time. A re-
cent trend towards scalable inference is compiling Boolean formulas into more
succinct representation formalisms such as OBDDs [27]. [9, 27], for example,
develop an entire lattice of algebras and compilation techniques over unions
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of conjunctive queries (UCQs) which admit for polynomial-time inference.
MarkoViews [26] represent another step towards SRL, by introducing uncer-
tain views, where probabilities depend on the input tuples, but—still—do
not tackle the actual learning problem. Also, [45] circumvent the learning
problem by enabling direct querying of Conditional Random Fields via a
probabilistic database.

Creating Probabilistic Databases. There are very few works on the ac-
tual creation of PDBs. The authors of [43] induce a probabilistic database by
estimating probabilities from a given incomplete database, a problem that is
subsumed by our definition of the learning problem (see Section 7.4). Enforc-
ing consistency constraints by conditioning [30] the base tuples of a PDB onto
these constraints allows for altering the tuple probabilities (see Section 7.2).
Similarly, incorporating user feedback by means of probabilistic data inte-
gration, as in [29], focuses on consistent, Boolean-only labels. Moreover, we
believe that our approach has a strong application to data cleaning (see [18]
for an overview) in deterministic databases, where the goal is to identify (and
hence to create) a consistent database from inconsistent input data.

Lineage and Polynomials. The theoretical analysis of our learning prob-
lem (Section 4) is based on computing marginal probabilities via polynomi-
als. The approach presented in [21] exhibits similarities to our encoding, but
focuses on representing operations expressible in Relational Algebra as semir-
ing operations over polynomials. [21] does not investigate an application of
this encoding for probabilistic inference. Similarly, the authors of [21] used
semirings over polynomials to model provenance, where lineage is a special
case. Also, Sum-Product Networks [37] investigates tractable graphical mod-
els by representing these as polynomial expressions with polynomially many
terms.
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3 Data Model:
Probabilistic Databases

In this section, we introduce our data model which follows the common
possible-worlds semantics over tuple-independent probabilistic databases with
data lineage [44], which has been shown to provide a closed and complete rep-
resentation formalism for uncertain relational data [5, 44]. Throughout this
section, we assume that the probabilities of all base tuples are known and
fixed (i.e., even for t5–t9 in Example 1). Later, in Section 4 we relax this
view to address the learning problem.

Probabilistic Database. We define a tuple-independent PDB [44] (T , p)
as a pair consisting of a finite set of base tuples T and a probability mea-
sure p : T → [0, 1], which assigns a probability value p(t) to each uncertain
tuple t ∈ T . As in a regular database, we assume the set of tuples T to
be partitioned into a set of extensional relations (see, e.g., WonPrizeExtrac-
tion, BornInExtraction, UsingPattern, and FromDomain in Example 1). The
probability value p(t) of a base tuple t thus denotes the confidence in the ex-
istence of the tuple in the database, i.e., a higher value p(t) denotes a higher
confidence in t being valid.

Possible Worlds Semantics. Assuming independence among all base tu-
ples T , the probability P (W , T ) of a possible world W ⊆ T is defined as
follows.

P (W , T ) :=
∏
t∈W

p(t)
∏

t∈T \W

(1− p(t)) (3.1)

In the absence of any constraints (compare to Subsection 7.2) that would
restrict this set of possible worlds, any subsetW of tuples in T forms a valid
possible world (i.e., a possible instance) of the probabilistic database. Hence,
there are exponentially many possible worlds.

Deduction Rules. To support query answering over a PDB, we employ de-
duction rules (see, e.g., Rules (1.1) and (1.2)), which we express in a Datalog-
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style notation. Syntactically, these deduction rules have the shape of a logical
implication with exactly one positive head literal and a conjunction of both
positive and negative literals in the body. Formally, the class of rules we
support corresponds to safe, non-recursive Datalog programs, which also co-
incides with the core operations expressible in the Relational Algebra [1].

Definition 1 A deduction rule is a logical rule of the form

R(X̄)←
∧

i=1,...,n

Ri(X̄i) ∧
∧

j=1,...,m

¬Rj(X̄j) ∧ Φ(X̄ ′)

where

1. R denotes the head literal’s intensional relation, whereas Ri, Rj may
refer to both intensional or extensional relations;

2. n ≥ 1, m ≥ 0, thus requiring at least one positive relational literal;

3. X̄, X̄i, X̄j, and X̄ ′ denote tuples of variables and constants, where
Var(X̄), Var(X̄j), Var(X̄

′) ⊆
∪
iVar(X̄i);

4. Φ(X̄ ′) is a conjunction of arithmetic predicates, such as “ =”, “ ̸=”,
and “<”.

Lineage. We utilize data lineage to represent the logical dependencies be-
tween base tuples in T and tuples derived from the deduction rules (see
Figure 1.2). In analogy to [44], we consider lineage as a Boolean formula.
It relates each derived tuple (or “query answer”) with the base tuples T via
the three Boolean connectives ∧, ∨ and ¬, which reflect the semantics of the
relational operations that were applied to derive that tuple. Specifically, we
employ

• a conjunction (∧) that connects the relational literals in the body of a
deduction rule;

• a negation (¬) for a negated relational literal in the body of a deduction
rule;

• a disjunction (∨) whenever the same tuple is obtained from the head
literals of two or more deduction rules;

• a Boolean (random) variable t representing a tuple in T whenever an
extensional literal matches this tuple.
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For a formal definition of lineage in combination with Datalog rules and
relational operators, we refer the reader to [17] and [44], respectively.

Example 2 In Figure 1.2, the conjunctions (∧) are obtained from instanti-
ating the conjunctions in Rule (1.1) and (1.2)’s bodies. Because two instances
of Rule (1.1) result in the same derived tuple WonPrize(Spielberg,AcademyAward),
the disjunction (∨) connects the two instantiated bodies. ⋄

Marginal Probabilities. We say that a possible worldW entails a Boolean
lineage formula ϕ, denoted as W |= ϕ, if it represents a satisfying truth
assignment to ϕ by setting all tuples in W to true and all tuples in T \W to
false. Then, we can compute the marginal probability of any Boolean formula
ϕ over tuples in T as the sum of the probabilities of all the possible worlds
W ⊆ T that entail ϕ:

P (ϕ) :=
∑

W⊆T ,W|=ϕ

P (W , T )︸ ︷︷ ︸
via Eq. (3.1)

(3.2)

To avoid the exponential cost involved in following Equation (3.2), we
can—in many cases—compute the marginal probability P (ϕ) directly on the
structure of the lineage formula ϕ [44]. Let T (ϕ) ⊆ T denote the set of base
tuples occurring in ϕ.

Definition Condition

P (t) := p(t) t ∈ T
P (

∧
i ϕi) :=

∏
i P (ϕi) i ̸=j ⇒ T (ϕi)∩T (ϕj)=∅

P (
∨
i ϕi) := 1−

∏
i(1− P (ϕi)) i ̸=j ⇒ T (ϕi)∩T (ϕj)=∅

P (ϕ ∨ ψ) := P (ϕ) + P (ψ) ϕ ∧ ψ ≡ false
P (¬ϕ) := 1− P (ϕ)

(3.3)

The first line captures the case of a base tuple t, for which we return its
attached probability value p(t). The next two lines handle independent-
and and independent-or operations for conjunctions and disjunctions over
variable-disjoint subformulas ϕi, respectively. In the following line, we ad-
dress disjunctions for two subformulas ϕ and ψ that denote disjoint proba-
bilistic events (known as disjoint-or [44]). The last line finally handles nega-
tion. Equation (3.3)’s definition of P (ϕ) runs in linear time in the size of ϕ.
However, for general Boolean formulas, computing P (ϕ) is #P-hard [10, 44].
This becomes evident if we consider Equation (3.4), called Shannon expan-
sion, which is a form of variable elimination that is applicable to any Boolean
formula:

P (ϕ) := p(t) · P (ϕ[t→true]) + (1− p(t)) · P (ϕ[t→false]) (3.4)
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Here, the notation ϕ[t→true] for a tuple t ∈ T (ϕ) denotes that we replace all
occurrences of t in ϕ by true (and false, respectively). Repeated applications
of Shannon expansions may however result in an exponential increase of ϕ.
The hardness of computing P (ϕ) for general propositional formulas has been
addressed by various techniques [44], such as knowledge compilation [27] or
approximation [35].

Example 3 Consider P ((t1∧ t5∧ t8)∨ (t2∧ t6∧ t8)) and assume p(t5) = 0.5,
p(t6) = 0.6, and p(t8) = 0.8 in addition to the known tuple probabilities
shown in Figure 1.1. First, Line 3 of Equation (3.3) is not applicable, since
t8 occurs on both sides. So we apply a Shannon expansion, yielding p(t8) ·
P ((t1 ∧ t5) ∨ (t2 ∧ t6)) + (1− p(t8)) · P (false) = 0.8 · P ((t1 ∧ t5) ∨ (t2 ∧ t6)),
where we used P (false) = 0.0. Next, we apply Line 3 of Equation (3.3) which
results in 0.8 · (1− (1−P (t1 ∧ t5)) · (1−P (t2 ∧ t6))). Then, two applications
of Line 2 deliver 0.8 · (1− (1− p(t1) · p(t5)) · (1− p(t2) · p(t6))) which can be
simplified to 0.3408. ⋄

Computing Marginal Probabilities via Polynomials. For the theoret-
ical analysis of the learning problem presented in Section 4, we next devise
an alternative way of computing marginals via polynomial expressions.

As a preliminary, we start from the observation that the possible worlds
over a set of independent base tuples T must form a probability distribu-
tion [44].

Proposition 1 For a probabilistic database (T ,p) the possible worlds form
a probability distribution: ∑

W⊆T

P (W , T )︸ ︷︷ ︸
via Eq. (3.1)

= 1

Proof 1 We prove the proposition by induction over the cardinality of T .
Basis i = 1:

∑
W⊆{t} P (W , {t1})

(3.1)
= p(t) + (1− p(t)) = 1

Step (i− 1)→ i: Let T = {t1, . . . , ti}, where ti is the new tuple.∑
W⊆T P (W , T )

(3.1)
=

∑
W⊆T

∏
t∈W p(t) ·

∏
t∈T \W(1− p(t))

= (p(ti) + (1− p(ti)))︸ ︷︷ ︸
=1

·
∑

W⊆T \{ti}

∏
t∈W

p(t) ·
∏

t∈T \W

(1− p(t))︸ ︷︷ ︸
=1 by hypothesis
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Following Proposition 1, we may thus reduce the number of terms in
Equation (3.2)’s sum by considering just tuples T (ϕ) that occur in ϕ.

Proposition 2 We can rely on tuples in T (ϕ), only, in order to compute
P (ϕ) by writing:

P (ϕ) =
∑

V⊆T (ϕ),V |=ϕ

P (V, T (ϕ))︸ ︷︷ ︸
via Eq. (3.1)

(3.5)

Proof 2

P (ϕ) =
∑

W⊆T 1ϕ(W) · P (W)

=
(∑

V⊆T (ϕ) 1ϕ(V ) · P (V )
)
·
(∑

V⊆(T \T (ϕ))P (V )
)

︸ ︷︷ ︸
=1 by Prop. 1

Equation (3.5) expresses P (ϕ) as a polynomial whose terms are defined
by Equation (3.1), and the variables are p(t) for t ∈ T (ϕ). The polynomial’s
degree is limited as follows.

Corollary 1 A lineage formula ϕ’s marginal probability P (ϕ) can be ex-
pressed by a multi-linear polynomial over variables p(t), for t ∈ T (ϕ), with a
degree of at most |T (ϕ)|.

Proof 3 By inspecting Proposition 2, we note that the sum ranges over sub-
sets of T (ϕ) only, hence each term has a degree of at most |T (ϕ)|.

Example 4 Considering the lineage formula ϕ ≡ t1∨t2, the occurring tuples
are T (ϕ) = {t1, t2}. Then, it holds that {t1, t2} |= ϕ, {t1} |= ϕ, and {t2} |= ϕ.
Hence, we can write P (ϕ) = p(t1) ·p(t2)+p(t1) ·(1−p(t2))+(1−p(t1)) ·p(t2).
Thus, P (ϕ) is a polynomial over the variables p(t1), p(t2) and has degree
2 = |T (ϕ)| = |{t1, t2}|. ⋄
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4 Learning Problem

We now move away from the case where the probability values of all base
tuples are known. Instead, we intend to learn the unknown probability values
of (some of) these tuples (e.g. of t5–t9 in Example 1). More formally, for a
tuple-independent probabilistic database (T , p), we consider Tl ⊆ T to be
the set of base tuples for which we learn their probability values. That is,
initially p(t) is unknown for all t ∈ Tl. Conversely, p(t) is known and fixed for
all t ∈ T \Tl. To be able to complete p(t), we are given labels in the form of
pairs (ϕi, li), each containing a lineage formula ϕi (i.e., a query answer) and
its desired marginal probability li. We formally define the resulting learning
problem as follows.

Definition 2 We are given a probabilistic database (T , p), a set of tuples
Tl ⊆ T with unknown probability values p(tl), for tl ∈ Tl, and a multi-set of
given labels L = ⟨(ϕ1, l1), . . . , (ϕn, ln)⟩, where each ϕi is a lineage formula
over T and each li ∈ [0, 1] ⊂ R is a marginal probability for ϕi. Then, the
learning problem is defined as follows:

Determine: p(tl) ∈ [0, 1] ⊂ R for all tl ∈ Tl
such that: P (ϕi) = li for all (ϕi, li) ∈ L

Intuitively, we aim to set the probability values of the base tuples tl ∈ Tl
such that the labeled lineage formulas ϕi yield the marginal probability li. We
want to remark that probability values of tuples in T \Tl remain unaltered.
Also, we note that the Boolean labels true and false can be represented as
li = 0.0 and li = 1.0, respectively. Hence, Boolean labels resolve to a special
case of Definition 2’s labels.

Example 5 Formalizing Example 1’s problem setting, we obtain T := {t1,
. . . , t9}, Tl := {t5, . . . , t9} with labels ((t1 ∧ t5 ∧ t8) ∨ (t2 ∧ t6 ∧ t8), 0.7), and
((t3 ∧ t7 ∧ t9), 0.0). ⋄
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Unfortunately, the above problem definition exhibits hard instances. First,
computing P (ϕi) may be #P-hard [10], which would require many Shannon
expansions. But even for cases when all P (ϕi) can be computed in polyno-
mial time (i.e., when Equation (3.3) is applicable), there are combinatorially
hard cases of the above learning problem.

Lemma 1 For a given instance of Definition 2’s learning problem, where all
P (ϕi) with (ϕi, li) ∈ L can be computed in polynomial time, deciding whether
there exists a solution to the learning problem is NP-hard.

Proof 4 We encode the 3-satisfiability problem (3SAT) for a Boolean for-
mula Ψ ≡ ψ1∧· · ·∧ψn in CNF into Definition 2’s learning problem. For each
variable Xi ∈ Var(Ψ), we create two tuples ti, t

′
i whose probability values will

be learned. Hence, 2 · |Var(Ψ)| = |Tl| = |T |. Then, for each Xi, we add
the label ((ti ∧ t′i) ∨ (¬ti ∧ ¬t′i), 1.0). The corresponding polynomial equation
p(ti)p(t

′
i) + (1− p(ti))(1− p(t′i)) = 1.0 has exactly two possible solutions for

p(ti), p(t
′
i) ∈ [0, 1], namely p(ti) = p(t′i) = 1.0 and p(ti) = p(t′i) = 0.0. Next,

we replace all variables Xi in Ψ by their tuple ti. Now, for each clause ψi of
Ψ, we introduce one label (ψi, 1.0). Altogether, we have |L| = |Var(Ψ)| + n
labels for Definition 2’s problem. Each labeled lineage formula ϕ has at most
three variables, hence P (ϕ) takes at most 8 steps. Still, Definition 2 solves
3SAT, where the learned values of each pair of p(ti), p(t

′
i) (either 0.0 or 1.0)

correspond to Xi’s truth value for a satisfying assignment of Ψ. From this,
it follows that the decision problem formulated in Lemma 1 is NP-hard.

Moreover, from Lemma 1 it follows that finding a solution to Definition 2’s
learning problem is FNP-hard (see [36]).

Besides computationally hard instances, there might also be inconsistent
instances of the learning problem. That is, it may be impossible to define
p : Tl → [0, 1] such that all labels are satisfied.

Example 6 If we consider Tl := {t1, t2} with labels L := ⟨(t1, 0.2), (t2, 0.3),
(t1 ∧ t2, 0.9)⟩, then it is impossible to fulfill all three labels at the same time.

From a practical point of view, there remain a number of questions re-
garding Definition 2. First, how many labels do we need in comparison to
the number of tuples for which we are learning the probability values (i.e.,
|L| vs. |Tl|)? And second, is there a difference in labeling lineage formulas
that involve many tuples or very few tuples (i.e., |T (ϕi)|)?

These questions will be addressed by the following theorem. It is based
on Corollary 1’s computation of marginal probabilities via their polynomial
representation. We write the learning problem’s conditions P (ϕi) = li as
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polynomials over variables p(tl) of the form P (ϕi) − li, where tl ∈ Tl and
the probability values p(t) for all t ∈ T \Tl are fixed and hence represent
constants.

Theorem 1 If the labeling is consistent, Definition 2’s problem instances
can be classified as follows:

1. If |L| < |Tl|, the problem has infinitely many solutions.

2. If |L| = |Tl| and the polynomials P (ϕi) − li have common zeros, then
the problem has infinitely many solutions.

3. If |L| = |Tl| and the polynomials P (ϕi)− li have no common zeros, then
the problem has at most

∏
i |T (ϕi) ∩ Tl| solutions.

4. If |L| > |Tl|, then the polynomials P (ϕi)− li have common zeros, thus
reducing this to one of the previous cases.

Proof 5 The first case is a classical under-determined system of equations.
In the second case, without loss of generality, there are two polynomials
P (ϕi) − li and P (ϕj) − lj with a common zero, say p(tk) = ck. Setting
p(tk) = ck satisfies both P (ϕi) − li = 0 and P (ϕj) − lj = 0, hence we have
L′ := L\⟨(ϕi, li), (ϕj, lj)⟩ and T ′

l := Tl\{tk} which yields the theorem’s first
case again (|L′| < |T ′

l |). Regarding the third case, Bezout’s theorem [14], a
central result from algebraic geometry, is applicable: for a system of polyno-
mial equations, the number of solutions (including their multiplicities) over
variables in C is equal to the product of the degrees of the polynomials. In our
case, the polynomials are P (ϕi) − li with variables p(tl), tl ∈ Tl. So, accord-
ing to Corollary 1 their degree is at most |T (ϕi) ∩ Tl|. Since our variables
p(tl) range only over [0, 1] ⊂ R, and Corollary 1 is an upper bound only,∏

i |T (ϕi) ∩ Tl| is an upper bound on the number of solutions. In the fourth
case, the system of equations is over-determined, such that redundancies like
common zeros will reduce the problem to one of the previous cases.

Example 7 We illustrate the theorem by providing examples for each of the
four cases.

1. In Example 5’s formalization of Example 1, we have |Tl| = 5 and |L| =
2. So, the problem is under-specified and has infinitely many solutions,
since assigning p(t7) = 0.0 enables p(t9) to take any value in [0, 1] ⊂ R.

2. We assume Tl = {t5, t6, t7}, and L = ⟨(t5∧¬t6, 0.0), (t5∧¬t6∧t7, 0.0), (t5∧
t7, 0.0)⟩. This results in the equations p(t5) · (1 − p(t6)) = 0.0, p(t5) ·
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(1−p(t6)) ·p(t7) = 0.0, and p(t5) ·p(t7) = 0.0, where p(t5) is a common
zero to all three polynomials. Hence, setting p(t5) = 0.0 allows p(t6)
and p(t7) to take any value in [0, 1] ⊂ R.

3. Let us consider Tl = {t7, t8}.

(a) If L = ⟨(t7, 0.4), (t8, 0.7)⟩, then there is exactly one solution as
predicted by |T (t7)| · |T (t8)| = 1.

(b) If L = ⟨(t7 ∧ t8, 0.1), (t7 ∨ t8, 0.6)⟩, then there are two solutions,
namely p(t7) = 0.2, p(t8) = 0.5 and p(t7) = 0.5, p(t8) = 0.2. Here,∏

i |T (ϕi) ∩ Tl| = |T (t7 ∧ t8)| · |T (t7 ∨ t8)| = 4 is an upper bound.

4. We extend this example’s second case by the label (t5, 0.0), thus yielding
the same solutions but having |L| > |Tl|. ⋄

In general, a learning problem instance has many solutions, where Defini-
tion 2 does not specify a precedence, but all of them are equivalent. The
number of solutions shrinks by adding labels to L, or by labeling lineage
formulas ϕi that involve fewer tuples in Tl (thus resulting in a smaller inter-
section |T (ϕi) ∩ Tl|). Hence, to achieve more uniquely specified probabilities
for all tuples tl ∈ Tl, in practice we should obtain the same number of la-
bels as the number of tuples for which we learn their probability values, i.e.,
|L| = |Tl|, and label those lineage formulas with fewer tuples in Tl.

Based on algebraic geometry, the learning problem allows for an inter-
esting visual interpretation. All possible definitions of probability values for
tuples in Tl, that is p : Tl → [0, 1], span the hypercube [0, 1]|Tl|. In Example 7,
Cases 3(a) and 3(b), the hypercube has two dimensions, namely p(t7) and
p(t8), as depicted in Figures 4.1(a) and 4.1(b). Hence, one definition of p
specifies exactly one point in the hypercube. Moreover, all definitions of p
that satisfy a given label define a curve (or plane) through the hypercube
(e.g., the two labels in Figure 4.1(a) define two straight lines).

Moreover, also the points, in which all labels’ curves intersect, represent
solutions to the learning problem (e.g., the solutions of Example 7, Case 3(b),
are the intersections in Figure 4.1(b)). If the learning problem is inconsistent,
there is no point in which all labels’ curves intersect. Furthermore, if the
learning problem has infinitely many solutions, the labels’ curves intersect in
curves or planes, rather than points.
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(a) Example 7, 3(a): Labels (b) Example 7, 3(b): Labels

(c) Example 7, 3(b): MSE objective (d) Example 9: Logical objective

(e) Example 11: MSE objective (f) Example 11: MSE objective, unstable

Figure 4.1: Visualization of the Learning Problem

18



5 Solving the Learning
Problem

In the previous section, we formally characterized the learning problem and
devised the basic properties of its solutions. From a visual perspective, Def-
inition 2 established curves and planes whose intersections represent the so-
lutions (see, e.g., Figure 4.1(b)). In this section, we introduce different ob-
jective functions that describe surfaces whose optima correspond to these
solutions. For instance, Figure 4.1(b)’s problem has Figure 4.1(c)’s surface
if we the use mean squared error (MSE) as the objective, which will be de-
fined in this section. Calculating a gradient on such a surface thus allows the
application of an optimization method to solve the learning problem.

Alternative Approaches. In general, based on the polynomial equations,
an exact solution to an instance of the learning problem can be computed in
exponential time [14], which is not acceptable in a database setting. Also,
besides gradient-based optimization methods, other approaches, such as ex-
pectation maximization [22], are possible and represent valuable targets for
future work.

Partial Derivative of a Lineage Formula. In order to establish a gra-
dient on Definition 2’s conditions, i.e., P (ϕi) = li, we introduce the partial
derivative of a lineage formula’s marginal probability P (ϕ) with respect to a
given tuple t ∈ T (ϕ).

Definition 3 [28] Given a lineage formula ϕ and a tuple t ∈ T (ϕ), the
partial derivative of P (ϕ) with respect to p(t) is defined as:

∂P (ϕ)

∂p(t)
:= P (ϕ[t→true])− P (ϕ[t→false])

Here, ϕ[t→true] means that all occurrences of t in ϕ are replaced by true
(and analogously for false). A formal justification for the above definition is
provided in [28].
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Example 8 Considering the marginal probability P (t1∨ t2) with p(t1) = 0.6,

we determine the partial derivative with respect to p(t2), that is
∂P (t1∨t2)
∂p(t2)

=

P (t1 ∨ true)− P (t1 ∨ false) = 1.0− 0.6 = 0.4. ⋄

Desired Properties for Solving the Learning Problem. Before we
define objective functions for solving the learning problem, we establish a
list of desired properties of these (which we do not claim to be complete).
Later, we judge different objectives based on these properties.

Definition 4 An objective function to the learning problem should satisfy
the following three desired properties:

1. All instances of Definition 2’s learning problem can be expressed, in-
cluding inconsistent ones.

2. If all P (ϕi) are computable in polynomial time, then also the objective
is computable in polynomial time.

3. The objective is stable, that is L := ⟨(ϕ1, l1), . . . , (ϕn, ln)⟩ and L ∪
⟨(ϕ′

i, li)⟩ with ϕ′
i ≡ ϕi, (ϕi, li) ∈ L define the same surface.

Here, the first case ensures that the objective can be applied to all instances
of the learning problem. We insist on inconsistent instances, because they
occur often in practice (see Figure 8.1(a)). The second property restricts
a blow-up in computation, which yields the following useful characteristic:
if we can compute P (ϕ) for all labels, e.g., for labeled query answers, then
we can also compute the objective function. Finally, the last of the desider-
ata reflects an objective function’s ability to detect dependencies between
labels. Since ϕi ≡ ϕ′

i both L and L ∪ ⟨(ϕ′
i, li)⟩ allow exactly the same so-

lutions, the surface should be the same. Unfortunately, including convexity
of an objective as an additional desired property is not possible. For ex-
ample Figure 4.1(b) has two disconnected solutions, which induce at least
two optima, thus prohibiting convexity. In the following, we establish two
objective functions, which behave very differently with respect to the desired
properties.

5.1 Logical Objective

If we restrict the learning problem’s probability labels to li ∈ {0.0, 1.0}, we
can define a objective function based on computing marginals as follows.
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Definition 5 Let an instance of Definition 2’s learning problem be given by
a probabilistic database (T , p), tuples with unknown probability values Tl ⊆ T ,
and labels L = ⟨(ϕ1, l1), . . . , (ϕn, ln)⟩ such that all li ∈ {0.0, 1.0}. Then, the
logical objective is formulated as:

Logical(L, p) := P

 ∧
(ϕi,li)∈L,li=1.0

ϕi ∧
∧

(ϕi,li)∈L,li=0.0

¬ϕi

 (5.1)

The above definition is a maximization problem, and its global optima are
identified by Logical(L, p) = 1.0. Moreover, from Definition 3, we may obtain
its derivative.

Example 9 Let T = Tl := {t1, t2} and L := ⟨(t1∨ t2, 1.0), (t1, 0.0)⟩ be given.
Then, Logical(L, p) is instantiated as P ((t1∨t2)∧¬t1) = P (¬t1∧t2). Visually,
this defines a surface whose optimum lies in p(t1) = 0.0 and p(t2) = 1.0, as
shown in Figure 4.1(d). ⋄

With respect to Definition 4, the third desired property is fulfilled, as P (ϕ′
i∧

ϕi) = P (ϕi). Hence, the logical objective’s surface, shown for instance in Fig-
ure 4.1(d), is never altered by adding equivalent labels. Still, the first prop-
erty is not given, since the probability labels are restricted to li ∈ {0.0, 1.0}
and inconsistent problem instances collapse Equation (5.1) to P (false), thus
rendering the objective non-applicable. Also, the second property is violated,
because in the spirit of Lemma 1’s proof, we can construct an instance where
each label’s P (ϕi) on its own is computable in polynomial time, whereas the
computation of the marginal probability for Equation (5.1) is #P-hard.

5.2 Mean-Squared-Error Objective

Another approach, which is common in machine learning, lies in using the
mean squared error (MSE) to define the objective function.

Definition 6 Let an instance of Definition 2’s learning problem be given by
a probabilistic database (T , p), tuples with unknown probability values Tl ⊆
T , and labels L = ⟨(ϕ1, l1), . . . , (ϕn, ln)⟩. Then, the mean-squared-error
objective function is formulated as:

MSE (L, p) := 1

|L|
∑

(ϕi,li)∈L

(P (ϕi)− li)2
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Moreover, its partial derivative with respect to the tuple’s probability value
p(t) is:

∂MSE (L, p)
∂p(t)

:=
1

|L|
∑

(ϕi,li)∈L,t∈T (ϕi)

2 · (P (ϕi)− li) ·
∂P (ϕi)

∂p(t)︸ ︷︷ ︸
Def. 3

The above formulation is a minimization problem whose solutions have 0.0
as the objective’s value.

Example 10 Example 7, Case 3(b), is visualized in Figure 4.1(b). The cor-
responding surface induced by the MSE objective is depicted in Figure 4.1(c)
and has its minima at the learning problem’s solutions. ⋄

Judging the above objective by means of Definition 4, we realize that the
first property is met, as there are no restrictions on the learning problem,
and inconsistent instances can be tackled (but deliver objective values larger
than zero). Furthermore, since the P (ϕi)’s occur in separate terms of the
objective’s sum, the second desired property is maintained. However, the
third desired property is violated, as illustrated by the following example.

Example 11 In accordance to Example 9 and Figure 4.1(d), we set T =
Tl := {t1, t2} and L := ⟨(t1 ∨ t2, 1.0), (t1, 0.0)⟩. Then, the MSE objective de-
fines the surface in Figure 4.1(e). However, if we replicate the label (t1, 0.0),
thus resulting in Figure 4.1(f) (note the “times two” in the objective), its sur-
face becomes steeper along the p(t1)-axis, but has the same minimum. Thus,
MSE’s surface is not stable. Instead, it becomes more ill-conditioned [34]. ⋄

5.3 Discussion

Both the logical objective and the MSE objective have optima exactly at the
solutions of Definition 2’s learning problem. With respect to Definition 4’s
desired properties, we summarize the behavior of both objectives in the fol-
lowing table: Properties

Objective 1. 2. 3.
Logical × × X
MSE X X ×

The two objectives satisfy opposing desired properties, and it is certainly
possible to define other objectives behaving similarly to one of them. Un-
fortunately, there is little hope for an objective that is adhering to all three
properties. The second property inhibits computational hardness. However,
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Lemma 1 and the third property’s logical tautology checking (i.e., |= ϕi ↔ ϕ′
i,

which is co-NP-complete) require these. In this regard the logical objec-
tive addresses both computationally hard problems by computing marginals,
whereas the MSE objective avoids them.

In the remainder of the paper, we will favor the MSE objective, as it is
more practical. In reality, many learning problem instances are inconsistent
or have non-Boolean labels (see Figure 8.1(a)), and Equation (5.1)’s marginal
computations are often too expensive (see Section 8.6).
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6 Learning Algorithm

Given a learning problem’s surface (see, e.g., Figure 4.1(c)), as it is defined
by the choice of the objective function, the learning algorithm provided in
this section determines how to move over this surface in order to reach an
optimum, that is, to find a solution to the learning problem.

Learning Algorithm. Our learning algorithm is based on stochastic gradi-
ent descend (SGD) [6], which we here demonstrate to scale to instance sizes
with millions of tuples and hundreds of thousands of labels (see Section 8.5).
It is initialized at a random point and repeatedly moves into the direction of
a partial derivative until convergence. Visually, we start at a random point
(e.g., somewhere in Figure 4.1(c)), and then in each step we move in parallel
to an axis (e.g., p(t1) or p(t2)), until we reach an optimum.

In Algorithm 1 best , represents the objective’s best known value, where
p holds the corresponding probability values of tuples in Tl. Also, ηl is the
learning rate, which exists and may differ for each tuple in Tl. Line 4’s loop
is executed until convergence to the absolute error bound of ϵabs . Then,
Line 5 shuffles the order of Tl’s tuples for the inner loop of Line 6. Within
each iteration, Line 8 updates one tuple’s probability value, which yields the
updated definition p′ of p. If p′ is an improvement over p with respect to the
objective (as verified in Line 11), we assign p′ to p and double the tuple’s
learning rate ηl. Otherwise, p′ is discarded, and the learning rate ηl is halved.

Example 12 We execute Algorithm 1 on Figure 4.1(e)’s example. Following
Definition 6 the corresponding partial derivatives are:

∂MSE
∂p(t1)

:= (P (t1 ∨ t2)− 1.0) · (P (true ∨ t2)− P (false ∨ t2))
+(P (t1)− 0.0) · (P (true)− P (false))

∂MSE
∂p(t2)

:= (P (t1 ∨ t2)− 1.0) · (P (t1 ∨ true)− P (t1 ∨ false))
(6.1)

Assuming that Line 1 delivers p(t1) = 0.7 and p(t2) = 0.5, we get best =
(−0.15)2 + (0.7)2 ≈ 0.512 in Line 3. If ϵabs = 0.01 we enter Line 4’s loop,
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Algorithm 1 Learning((T , p), Tl,L, ϵabs)
Input: Probabilistic database (T , p), tuples Tl to learn the probability values for,

labeled lineage formulas L, error bound ϵabs
Output: p with learned probability values, best value of objective
1: ∀tl ∈ Tl : p(tl) := Rand(0, 1) ◃ Random initialization
2: ∀tl ∈ Tl : ηl := 1.0 ◃ Per-tuple learning rate
3: best := MSE (L, p) ◃ Definition 6
4: while best > ϵabs do
5: sequence := Shuffle(Tl) ◃ Permuted sequence
6: while ¬IsEmpty(sequence) do
7: tl := Pop(sequence) ◃ Get first element

8: p′(tl) := p(tl)− ηl · ∂MSE(L,p)
∂p(tl)

◃ Definition 6

9: p′ := p ∪ {p′(tl)}
10: newVal := MSE (L, p′) ◃ Definition 6
11: if newVal < best then
12: ηl := 2 · ηl ◃ Increase tl’s learning rate
13: p := p′ ◃ Keep new value of p(tl)
14: best := newVal
15: else
16: ηl :=

1
2 · ηl ◃ Decrease tl’s learning rate

17: return p, best
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where Line 5 randomly orders t2 before t1. Then, p(t2)’s partial derivative
evaluates as follows ∂MSE

∂p(t2)

∣∣
(0.7,0.5)

= (0.85− 1.0) · (1.0− 0.7) = −0.055. Since
η2 = 1.0, we get p′(t2) = 0.5 − (−0.055) = 0.555 in Line 8. Hence, in
Line 10, newVal = (−0.1335)2 + 0.72 ≈ 0.508. As 0.508 < 0.512, Line 11’s
condition turns true, such that we get η2 = 2.0, p(t1) = 0.7, p(t2) = 0.555
and best = 0.508. Hence, in further iterations the increased η2 speeds up
movements along p(t2)’s partial derivative. ⋄

Tackling MSE’s Instability. The disadvantage of the MSE objective is
that it does not satisfy Definition 4’s third desired property. We argue, that
Algorithm 1 counters to some extent the instability, which we illustrate by
the following example.

Example 13 Let us evaluate the gradient of Figures 4.1(e) and 4.1(f) in
the point p(t1) = p(t2) = 0.5. Following Equation (6.1), we obtain the
gradient (0.375,−0.125) for Figure 4.1(e). Analogously, Figure 4.1(f) has
(0.875,−0.125). Even although both figures show the same minimum, the
gradients differ heavily in p(t1)’s partial derivative. ⋄

Inspecting the above example, we note that the gradient is indeed affected,
but each partial derivative on its own points into the correct direction, i.e.
increasing p(t2) and decreasing p(t1). Hence, weighting the partial derivatives
can counter the effect. We achieve this by keeping one learning rate ηl per
tuple and adapting them during runtime. In Section 8.4, we empirically show
a superior convergence over a global learning rate. Previously, the authors
of [31] also reported speed ups in ill-conditioned instances by introducing
separate learning rates per dimension.

Implementation Issues. In this paragraph, we briefly describe four im-
plementation issues, which were omitted in Algorithm 1 for presentation
purposes. First, Line 4’s absolute error bound is inconvenient, because the
optima of inconsistent learning problem instances have an MSE value larger
than 0.0. Therefore, we use both an absolute error bound ϵabs and a rela-
tive error bound ϵrel . Second, since their marginal probabilities P (ϕi) are
repeatedly computed, it is beneficial to preprocess the lineage formulas ϕi,
e.g. by compiling them to OBDDs [27], or by flattening them via a few tar-
geted Shannon expansions [16], the latter of which we also apply in this work.
Next, Line 8 might yield a probability value that exceeds the interval [0, 1],
which we counter by the logit function. It defines a mapping from probability
values in [0, 1] to R ∪ {±∞}.
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Definition 7 The logit function transforms a probability p ∈ [0, 1] to a
weight w ∈ R ∪ {±∞} as follows:

w = ln
p

1.0− p
p =

1

1 + exp(−w)

Example 14 If p = 0.5, then w = 0.0. Also p = 1.0 implies w = +∞,
whereas p = 0.0 yields w = −∞. ⋄

Hence, we calculate with weights in R ∪ {±∞}, rather than on probability
values in [0, 1]. Finally, if two tuples tl, t

′
l ∈ Tl are disjoint with respect to the

labels’ lineage formulas they occur in, that is {ϕi | (ϕi, li) ∈ L, tl ∈ T (ϕi), t′l ∈
T (ϕi)} = ∅, then their probability values can be updated in parallel.

Alternative Approaches. Due to its various applications, there is an en-
tire zoo of gradient-based optimization techniques [34]. Approaches, such
as Newton’s method, which are based on the Hessian, do not to scale to
database-like instance sizes. This disadvantage is circumvented by Quasi-
Newton methods, for instance limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) [34], which estimates the Hessian. We empirically compare
our approach to L-BFGS and plain gradient descent in Section 8.4.

Algorithm Properties. Algorithm 1 comes with three properties, which
we share with all alternative approaches we are aware of, including other
gradient-based methods and expectation maximization [22]. First, the al-
gorithm is non-deterministic, which is caused by Lines 1 and 5. Second,
gradient-based optimization methods, including Algorithm 1, can get stuck
in local optima, which is nevertheless hard to avoid in non-convex problems.
In this regard, the non-determinism is a potential advantage, since restart-
ing the algorithm will yield varying solutions, thus increasing the chance for
finding a global optimum. Finally, the solutions returned by Algorithm 1
for the MSE objective are not exact, but rather very close to an optimum,
which however can be controlled by the error bounds ϵrel and ϵabs . Additional
experiments on these aspects are available in the Appendix of this report.
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7 Extensions and Applications

In this section, we briefly investigate how the learning problem can be ex-
tended by priors (Section 7.1), how it relates to conditioning PDBs via con-
straints (Section 7.2), how these constraints can be employed to update or
clean PDBs (Section 7.3), and how it relates to handling incompleteness in
databases (Section 7.4).

7.1 Prior Probabilities

In order to explicitly incorporate preferences in the form of prior probabilities
of base tuples tl ∈ Tl into our learning objective (instead of just considering
them to be “unknown”), we can extend Definition 6’s MSE objective as
follows.

Definition 8 Given a function prior : Tl → [0, 1] ⊂ R, Definition 6’s MSE
objective function can be extended to

c

|L|
·
∑

(ϕi,li)∈L

(P (ϕi)− li)2 +
1− c
|Tl|

·
∑
tl∈Tl

(P (tl)− prior(tl))
2

where c ∈ [0, 1] is a constant.

Utilizing c, we can control the trade-off between the impact of the lineage
labels and the prior function.

Expressiveness. Definition 8 is not more general than the original MSE ob-
jective. We can express priors in Definition 6 by creating a label (tl, prior(tl))
for each tuple tl ∈ Tl, which then produces

∑
tl∈Tl(P (tl)− prior(tl))

2 also in
Definition 6’s objective. The coefficients preceding the sums can be emulated
by replicating labels in L. Thus, priors are a special case of lineage labels.
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7.2 Constraints and Conditioning

Conditioning by Learning. Considering constraints in the form of propo-
sitional formulas over a probabilistic database’s tuples, we can encode each
constraint ϕi with the label (ϕi, 1.0) into an instance of the learning problem.

Lemma 2 Given a probabilistic database (T , p) and constraints in the form
of propositional formulas ϕ1, . . . , ϕn over T , whose conjunction ϕ1∧· · ·∧ϕn is
satisfiable. Then, if we create a learning problem instance by setting Tl := T
and L := ⟨(ϕ1, 1.0), . . . , (ϕn, 1.0)⟩, its solution p′ conditions the probabilistic
database (T , p) with respect to ϕ1, . . . , ϕn. Hence, for a propositional query
ψ over (T , p′) it holds, that:

P (ψ | ϕ1 ∧ · · · ∧ ϕn) = P (ψ)

Proof 6 We observe that in the learning problem’s solution p′, we get P (ϕ1∧
· · · ∧ ϕn) = 1.0. Moreover, over (T , p′), we can rewrite the marginal proba-
bility of a query answer ψ as follows.

P (ψ)
(3.2)
=

∑
W⊆T ,|=ψ P (W , T )

=
∑

W⊆T ,W|=ψ,W|=ϕ1,...,W|=ϕn P (W , T )
= P (ψ ∧ ϕ1 ∧ · · · ∧ ϕn)

By combining both equations, we obtain over (T , p′):

P (ψ | ϕ1 ∧ · · · ∧ ϕn) =
P (ψ ∧ ϕ1 ∧ · · · ∧ ϕn)
P (ϕ1 ∧ · · · ∧ ϕn)

=
P (ψ)

1.0
= P (ψ)

Thus, the solution to the learning problem can be seen as a form of applying
conditioning [30] to a PDB. From a Bayesian perspective, the solution to the
learning problem p′ can be seen as posterior probabilities of the base tuples
in Tl. However, unlike the approach presented in [30], we do not materialize
and store the constraints along with the result tuples.

Learning by Conditioning. Following Definition 5’s logical objective,
we can apply constraint-enforcing approaches to solve a subset of possible
learning problem instances. The subset is characterized by instances with
consistent labels, having T = Tl, and by restricting the lineage labels to
li ∈ {0.0, 1.0}. We create a single constraint in the form of Equation (5.1)’s
conjunction, initially set all tuple confidences to 0.5, and solve the resulting
conditioning problem [30].

29



7.3 Updating and Cleaning PDBs

Updating. If we are given an existing probabilistic database (T , p) and
knowledge in the form of labeled lineage formulas L := ⟨(ϕ1, l1), . . . , (ϕn, ln)⟩,
we can update the tuples’ probability values via the learning problem. We
produce a new probabilistic database (T , p′), whose probability values p′ are
updated according to the information provided in L. To achieve this, we
create a learning problem instance (whose solution is p′) by using L, setting
Tl := T and defining a prior prior(t) := p(t).

Cleaning. The new probability values p′ allow for cleaning the probabilistic
database as follows. If p′ defines a tuple’s probability value to be 0.0, we
can delete it from the database. Conversely, if p′ yields 1.0 for a tuple’s
probability value, we can move it into a new, deterministic relation.

7.4 Incomplete Databases

A field that is related to PDBs are incomplete databases. Intuitively, in an
incomplete database, some attributes values or entire tuples may be missing
in the given database instance. A completion of an incomplete database can
be seen as a possible world in a PDB—with a probability.

Missing Attribute Values. In [43], a PDB is derived from an incomplete
database which exhibits missing attributes in some of its tuples. Their idea
is to estimate the probability of a possible completion of an incomplete tuple
from the complete part of the database. We show that this approach is an
instance of the learning problem via the following reduction.

Let an incomplete database be given by a set of complete tuples Tc and
a set of incomplete tuples Ti. We consider an incomplete tuple R(ā) ∈ Ti
of relation R, where one or more attributes in ā lack values, such that all
possible completions are represented by āi ) ā (assuming finite domains).
Then, we create a new uncertain relation R′ := {āi | āi ) ā} and add one
deduction rule per completion āi:

R(āi)← R′(āi) ∧
∧
j ̸=i

¬R′(āj)

The above rules allow at most one completion of ā to be true within a possible
world, so the resulting lineage formulas form a block-independent PDB [44].
Now, we create labels following [43]’s approach. For a subset of argument
values s̄ ⊂ ā, we count how often the complete tuples Tc feature the com-
pletion āi, in symbols Is̄(āi) := |{R(ā′) ∈ Tc | ā ∩ ā′ = s̄, āi\ā ⊂ ā′}|. Then,
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for each completion āi, we generate the label (R(āi),
Is̄(āi)∑
j Is̄(āj)

). Besides these

labels, the resulting learning problem instance uses the new relations R′’s
tuples in Tl .
Missing Tuples. Generally, any database instance can be seen as a finite
subset of the crossproduct of its attributes’ domains. We now consider an
incomplete database, whose (finite sets of) existing tuples and potentially
missing tuples are Tc and Tm, respectively. Assume we intend to enforce
logical formulas ϕ1, . . . , ϕn over tuples Tc∪Tm, which could for example result
from constraints or user feedback. We create a learning problem instance by
setting T := Tc ∪ Tm, Tl := Tm and L := ⟨(ϕ1, 1.0), . . . , (ϕn, 1.0)⟩. Thus, a
solution to the learning problem will complete Tc with (possibly uncertain)
tuples from Tm, such that the logical formulas ϕ1, . . . , ϕn are fulfilled.
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8 Experiments

Our evaluation focuses on the following four aspects. First, we compare
the quality of our approach to learning techniques in SRL (Section 8.1) and
to constraint-based reasoning techniques applied in information extraction
settings (Section 8.2). Second, we compare the runtime behavior of our
algorithm to SRL methods (Section 8.3) and to other gradient-based opti-
mization techniques (Section 8.4). Third, we explore the scalability of our
method to large data sets (Section 8.5). Finally, in Section 8.6, we investi-
gate the runtime behavior of the two objective functions defined in Section 5.
Due to space constraints, additional experiments on varying ϵabs , ϵrel and Al-
gorithm 1’s ability to find global optima are available in Appendix A.

Overview. As an overview, we present the basic characteristics of all learn-
ing problem instances in Figure 8.1(a), where Avg. T (ϕ) is calculated as
1
|L|

∑
(ϕi,li)∈L |T (ϕi)|.

Setup. Our engine is implemented in Java. It employs a PostgreSQL 8.4
database backend for evaluating Datalog rules in a bottom-up manner and
to instantiate lineage formulas. If not stated otherwise, PDB refers to Algo-
rithm 1’s implementation with the MSE objective and a per-tuple learning
rate. For checking convergence, we set ϵabs = 10−6 and ϵrel = 10−4. We
ran all experiments on an 8-core Intel Xeon 2.4GHz machine with 48 GB
RAM, repeated each setting four times, and report the average of the last
three runs. Whenever different programs compete, all of them run in single-
threaded mode. All rules used in the experiments are provided in Appendix
A.

8.1 Quality Task: SRL Setting

Dataset. We use the openly available UW-CSE dataset1, which comprises a
database describing the University of Washington’s computer science depart-

1http://alchemy.cs.washington.edu/data/uw-cse/
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ment via the following relations: AdvisedBy, CourseLevel, HasPosition, In-
Phase, Professor, ProjectMember, Publication, Student, TaughtBy, Ta (teach-
ing assistant), and YearsInProgram. Moreover, the dataset is split into five
sub-departments, and we consider this dataset’s relations to be deterministic.

Task. The goal is inspired by an experiment in [38], namely to predict the
AdvisedBy relation from all input relations except Student and Professor. We
train and test in a leave-one-out fashion by sub-department.

Rules. We automatically create 49 rules resembling all joins (including
self-joins) between two relations (except student, professor, and AdvisedBy),
having at least one argument of type person. Furthermore, we add one
uncertain relation rules, containing one tuple for each of the 49 rules and
include the corresponding tuple in the join, for example:

AdvisedBy(P1, P2)←
(

Ta(D,C, P1, T )∧
TaughtBy(D,C, P2, T )∧

Rules(1)

)
The remaining rules are provided in Appendix A. We learn the probability
values of the 49 tuples, hence classifying how well each rule predicts the
AdvisedBy relation.

Labels. Regarding labels, we used the 113 instances of AdvisedBy as positive
labels, i.e., all their probability labels are 1.0. In addition, there are about
16,000 person-person pairs not contained in AdvisedBy. We randomly draw
pairs from these as negative labels (with a probability label of 0.0).

SRL Competitors. We compete with TheBeast [39], the fastest Markov
Logic [38] implementation we are aware of. It uses an in-memory database
and performs inference via Integer Linear Programming. We ran it on the
same set of data and rules. Additionally, we ran the probabilistic Prolog
engine ProbLog [24], but even on the reduced datasize of one sub-department
it did not terminate after one hour.

Results. In Figure 8.1(b), we depict both the runtimes as well as the pre-
diction quality in terms of the F1 measure (the harmonic mean of precision
and recall) for the AdvisedBy relation. TheBeast is a straight line, since it
allows only positive labels. For PDB, we started with all positive labels and
added increasing numbers of negative labels.

Analysis. Regarding runtimes, PDB is consistently about 40 times faster
than TheBeast. With respect to F1, adding more negative labels to PDB
yields improvements until we saturate at the same level as TheBeast.
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8.2 Quality Task: Information Extraction

Dataset. This dataset2 contains about 450,000 crawled web pages in the
sports and celebrities domains, where about 12,500 textual patterns are used
to extract facts.

Task. Following [46], we consider two different relations, namely WorksFor-
Club in the sports domain and IsMarriedTo in the celebrities domain. Both
relations contain facts with temporal annotations. The goal is to determine,
for each textual pattern, whether it expresses a temporal begin, during or
end event of one of the two relations, or none of them. For example, for
WorksForClub, we could find that David Beckham joined Real Madrid in
2003 (begin), scored goals for them in 2005 (during), and left the club in
2007 (end).

PDB Setup. We model temporal data in the PDB according to [16].
Text occurrences of a potential fact are stored in the deterministic relation
Occurrence(Pid ,E1 ,E2 ,Types , Begin,End), where Types holds the entities’
types and Begin, End contain integers encoding the limits of their occur-
rences’ time intervals. To encode the decision whether a pattern expresses
a temporal begin, during, or end event, we instantiate three uncertain rela-
tions Begin(Pid), During(Pid), and End(Pid), which each hold one entry
per pattern and whose probability values we learn. Text occurrences of po-
tential facts are connected to the patterns by six rules (see Appendix A for
details) of the following kind

IsMarriedToBegin(E1, E2, T1, T2)
← Begin(Pid) ∧Occurrence(Pid , E1, E1, pp, T1, T2)

where pp stands for person-person type pair. To enforce that a textual pat-
tern expresses at most one of begin, during, or end, we make them mutually
exclusive via the rules

Constraint1 (Pid) ← Begin(Pid) ∧ During(Pid)
Constraint2 (Pid) ← Begin(Pid) ∧ End(Pid)
Constraint3 (Pid) ← During(Pid) ∧ End(Pid)

whose resulting lineage formulas we label with 0.0. Moreover, we use tem-
poral precedence constraints by instantiating six rules of the form

Constraint4 (E1, E2)←
IsMarriedToBegin(E1, E2, T1, T2)∧
IsMarriedToDuring(E1, E2, T3, T4)
∧ T3 < T2

2 http://www.mpi-inf.mpg.de/yago-naga/pravda/
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and label their lineage with 0.0. Finally, we employ the 266 labels for textual
patterns and the 341 labels for facts from the original work [46].

Competitor. The authors of [46] utilized a combination of Label Propa-
gation and Integer Linear Programming to rate the textual patterns and to
enforce temporal constraints.

Results. In Figure 8.1(c), we report our system’s (PDB) result along with
the best result from [46] (PRAVDA). To evaluate precision, we sampled 100
facts per relation and event type and annotated them manually. Recall is
the absolute number of facts obtained.

Analysis. For relations with a few, decisive textual patterns, PDB keeps
up with precision, while slightly gaining in recall, probably due to the re-
laxation of constraints by the MSE objective. However, for worksForClub’s
during relation, there is a vast number of relevant patterns, which puts Label
Propagation’s undirected model in favor, whereas our directed model suffers
in terms of recall.

8.3 Runtime Task: SRL Methods

Setup. To systematically verify scalability, we create synthetic data sets as
follows. We fix T = Tl to 100 tuples. Then, we instantiate a growing number
of lineage formulas of the form (t ∧ ¬t ∧ ¬t) ∨ (t ∧ ¬t ∧ ¬t), where all tuple
identifiers are uniformly drawn from Tl, and negations exist with probability
0.5. Each formula’s probability label is randomly set to either 0.0 or 1.0.

Competitors. Besides TheBeast [39], we compete with ProbLog [24], a
probabilistic Prolog engine, whose grounding techniques and distribution se-
mantics are closest to ours.

Results. For each value of |L|, we create five problem instances and depict
their average runtime in Figure 8.1(d).

Analysis. PDB converges on average about 600 times faster than ProbLog
and about 70 times faster than TheBeast.

8.4 Runtime Task: Gradient Methods

Setup. We employ the openly available YAGO23 knowledge base, which
comprises about 110 relations. The task is to learn the probability values of
tuples Tl in the LivesIn relation. Moreover, we label the following rule’s

ToLabel(L)← LivesIn(P,L)

3http://www.mpi-inf.mpg.de/yago-naga/yago/
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lineage formulas with synthetic target probabilities. Since the rule’s projec-
tion on the first argument makes all lineage formulas ϕ disjoint with respect
to their tuples T (ϕ), the resulting learning problem instance is consistent.
Hence, its global optima have a mean squared error (MSE) of 0.0.

Competitors. Algorithm 1 with per tuple learning rate (SGD Per-Tuple)
competes with a single learning rate (SGD Single), with gradient descent
(GD), and with L-BFGS [34], which approximates the Hessian with its second
derivatives. All methods are initialized with the same learning rate.

Results. We plot the MSE against the runtime of the different methods in
Figure 8.1(e).

Analysis. GD takes less time per iteration. Hence its curves drops faster in
the beginning, but then stagnates. The two SGD variants behave similarly
at first. Later on, the per-tuple learning rate yields constant improvements,
whereas the single learning rate does not. L-BFGS, finally, improves slowly
in comparison.

8.5 Runtime Task: Scalability

Dataset. As previously, we run on YAGO23. For tuples in T \Tl, we use
uniformly drawn synthetic probability values.

Labels. In order to create labels, we run queries on YAGO2 and label their
answers’ lineage formulas with synthetic target probabilities (see Appendix
A for details).

Results. Figure 8.1(f) contains the results of three large learning problem
instances P1 to P3, where Init is the time spent on instantiating the lineage
formulas, and Algorithm 1 had multi-threading enabled.

Analysis. The Init time is determined by the number (|L|) and size (Avg.
T (ϕ)) of lineage formulas being instantiated. Algorithm 1 is faster on con-
sistent instances (P3). Its runtime is dominated by the number of labels per
tuple tl ∈ Tl.

8.6 Runtime Task: Objectives

Setup. As a last experiment, we run Algorithm 1 once with the Logical
objective (see Definition 5) and once with the mean-squared-error (MSE)
objective (see Definition 6). The synthetic data is created analogously to
Section 8.3.

36



Results & Analysis. Already on tiny instances of up to 15 labels as in
Figure 8.1(g), the Logical objective slows down significantly in comparison
to MSE, due to the expensive marginal computations of Equation (5.1).
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Section Figure Source |T | |Tl| |L| Avg. T (ϕ) Boolean Incons.

8.1 8.1(b) UW-CSE1 2, 161 49 113 to 452 5.8 to 8.3 yes yes

8.2 8.1(c) PRAVDA2 75, 091 37, 383 89, 874 2.3 no yes
8.3 8.1(d) synthetic 100 100 10 to 100 5.8 yes yes

8.4 8.1(e) YAGO23 224, 440, 854 19, 985 5, 562 3.6 no no
8.5 8.1(f) P1 217, 846 228, 050 2.7 no yes

8.5 8.1(f) P2 YAGO23 224, 440, 854 217, 846 79, 600 60.6 no yes
8.5 8.1(f) P3 1, 721, 156 459, 597 3.7 no no
8.6 8.1(g) synthetic 100 100 1 to 15 5.8 yes no

(a) Dataset Statistics

(b) Quality Task: SRL Data (c) Quality Task: Fact Extraction

(d) Runtime Task: SRL Methods (e) Runtime Task: Gradient Methods

(f) Runtime Task: Large Scale (g) Runtime Task: Objectives

Figure 8.1: Experimental Results
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9 Conclusions

We introduced a novel method for learning tuple confidences in tuple-indepen-
dent PDBs. We analyzed the properties of this learning problem from a the-
oretical perspective, devised gradient-based solutions, investigated the rela-
tionship to other problems, and presented an implementation together with
extensive experiments. For future work, we see numerous promising direc-
tions. Studying tractable subclasses of the learning problem or dropping the
tuple-independence assumption would improve our theoretical understand-
ing. Other valuable targets lie in the creation of a large, publicly available
benchmark and the application of the learning problem to a broader range
of related problems, e.g., inspired by the ones in Section 7.
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Appendix A Rules and
Constraints

This appendix contains a detailed description of the deduction rules and
consistency constraints we applied for Section 8 of this report.

A.1 Quality Task: SRL Data

We set T := CourseLevel ∪ HasPosition ∪ InPhase ∪ Professor ∪ Project-
Member∪Publication∪Student∪TaughtBy∪Ta∪YearsInProgram∪Rules and
Tl := Rules . Here, Rules is the only uncertain relation. The 49 automatically
created rules are:

AdvisedBy(P1, P2)←
(

Ta(D,C, P1,Te)∧
Ta(D,C, P2,Te)∧

Rules(0)

)
AdvisedBy(P1, P2)←

(
Ta(D,C, P1,Te)∧
TaughtBy(D,C, P2,Te)∧

Rules(1)

)
AdvisedBy(P1, P2)←

(
Ta(D,C, P1,Te)∧
Publication(D,Ti , P2)∧

Rules(2)

)
AdvisedBy(P1, P2)←

(
Ta(D,C, P1,Te)∧
YearsInProgram(D,P2, Y )∧ Rules(3)

)
AdvisedBy(P1, P2)←

(
Ta(D,C, P1,Te)∧
HasPosition(D,P2,Po)∧

Rules(4)

)
AdvisedBy(P1, P2)←

(
Ta(D,C, P1,Te)∧
InPhase(D,P2,Ph)∧

Rules(5)

)
AdvisedBy(P1, P2)←

(
Ta(D,C, P1,Te)∧
ProjectMember(D,Pr , P2)∧

Rules(6)

)
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AdvisedBy(P1, P2)←
(

TaughtBy(D,C, P1,Te)∧
Ta(D,C, P2,Te)∧

Rules(7)

)
AdvisedBy(P1, P2)←

(
TaughtBy(D,C, P1,Te)∧
TaughtBy(D,C, P2,Te)∧

Rules(8)

)
AdvisedBy(P1, P2)←

(
TaughtBy(D,C, P1,Te)∧
Publication(D,Ti , P2)∧

Rules(9)

)
AdvisedBy(P1, P2)←

(
TaughtBy(D,C, P1,Te)∧
YearsInProgram(D,P2, Y )∧ Rules(10)

)
AdvisedBy(P1, P2)←

(
TaughtBy(D,C, P1,Te)∧
HasPosition(D,P2,Po)∧

Rules(11)

)
AdvisedBy(P1, P2)←

(
TaughtBy(D,C, P1,Te)∧
InPhase(D,P2,Ph)∧

Rules(12)

)
AdvisedBy(P1, P2)←

(
TaughtBy(D,C, P1,Te)∧
ProjectMember(D,Pr , P2)∧

Rules(13)

)
AdvisedBy(P1, P2)←

(
Publication(D,Ti , P1)∧
Ta(D,C, P2,Te)∧

Rules(14)

)
AdvisedBy(P1, P2)←

(
Publication(D,Ti , P1)∧
TaughtBy(D,C, P2,Te)∧

Rules(15)

)
AdvisedBy(P1, P2)←

(
Publication(D,Ti , P1)∧
Publication(D,Ti , P2)∧

Rules(16)

)
AdvisedBy(P1, P2)←

(
Publication(D,Ti , P1)∧
YearsInProgram(D,P2, Y )∧ Rules(17)

)
AdvisedBy(P1, P2)←

(
Publication(D,Ti , P1)∧
HasPosition(D,P2,Po)∧

Rules(18)

)
AdvisedBy(P1, P2)←

(
Publication(D,Ti , P1)∧
InPhase(D,P2,Ph)∧

Rules(19)

)
AdvisedBy(P1, P2)←

(
Publication(D,Ti , P1)∧
ProjectMember(D,Pr , P2)∧

Rules(20)

)
AdvisedBy(P1, P2)←

(
YearsInProgram(D,P1, Y )∧
Ta(D,C, P2,Te)∧

Rules(21)

)
AdvisedBy(P1, P2)←

(
YearsInProgram(D,P1, Y )∧
TaughtBy(D,C, P2,Te)∧

Rules(22)

)
AdvisedBy(P1, P2)←

(
YearsInProgram(D,P1, Y )∧
Publication(D,Ti , P2)∧

Rules(23)

)
AdvisedBy(P1, P2)←

(
YearsInProgram(D,P1, Y )∧
YearsInProgram(D,P2, Y )∧ Rules(24)

)
AdvisedBy(P1, P2)←

(
YearsInProgram(D,P1, Y )∧
HasPosition(D,P2,Po)∧

Rules(25)

)
AdvisedBy(P1, P2)←

(
YearsInProgram(D,P1, Y )∧
InPhase(D,P2,Ph)∧

Rules(26)

)
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AdvisedBy(P1, P2)←
(

YearsInProgram(D,P1, Y )∧
ProjectMember(D,Pr , P2)∧

Rules(27)

)
AdvisedBy(P1, P2)←

(
HasPosition(D,P1,Po)∧
Ta(D,C, P2,Te)∧

Rules(28)

)
AdvisedBy(P1, P2)←

(
HasPosition(D,P1,Po)∧
TaughtBy(D,C, P2,Te)∧

Rules(29)

)
AdvisedBy(P1, P2)←

(
HasPosition(D,P1,Po)∧
Publication(D,Ti , P2)∧

Rules(30)

)
AdvisedBy(P1, P2)←

(
HasPosition(D,P1,Po)∧
YearsInProgram(D,P2, Y )∧ Rules(31)

)
AdvisedBy(P1, P2)←

(
HasPosition(D,P1,Po)∧
HasPosition(D,P2,Po)∧

Rules(32)

)
AdvisedBy(P1, P2)←

(
HasPosition(D,P1,Po)∧
InPhase(D,P2,Ph)∧

Rules(33)

)
AdvisedBy(P1, P2)←

(
HasPosition(D,P1,Po)∧
ProjectMember(D,Pr , P2)∧

Rules(34)

)
AdvisedBy(P1, P2)←

(
InPhase(D,P1,Ph)∧
Ta(D,C, P2,Te)∧

Rules(35)

)
AdvisedBy(P1, P2)←

(
InPhase(D,P1,Ph)∧
TaughtBy(D,C, P2,Te)∧

Rules(36)

)
AdvisedBy(P1, P2)←

(
InPhase(D,P1,Ph)∧
Publication(D,Ti , P2)∧

Rules(37)

)
AdvisedBy(P1, P2)←

(
InPhase(D,P1,Ph)∧
YearsInProgram(D,P2, Y )∧ Rules(38)

)
AdvisedBy(P1, P2)←

(
InPhase(D,P1,Ph)∧
HasPosition(D,P2,Po)∧

Rules(39)

)
AdvisedBy(P1, P2)←

(
InPhase(D,P1,Ph)∧
InPhase(D,P2,Ph)∧

Rules(40)

)
AdvisedBy(P1, P2)←

(
InPhase(D,P1,Ph)∧
ProjectMember(D,Pr , P2)∧

Rules(41)

)
AdvisedBy(P1, P2)←

(
ProjectMember(D,Pr , P1)∧
Ta(D,C, P2,Te)∧

Rules(42)

)
AdvisedBy(P1, P2)←

(
ProjectMember(D,Pr , P1)∧
TaughtBy(D,C, P2,Te)∧

Rules(43)

)
AdvisedBy(P1, P2)←

(
ProjectMember(D,Pr , P1)∧
Publication(D,Ti , P2)∧

Rules(44)

)
AdvisedBy(P1, P2)←

(
ProjectMember(D,Pr , P1)∧
YearsInProgram(D,P2, Y )∧ Rules(45)

)

42



AdvisedBy(P1, P2)←
(

ProjectMember(D,Pr , P1)∧
HasPosition(D,P2,Po)∧

Rules(46)

)
AdvisedBy(P1, P2)←

(
ProjectMember(D,Pr , P1)∧
InPhase(D,P2,Ph)∧

Rules(47)

)
AdvisedBy(P1, P2)←

(
ProjectMember(D,Pr , P1)∧
ProjectMember(D,Pr , P2)∧

Rules(48)

)
Regarding the variables, D is a department name, P1 and P2 are persons, C
is a course, Po is a position, Te is a term, Ph is a phase, Pr is a project, Ti
is a title, and Y is a year.

Finally, positive labels (label probability 1.0) are from the actual instances
of the AdvisedBy relation. Negative labels (label probability 0.0) are uni-
formly drawn person-person pairs not present in AdvisedBy.

A.2 Quality Task: Fact Extraction

We set T := Occurrence ∪Begin ∪During ∪End and Tl := Begin ∪During ∪
End . Also, Occurrence is certain, whereas the other three relations are un-
certain. There are three types of rules. First, for reconciling facts we have

IsMarriedToBegin(E1, E2, T1, T2)
← Begin(Pid) ∧Occurrence(Pid , E1, E1, pp, T1, T2)

IsMarriedToDuring(E1, E2, T1, T2)
← During(Pid) ∧Occurrence(Pid , E1, E1, pp, T1, T2)

IsMarriedToEnd(E1, E2, T1, T2)
← End(Pid) ∧Occurrence(Pid , E1, E1, pp, T1, T2)

WorksForClubBegin(E1, E2, T1, T2)
← Begin(Pid) ∧Occurrence(Pid , E1, E1, pc, T1, T2)

WorksForClubDuring(E1, E2, T1, T2)
← During(Pid) ∧Occurrence(Pid , E1, E1, pc, T1, T2)

WorksForClubEnd(E1, E2, T1, T2)
← End(Pid) ∧Occurrence(Pid , E1, E1, pc, T1, T2)

where E1 and E2 are entities, T1 and T2 are integers representing time interval
limits, PId is the pattern id, and pp and pc are constants standing for the type
pairs person-person and person-club, respectively. The next rules enforce
mutual exclusion

Constraint1 (Pid) ← Begin(Pid) ∧ During(Pid)
Constraint2 (Pid) ← Begin(Pid) ∧ End(Pid)
Constraint3 (Pid) ← During(Pid) ∧ End(Pid)

43



by labeling their resulting lineage with probability 0.0. Finally, we encode
temporal precedence constraints by the rules

Constraint4 (E1, E2)←

 IsMarriedToBegin(E1, E2, T1, T2)∧
IsMarriedToDuring(E1, E2, T3, T4)∧
T3 < T2


Constraint5 (E1, E2)←

 IsMarriedToBegin(E1, E2, T1, T2)∧
IsMarriedToEnd(E1, E2, T3, T4)∧
T3 < T2


Constraint6 (E1, E2)←

 IsMarriedToDuring(E1, E2, T1, T2)∧
IsMarriedToEnd(E1, E2, T3, T4)∧
T3 < T2


Constraint7 (E1, E2)←

 WorksForClubBegin(E1, E2, T1, T2)∧
WorksForClubDuring(E1, E2, T3, T4)∧
T3 < T2


Constraint8 (E1, E2)←

 WorksForClubBegin(E1, E2, T1, T2)∧
WorksForClubEnd(E1, E2, T3, T4)∧
T3 < T2


Constraint9 (E1, E2)←

 WorksForClubDuring(E1, E2, T1, T2)∧
WorksForClubEnd(E1, E2, T3, T4)∧
T3 < T2


whose resulting lineage we label by probability 0.0 as well. Additionally, we
use the 266 labels for textual patterns and the 341 labels for facts from the
original work.

A.3 Runtime Task: SRL Methods

We synthetically set T = Tl := {t0, . . . , t99} which are all uncertain tuples.
Then, we create a growing number of synthetic rule pairs following the pat-
tern

Head(c)← ti ∧ ¬tj ∧ ¬tk
Head(c)← tl ∧ ¬tm ∧ ¬tn

such that c is a constant indicating the rule id, and i, j, k, l,m, n are uniformly
drawn random numbers from 0, . . . , 99, and displayed negations exist with
probability 0.5. Now, we uniformly draw a synthetic probability label from
{0.0, 1.0} for Head(c)’s lineage.
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A.4 Runtime Task: Gradient Methods

We set T to be all of YAGO2’s relations and Tl := LivesIn. All relations are
uncertain, where tuples in T \Tl have synthetic probability values uniformly
drawn from [0, 1]. The only rule we have is

ToLabel(P )← LivesIn(P,L)

whose resulting lineage formulas we label by synthetic probabilities uniformly
drawn from [0, 1].

A.5 Runtime Task: Scalability

We set T to be all of YAGO2’s relations. All relations are uncertain, where
tuples in T \Tl have synthetic probability values uniformly drawn from [0, 1].

P1. Here, Tl := ActedIn ∪WasBornIn and the rules are

Movie(M)← ActedIn(P,M)
Creator(P )← ActedIn(P ′,M) ∧ Created(P,M)
Location(L)←WasBornIn(P,L)
Person(P )←WasBornIn(P,L)
Person2 (P )←WasBornIn(P,L) ∧ IsLocatedIn(L,L′)

whose resulting lineage formulas have synthetic probability labels uniformly
drawn from [0, 1].

P2. Here, Tl := ActedIn ∪WasBornIn and the rules are

Movie(M)← ActedIn(P,M)
Actor(P )← ActedIn(P,M) ∧ Created(P ′,M)
Location(L)←WasBornIn(P,L)
Person(P )←WasBornIn(P,L) ∧ LivesIn(P ′, L)

whose resulting lineage formulas have synthetic probability labels uniformly
drawn from [0, 1].

P3. Here, Tl := IsLocatedIn Transitive and the only rule is

Location(L)← IsLocatedIn Transitive(L,L′)

whose resulting lineage formulas have synthetic probability labels uniformly
drawn from [0, 1].

A.6 Runtime Task: Objectives

The setup is described in detail in Section 8.6.
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Appendix B Additional
Experiments

In this appendix, we provide additional experiments on the convergence of
the MSE objective for varying error rates as well as on its tendency to con-
verge to a global optimum. First, we vary the error rates ϵrel and ϵabs to
investigate their impact on both runtime and quality (Section B.1). Second,
we run Algorithm 1 repeatedly to analyze its ability to find global optima
(Section B.2). As an overview, the characteristics of the instances of the
learning problems we investigate here are available in the following table:

Section Figure Source |T | |Tl| |L| Avg. T (ϕ) li Boolean Incons.
B.1 B.1 UW-CSE 2, 161 49 339 6.0 yes yes
B.2 B.2(a) UW-CSE 2, 161 49 113 8.5 yes no
B.2 B.2(b) UW-CSE 2, 161 49 339 6.0 yes yes

B.1 Varying Error Rates

Setup. We use Section A.1’s setup with twice as many negative labels
as positive ones, where we vary ϵrel from 10−1 to 10−5. Moreover, we set
ϵabs := ϵrel

100
. In comparison, all other experiments had fixed ϵrel = 10−4 and

ϵabs = 10−6.

Results. In Figure B.1 we display both runtime and quality in terms of the
F1 measure.

Discussion. While inspecting Figure B.1 we realize that decreasing the
error-rates the runtime increases slightly. Furthermore, F1 is worse for ϵrel >
10−3. But, if we compare the overall runtime presented in the paper’s Figure
4(c), we realize that Algorithm 1 consumes only small portions of the total
runtime of about 3 seconds.
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Figure B.1: Varying Error Rates

(a) Consistent Instance (b) Inconsistent Instance

Figure B.2: Finding Global Optima

B.2 Finding Global Optima

Setup. We use Section A.1’s setup with two different instances, a consistent
one (only positive labels) and an inconsistent one (positive and negative
labels).

Results. In Figure B.2 we depict histograms of the resulting mean-squared-
error (MSE) of 100 runs on each instance.

Discussion. Algorithm 1 always finds solutions extremely close to the global
optimum (0.0) in the consistent instance (Figure B.2(a)). The inconsistent
instance, however, has global optima of values larger than 0.0. In this case
Algorithm 1 converges very close to a (probably) global optimum in 78% of
the runs.
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[8] N. Dalvi, C. Ré, and D. Suciu. Probabilistic databases: diamonds in
the dirt. Commun. ACM, 52(7):86–94, 2009.

[9] N. Dalvi, K. Schnaitter, and D. Suciu. Computing query probability
with incidence algebras. In PODS, pages 203–214, 2010.

[10] N. Dalvi and D. Suciu. The dichotomy of conjunctive queries on prob-
abilistic structures. In PODS, pages 293–302, 2007.

[11] N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. PVLDB, 16(4):523–544, 2007.

48



[12] L. De Raedt and L. Dehaspe. Clausal discovery. Mach. Learn., 26(2-
3):99–146, Mar. 1997.

[13] L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: a probabilistic
prolog and its application in link discovery. In IJCAI, pages 2468–2473,
2007.

[14] A. Dickenstein and I. Z. Emiris. Solving Polynomial Equations: Foun-
dations, Algorithms, and Applications. Springer, 2005.

[15] M. Dylla, I. Miliaraki, and M. Theobald. Top-k query processing in
probabilistic databases with non-materialized views. Research Report
MPI-I-2012-5-002, 2012.

[16] M. Dylla, I. Miliaraki, and M. Theobald. A temporal-probabilistic
database model for information extraction. PVLDB, 6(14), 2013.

[17] M. Dylla, I. Miliaraki, and M. Theobald. Top-k Query Processing in
Probabilistic Databases with Non-Materialized Views. In ICDE, pages
122–133, 2013.

[18] W. Fan and F. Geerts. Foundations of Data Quality Management. Syn-
thesis Lectures on Data Management. Morgan & Claypool Publishers,
2012.

[19] W. Fulton. Algebraic Curves: An Introduction to algebraic geometry.
Addison-Wesley, 1989.

[20] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning.
MIT Press, 2007.

[21] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings.
PODS, pages 31–40, 2007.

[22] M. R. Gupta and Y. Chen. Theory and use of the EM algorithm. Found.
Trends Signal Process., 4(3):223–296, Mar. 2011.

[23] B. Gutmann, A. Kimmig, K. Kersting, and L. Raedt. Parameter learning
in probabilistic databases: A least squares approach. In PKDD, pages
473–488, 2008.

[24] B. Gutmann, I. Thon, and L. De Raedt. Learning the parameters of
probabilistic logic programs from interpretations. In ECML PKDD,
pages 581–596, 2011.

49



[25] J. Hoffart, F. M. Suchanek, K. Berberich, E. Lewis-Kelham, G. de Melo,
and G. Weikum. YAGO2: exploring and querying world knowledge in
time, space, context, and many languages. In WWW, pages 229–232,
2011.

[26] A. Jha and D. Suciu. Probabilistic databases with MarkoViews.
PVLDB, 5(11):1160–1171, 2012.

[27] A. K. Jha and D. Suciu. Knowledge compilation meets database the-
ory: Compiling queries to decision diagrams. Theory Comput. Syst.,
52(3):403–440, 2013.

[28] B. Kanagal, J. Li, and A. Deshpande. Sensitivity analysis and explana-
tions for robust query evaluation in probabilistic databases. In SIGMOD,
pages 841–852, 2011.

[29] M. Keulen and A. Keijzer. Qualitative effects of knowledge rules and
user feedback in probabilistic data integration. The VLDB Journal,
18(5):1191–1217, 2009.

[30] C. Koch and D. Olteanu. Conditioning probabilistic databases. PVLDB,
1(1):313–325, 2008.

[31] D. Lowd and P. Domingos. Efficient weight learning for Markov Logic
Networks. In PKDD, pages 200–211, 2007.

[32] E. Michelakis, R. Krishnamurthy, P. J. Haas, and S. Vaithyanathan.
Uncertainty management in rule-based information extraction systems.
In SIGMOD, pages 101–114, 2009.
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