
A Verification System for the Distributed
Object­Oriented Language Creol
Master of Science Thesis

MAXIMILIAN DYLLA

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Göteborg, Sweden, June 2009

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

A Verification System for the Distributed Object­Oriented Language Creol

MAXIMILIAN G. DYLLA

© MAXIMILIAN DYLLA, June 2009.

Examiner: Kristian Lindgren
Supervisor: Wolfgang Ahrendt

Department of Computer Science and Engineering
Chalmers University of Technology
SE­412 96 Göteborg
Sweden
Telephone + 46 (0)31­772 1000

The travels within this theses were supported by the EU COST Action IC0701:
”Formal Verification of Object­Oriented Software” and the EU­project FP7­ICT­2007­3
HATS: ”Highly Adaptable and Trustworthy Software using Formal Methods”.

Department of Computer Science and Engineering
Göteborg, Sweden June 2009

Abstract

Open distributed systems are composed of geographically distributed com-
ponents which may be changed during run-time. The importance of such
systems is growing as they are often part of safety-critical infrastructure.
Creol is an experimental object-oriented modeling language for such sys-
tems. Its objects execute concurrently and contain their own virtual pro-
cessor with cooperative scheduling. Inter-object communication takes place
asynchronously via interfaces.

This work presents a first-order dynamic logic and calculus for formal
verification of Creol together with a prototypical implementation in the in-
teractive theorem prover KeY. The proof system is compositional in the
sense that all methods of all classes are verifiable independently. Object
internal concurrency is addressed by class invariants serving as a contract
between all threads of an object. For external communication, a history in
form of a ghost variable local to the object provides independence of mod-
ular proofs. Later on, composition of local histories leads to system wide
correctness.

Keywords: program verification, dynamic logic, concurrency, communi-
cation history, distributed systems

i

ii Abstract

Preface

This project has been carried out as a 60 credit-points Master of Science The-
sis within the Complex Adaptive Systems Master-program in the Software
Engineering using Formal Methods Group of the Department Computer Sci-
ence and Engineering at Chalmers University of Technology. My task was
to develop a verification system for Creol.

I would like to thank my supervisor Wolfgang Ahrendt for investing a
lot of time in discussing my thesis with me even when I showed up several
times per week. Despite his obligations to his family, he spent some days
with me at the University of Oslo to proceed with my thesis.

I owe Richard Bubel much as he seems to know everything regarding
the KeY system no matter whether it is a question about logic or about the
source code.

During his time at University of Oslo, Marcel Kyas helped me in under-
standing many details of the Creol language. It was a pleasure for me to
work together with Martin Steffen, Olaf Owe, and Einar Broch Johnsen who
were always open to discussions and even left me a copy of the Festschrift
in Memory of Ole-Johan Dahl.

Also I am very grateful to Wolfgang Ahrendt, Justin Schneiderman and
Max Jair Ortiz Catalan for proofreading the final version of this report.

I want to thank my friends Max Jair Ortiz Catalan, Clemens Buss, and
Justin Schneiderman for helping me to sometimes stay away from my thesis.
Finally I thank my family and especially my girlfriend Anna Drescher for
encouraging me throughout the completion of my thesis.

iii

iv Abstract

Table of Contents

1 Introduction 1

1.1 Problem statement . 2

1.2 Related work . 2

1.3 Thesis outline . 3

1.4 Summary contributions . 3

2 Preliminaries 5

2.1 Sets . 5

2.2 Graphs . 7

3 Overview of Creol 9

3.1 Example: Unbounded buffer 13

4 jCreol: A parsing library 17

4.1 Architecture . 17

4.2 Using jCreol . 25

4.3 Limitations and further work 26

5 Overview of the KeY tool 31

6 Creol dynamic logic 33

6.1 Sorts . 33

6.2 Syntax . 36

6.3 Semantics . 40

6.4 Sequent calculus . 47

7 Reasoning about Creol 51

7.1 Sequential calculus . 51

7.2 Concurrent calculus . 57

7.3 Verifying a Creol program . 77

7.4 Limitations and further work 78

v

vi TABLE OF CONTENTS

8 KeYCreol: A verification tool 81

8.1 Architecture . 81
8.2 Using KeYCreol . 90
8.3 Limitations and further work 90

9 Case studies 93

9.1 Bank account . 93
9.2 Buffer . 95

10 Conclusions 101

A Creol Grammar 103

B Glossary of symbols 109

B.1 Sets . 109
B.2 Graphs . 109
B.3 Sorts . 110
B.4 Syntax . 110
B.5 Semantics . 111
B.6 Sequent calculus . 111
B.7 Reasoning about Creol . 112
B.8 Domains . 113
B.9 Rigid functions . 114
B.10 Predicates . 116

List of Figures

2.1 A directed graph . 7
2.2 An acyclic directed graph . 7
2.3 A tree . 8

3.1 Types in Creol . 13

4.1 UML diagram: jCreol . 18
4.2 UML diagram: jCreol.antlr 19
4.3 Parse tree of listing 4.1 . 20
4.4 UML diagram: jCreol.graph 22
4.5 UML diagram: jCreol.symboltable 23
4.6 UML diagram: jCreol.walker 24
4.7 UML diagram: jCreol.finitestatemachine 25
4.8 Parts of the finite state machine for resolving references . . . 28
4.9 AST of listing 4.1 with resolved references 29

6.1 Sort hierarchy . 34

7.1 Example for an object hierarchy 59
7.2 Sort hierarchy of the messages 62
7.3 Sort hierarchy of the history 65
7.4 History with method calls . 77

8.1 UML diagram: key.lang.creol.program 83
8.2 UML diagram: key.lang.creol.walker 84
8.3 UML diagram: key.lang.creol.loader 85
8.4 Schema sorts . 87
8.5 UML diagram: key.lang.creol.schemavariable 88
8.6 UML diagram: key.lang.creol.type 89

9.1 Finite state machine of the history of the Buffer class 97

vii

viii LIST OF FIGURES

Listings

3.1 Interface declaration . 10
3.2 Asynchronous communication 10
3.3 Class . 11
3.4 Release . 12
3.5 Await . 12
3.6 Indeterministic choice . 12
3.7 While . 13
3.8 Block . 13
3.9 Buffer Interface . 14
3.10 Buffer Class . 14
4.1 Creol code example . 19
4.2 Token stream resulting from listing 4.1 19
4.3 Grammar rule example . 19
9.1 Bank account interface . 93
9.2 Bank account class . 94
9.3 WritableBuffer interface . 95
9.4 ReadableBuffer interface . 95
9.5 Buffer class . 96
A.1 Creol Grammar . 103

ix

x LISTINGS

Chapter 1

Introduction

This thesis builds the link between two long term research projects namely
KeY1 and Creol2.

KeY [ABB+05, BHS07] is a research project started in 1998 at University
of Karlsruhe, Germany. Nowadays, it is a joint project of the University of
Karlsruhe, University of Koblenz-Landau, and Chalmers University of Tech-
nology, Gothenburg. Its purpose is the development of a formal software de-
velopment tool that integrates design, implementation, formal specification,
and formal verification of object-oriented software as seamlessly as possible.
The core of the system is a first-order dynamic logic theorem prover supplied
with a user friendly graphical interface. KeY was originally developed for
verification of Java3 and recently adapted for the verification of C and other
purposes.

Creol (Concurrent reflective object-oriented language) is an ongoing re-
search project at the Precise Modeling and Analysis group at University of
Oslo where object-orientation was originally invented. Its goal is the devel-
opment of a formal framework and tool for reasoning about dynamic and re-
flective modifications in object-oriented open distributed systems. The main
part of the work is the modeling language Creol which is strongly-typed and
object-oriented. It supports classes, interfaces, multiple inheritance, poly-
morphism and two different levels of concurrency. Between objects, execut-
ing in parallel with their own virtual processors, asynchronous method calls
via the interfaces are the only form of communication. Inside an object,
cooperation between threads is yielded by explicit processor release-points.
The operational semantics of Creol are implemented in the rewriting logic
of Maude [CDE+08] which provides an executable prototype environment
to run Creol.

1http://www.key-project.org
2http://heim.ifi.uio.no/creol/
3http://www.java.com

1

http://www.key-project.org
http://heim.ifi.uio.no/creol/
http://www.java.com

2 CHAPTER 1. INTRODUCTION

1.1 Problem statement

The objective of this thesis is to establish the theoretical and technological
foundations for an efficient and user-friendly verification environment for
distributed systems modelled with Creol. Experience and knowledge from
both Creol and the KeY system must therefore be incorporated. The major
milestones completed in this work are:

1. The design of a program logic for (a significant subset of) Creol

2. The design of a proof calculus for this logic

3. The implementation of the calculus, in terms of executable rules

4. The implementation of a rudimentary proof strategy

The major challenge of the set goals is mastering the uncertainty inherent
in compositional reasoning about distributed systems.

1.2 Related work

In the 1940s Goldstine, von Neumann [GvN47], and Turing [Tur49] first at-
tempted to verify computer programs. About 20 years later Floyd [Flo67]
formalized this principle for flowchart programs and Hoare [Hoa69] for im-
perative programs.

Nowadays, many program-verification systems are structured in a mod-
ular way consisting, at minimum, of a verification condition generator and a
theorem prover like CVC [SBD02], PVS [COR+95] or Isabelle/HOL [NPW02].
The most well-known systems, besides KeY, are Boogie [ByECD+06] for C#
using Z3 [dMB08] in its back-end and Why/Krakatoa/Caduceus [FM07] for
Java and C, which hands its generated verification conditions over to a num-
ber of different theorem provers.

It seems that, in the future, these techniques might be integrated in a
fully automated ”verifying compiler” [Hoa03].

However, the verification of concurrent programs has proven itself to
be an tedious task. There were efforts by Ábrahám et al. [ÁdBdRS03]
and Beckert and Klebanov [BK07] to handle concurrent Java, but they are
still at an early stage of development. The theoretical foundations of the
verification of concurrent programs are discussed in [AO97, dRdBH+01].

Calculi for the verification of Creol were elaborated in [DJO08a, DJO06]
and in [Bla08], a corresponding verification condition generator was estab-
lished. The notion of the history or trace they are using was originally
introduced by Dahl [Dah77] and Hoare [Hoa83].

A similar adaption of KeY for the programming language C is described
in [Mür08].

1.3. THESIS OUTLINE 3

1.3 Thesis outline

The main focus of this thesis is program verification. However, it should
be accessible to computer scientists feeling comfortable with topics from
discrete mathematics, such as first-order logic and graph theory. These con-
cepts will be introduced briefly before their use. Another prerequisite is the
understanding of principles and terminology from object-oriented program-
ming. An elaborated introduction can be found in [Bal04].

The remaining parts of this thesis are structured as follows:

• Chapter 2 introduces mathematical foundations and notations neces-
sary to understand the following parts of the thesis.

• Chapter 3 presents the modeling language Creol that is the subject of
our analysis.

• Chapter 4 documents a parsing software for Creol used by KeYCreol.

• Chapter 5 provides an overview of the KeY tool.

• Chapter 6 explains typed dynamic logic and sequent calculi.

• Chapter 7 uses the theory of the previous chapter to extend it for
reasoning about Creol.

• Chapter 8 reviews the KeYCreol software that implements the calculus
from the preceding chapter.

• Chapter 9 contains two illustrative examples that are provable with
KeYCreol.

• Chapter 10 summarizes the results and condenses the discussions of
further work.

• Appendix A specifies a Creol Grammar.

• Appendix B comprises a glossary of mathematical symbols.

1.4 Summary contributions

The contributions of this thesis are of both theoretical and practical nature.
On the theoretical side is the creation of a dynamic logic and a corre-

sponding calculus for a major subset of Creol. It reuses the concepts of the
KeY system known from the verification of Java and combines them with
ideas for the verification of Creol to handle the uncertainty occurring in
distributed systems.

The main practical achievement is the establishment of a prototype of
the KeYCreol software forming a verification system for Creol based on the

4 CHAPTER 1. INTRODUCTION

KeY system. An alternative design concept for parts of the KeY system is
used reducing the lines of code by more than 80% in comparison to previous
adaptions of KeY.

A minor practical accomplishment is the realization of a LL(1) grammar
for Creol that significantly broadens the range of applicable parser genera-
tors for Creol in contrast to the prior existing LR(1) grammar.

Chapter 2

Preliminaries

This chapter introduces two mathematical concepts, namely sets and graphs,
used throughout the thesis. These topics are usually taught in undergradu-
ate computer science curricula, therefore this chapter focuses on terminology
and notations. Readers feeling comfortable with these subjects are encour-
aged to move on to the next chapter.

2.1 Sets

Definition 2.1.1. A set is a collection of pairwise different objects

Example 2.1.1. A simple example is the set A = {1, 2, 3} inclosing the
numbers 1 to 3.

The following definition establishes operations on sets.

Definition 2.1.2. For given sets A, B and a element e the following rela-
tions exist:

• The membership e ∈ A denotes that e is contained in A.

• The subset relation A ⊆ B expresses that all members of A are also
members of B.

• The relative complement A\B includes all elements inclosed in A but
not in B.

• The intersection A∩B holds all elements contained in both A and B.

• The union A ∪ B consists of all elements which are in A or B (or
both).

• The cardinality |A| denotes the number of elements in a set.

• For the empty set we write ∅.

5

6 CHAPTER 2. PRELIMINARIES

Example 2.1.2. Let B = {1, 2} and A = {1, 2, 3} be given. Then B ⊆ A
holds because 1 and 2 are contained in A. The union two sets B and {3} is
B∪{3} = A. 1 is a member of the set A: 1 ∈ A. The relative complement of
A and B is A\B = {3}. The cardinality of set describes number of objects
in a set: |A| = 3. The empty set contains no elements: |∅| = 0.

The members of a set can be ordered by a given relation R.

Definition 2.1.3. A relation R is called partial order for a set A iff for all
a, b ∈ A:

• aRa (reflexivity)

• if aRb and bRa then a = b (antisymmetry)

• if aRb and bRc then aRc (transitivity)

Example 2.1.3. The less or equal relation ≤ is a partial order on the
integers Z.

Given a partial order we can define the minimum.

Definition 2.1.4. For a given set A and a partial order R the minimum is
an element a ∈ A such that for all b ∈ A: aRb.

The minimum does not necessarily exist.

Example 2.1.4. The integers Z do not have a minimum. The natural
numbers N0 have the minimum 0.

Definition 2.1.5. The Cartesian product of two sets A and B is the set
of ordered pairs where the first element belongs to A and the second to B:
A × B = {(a, b)|a ∈ A, b ∈ B}

Example 2.1.5. For two sets A = {1, 2} and B = {3, 4} the Cartesian
product is: A × B = {(1, 3), (1, 4), (2, 3), (2, 4)}.

Definition 2.1.6. The Cartesian product of n sets is a n-tuple:
A1 × · · · × An = {(a1, . . . , an)|a1 ∈ A1, . . . , an ∈ An}

We will write An for A × · · · × A
︸ ︷︷ ︸

n times

and A∗ for
⋃∞

i=0 Ai. Tuples abbreviated

by an variable will be indicated by an bar: w̄ ∈ A∗.

Example 2.1.6. For a set A = {1, 2, 3} the following tuples are contained
in A∗: (), (2, 3, 3, 1), and (2).

2.2. GRAPHS 7

2.2 Graphs

Definition 2.2.1. A directed graph G = (V, E) consists of a set of vertices
V such that 0 < |V | < ∞ and a set of directed edges connecting vertices:
E = {(v1, v2)|v1, v2 ∈ V }

We will use the word graph meaning only directed graphs.

Example 2.2.1. In figure 2.1 is a graph with four nodes and five edges
between them.

1

2

4

3

Figure 2.1: A directed graph

Definition 2.2.2. On a graph G = (V, E) a sequence P = v1, . . . , vn (2 ≤ n)
with vi ∈ V satisfying ∀i ∈ {1, . . . , n − 1} : (vi, vi+1) ∈ E is called a path
from v1 to vn.

Example 2.2.2. There is a path P = 1, 2, 3, 3 in figure 2.1.

Definition 2.2.3. A directed acyclic graph is a graph G = (V, E) where
the property holds: For all paths P = v1, . . . , vn in G: v1 6= vn.

Example 2.2.3. The graph in figure 2.2 is an acyclic graph whereas figure
2.1 is cyclic.

1

2 43

Figure 2.2: An acyclic directed graph

Definition 2.2.4. Given a graph G = (V, E) and a node v0 ∈ V named
root, the graph is called tree iff ∀v ∈ V : v 6= v0 there is exactly one path
P = v0, . . . , v

Example 2.2.4. Neither the graph in figure 2.2 nor in figure 2.1 is a tree,
but the graph in figure 2.3 is.

Definition 2.2.5. For a given tree G = (V, E) a leaf is a node v ∈ V such
that ∀v′ ∈ V : (v, v′) /∈ E

8 CHAPTER 2. PRELIMINARIES

1 2

4

3

Figure 2.3: A tree

Example 2.2.5. The vertices numbered by 3 and 4 are leafs of the tree in
figure 2.3.

Definition 2.2.6. Given a graph G = (VG, EG) with a node v0 a directed
spanning tree is T = (VT , ET) with VT = VG and ET ⊂ EG such that T is a
tree with root v0.

Example 2.2.6. Figure 2.3 contains one of the many spanning trees of
figure 2.2.

Chapter 3

Overview of Creol

This chapter introduces Creol by example. The focus lies on the features sig-
nificant to the verification of Creol. There are many aspects of Creol which
are not covered by this work, like multiple inheritance [DJOS08, DJO04]
and class upgrades [YJO06]. In the literature, there are different Creol di-
alects depending on their respective purpose. This thesis uses a new dialect
which is largely consistent with the standard of the Creol compiler [Kya08].
The specific changes result from insights gained while building the verifica-
tion system and have been discussed with the Creol team at University of
Oslo. As Creol is still an experimental programming language, information
in this chapter might have been subject to changes since this chapter has
been written.

In the following paragraphs different facets of Creol will be discussed
and the chapter finishes with an example in section 3.1.

Levels of parallelism

Each Creol object is assumed to be executed on its own (maybe virtual)
processor. Hence, one has to think of a Creol program as each object is ex-
ecuted in parallel. The objects communicate among each other via message
passing where a message can be a method call or a method completion.

Inside an object there can be several different threads. A new thread
is created as soon as a method is invoked. Threads are scheduled cooper-
atively1, meaning there is no timer which enforces a thread switch but a
thread switch can only occur if the execution reaches a releasing statement.
However, there are no assumptions about the scheduling behavior so one
cannot assume that a particular thread is chosen at such a release-point.
Threads of one object can communicate via shared variables, the class at-
tributes. A thread can create new threads by calling a method of the same
object.

1This comes with the drawback of blocked objects in case of an infinite loop.

9

10 CHAPTER 3. OVERVIEW OF CREOL

Object viewpoints

References to objects are typed by interfaces. An interface contains methods
which have to be provided by the object implementing the interface. Casting
an object reference to another interface will enable other methods to be
invoked or in other words changes the view on the object. Consider the
following example of an interface declaration:

1 interface I
2 begin

3 with I2
4 op meth1 (in a : Int)
5 op meth2 (out b : Bool)
6 end

Listing 3.1: Interface declaration

The interface I provides two different methods, namely meth1 and meth2.
The input parameter of meth1 is a type Int. The method meth1 has one
output parameter b of type Bool. An object storing a reference to another
object typed by I can call the methods meth1 and meth2 if it implements
itself the (co-)interface I2.

Inter object communication

In contrast to most other programming languages all methods calls are asyn-
chronous meaning that the invocation is separated from the retrieving and
assignment of the result. For an example consider the following listing:

1 var l : Label [Bool] ;
2 l ! obj . meth (a , b) ;
3 . . . ;
4 l ?(y)

Listing 3.2: Asynchronous communication

The method meth of object obj is invoked with input parameters a and b.
As the retrieving of the results is separated from the invocation the method
call must be remembered. Therefore labels exist in which a reference to a
method call can be stored. In our case the label is l. The last statement
l?(y) assigns the result of the method call corresponding to the given label
to the variable y. If there is no answer available yet, the object will block
(busy waiting) until the answer arrives. y must be of type Bool because the
label is declared like this.

In general there are no assumptions on the underlying network which
transmits the invocation or completion messages. So message overtaking is
possible and must be considered by the programmer. This implies that the

11

sequential call of two methods on a given object does not ensure that the
messages arrive at the object in the same order.

Classes

The only form, executable code can occur in, are classes. All objects oc-
curring during run time are instances of a class. Classes have attributes
where each object has its own copy of them. Attributes of an object can
only be modified by the methods of that object. There is no remote access
to attributes. Therefore objects can alter attributes of other objects only
indirectly.

There are two kinds of methods. The first are typed by a co-interface and
implemented because the class implements an interface. Such methods can
be called by other objects. The second kind of methods are local methods
not typed by an co-interface. They can only be called from other methods
inside the class.

Let us consider an example:

1 interface I
2 begin

3 with Any
4 op meth1 (in a : Bool)
5 end

6
7 class A(x : Int) implements I
8 begin

9 var a t t r 1 : Int ;
10 var a t t r 2 : Bool ;
11
12 op i n i t == at t r 1 := x
13 op run == skip

14
15 with Any
16 op meth1 (in a : Bool) == at t r 2 := a
17 end

Listing 3.3: Class

The class A implements the interface I which provides the method meth1.
This method has to be implemented in the class. The class attributes attr1
and attr2 are accessible to all methods of the class. The two local methods,
init and run, are special and exist in every class. init is called on object
creation where the class parameters (in the example x) are its parameters.
After init has terminated run is called which usually invokes actions in the
object. In our case it does nothing stated by skip.

12 CHAPTER 3. OVERVIEW OF CREOL

Releasing statements

A releasing statement allows the scheduler of an object to interrupt the
current thread, and to choose another thread to run. The simplest statement
is the release statement:

1 release

Listing 3.4: Release

This simply makes it possible for other threads to be scheduled.
The mostly used statement is the await statement which is bound to a

condition usually called guard. If the guard evaluates to true, the execution
will continue without releasing. If the guard is evaluated to false, the thread
will release. It can only be rescheduled when the guard is true.

1 await g

Listing 3.5: Await

In the above listing g is a placeholder for a guard. Guards can either be a
Boolean expression like a > 0 or l? or wait, but not a combination of them.
The l? notion is true if an answer to the given label has arrived and false
otherwise. await wait is a long form of expressing release.

Indeterministic choice statement

In contrast to popular programming languages Creol contains an indetermin-
istic choice statement that has two branches of statements where only one
is executed. The decision depends on the first statements of the branches:

1 await l ? ; l (x) [] a:=b+c

Listing 3.6: Indeterministic choice

In the above listing the left branch can only be executed if the answer to
the label l has arrived. In the latter case one of the branches will be chosen
randomly. Otherwise the right branch will be executed. When both first
statements are not ready for execution the statement will block the object
until one is.

Type system

The Creol type hierarchy used throughout the thesis is a subset of the actual
one available in [Kya08]. The top of the type hierarchy of Creol is Data. All
other data types are subtypes of it. This sets the Creol type hierarchy apart
from popular programming languages like Java because Data is a common
top element for primitive and reference types. All interfaces inherit the Any
type which is also implemented by all classes.

3.1. EXAMPLE: UNBOUNDED BUFFER 13

Data

Any Bool Int

Figure 3.1: Types in Creol

Exceptions

In the Creol literature there is no exception handling as this was postponed
for the sake of more innovative features. The Maude machine interpreting
Creol machine code initializes all declared variables with null and simply
stops if an exception occurs. If we implemented the same semantics in a
calculus we would have to inspect every variable whether is it null or not
(a:=null+2 leads to an exception) leading to a remarkable overhead.

Therefore in this work all declared variables are implicitly initialized with
a standard value. For integers it is 0, for Boolean variables it is false and
for labels and object references we use null. Even under this precautions an
exception emerges if the execution reaches a point where a method of null
is called or if a division by zero is attempted. We deal with such exceptions
by simply blocking the object. This means the current thread does a infinite
loop which could be described by:

1 while true do

2 skip

3 end

Listing 3.7: While

We the abbreviate the above behavior by a single statement:

1 block

Listing 3.8: Block

3.1 Example: Unbounded buffer

We conclude this chapter with an example which implements an unbounded
First In First Out (FIFO) buffer. In the flavor of Creol we will not use a
queue as a predefined data structure but create it as linked list of objects.
Every object will store exactly one element of the buffer and a reference to
the next object in the buffer.

Let us start with the declaration of the corresponding interface:

14 CHAPTER 3. OVERVIEW OF CREOL

1 interface Buf ferSpec
2 begin

3 with Any
4 op put (in x : Any , seq : Int)
5 op get (in seq : Int ; out y : Any)
6 end

Listing 3.9: Buffer Interface

There are two methods namely put which receives a reference to an object
and a sequence number and get which just has a sequence number as a
parameter and returns a reference to an object. The put method will in-
tuitively add an object to the buffer whereas get retrieves an object. The
sequence numbers are necessary because of message overtaking.

1 class Buf f e r implements Buf ferSpec
2 begin

3 var c e l l :Any ;
4 var next : Buf f e r ;
5 var i n s : Int ;
6 var outs : Int ;
7
8 with Any
9 op put (in x :Any , seq : Int) == await i n s=seq ;

10 i f ins−outs = 0
11 then c e l l :=x
12 else i f next=null then next :=new Buf f e r end ;
13 ! next . put (x , seq)
14 end ; i n s := in s+1
15 op get (in seq : Int ; out y :Any) == var l : Label [Any] ;
16 await outs=seq ; await ins−outs >0;
17 i f c e l l=null

18 then l ! next . get (seq , x) ; l ?(y)
19 else y:= c e l l end ; outs := outs+1
20 end

Listing 3.10: Buffer Class

The class has four attributes which are the stored object, the reference to
the next element of the buffer, and the last sequence numbers for put and
get. The put method assigns its own cell with the object to store if the
following parts of the buffer are empty (ensured by ins-outs=0). Otherwise
the element will be forwarded in the buffer. This maintains the property
that older elements are first in the buffer. Hence the get method simply
returns the first stored object to be found in the buffer. If a put or get call
arrives out of order its execution is delayed by the initial await statement.

3.1. EXAMPLE: UNBOUNDED BUFFER 15

Readers still feeling uncomfortable with Creol can have look at chap-
ter 9 where there are two more examples or consult the Creol literature
[DJO05, DJO08a, Bla08, Kya08, Bla07] which contains an extensive amount
of examples.

16 CHAPTER 3. OVERVIEW OF CREOL

Chapter 4

jCreol: A parsing library

jCreol is a library which supports parsing and simple reference resolving
of Creol code. It is designed for the linkage with other programs. jCreol
is protected by the GNU general public license and can be obtained upon
request from http://www.key-project.org. To simplify the linking to the
KeY system it is written in Java.

We will open this chapter by a documentation of the architecture of
jCreol. Thereafter a brief guidance into the use and the deployment of
jCreol in other projects is presented in section 4.2. The chapter ends in
section 4.3 with discussions on immanent constraints and suggestions on
prospective work.

4.1 Architecture

The architecture of jCreol is centered around the Main class which invokes
the other parts of the system. A UML diagram1 providing an overview can
be found in figure 4.1.

A pass of jCreol consists of these steps:

• First, the ANTLR lexer converts the sequence of characters given by
the Creol input file to a sequence of tokens each representing catego-
rized text.

• Second, the parser determines the grammatical structure of the se-
quence of tokens.

• Third, the resulting parse tree is translated into the graph data struc-
ture.

1Unified Modeling Language created by the Object Management Group
http://www.omg.org

17

http://www.key-project.org
http://www.omg.org

18 CHAPTER 4. JCREOL: A PARSING LIBRARY

jCreol

M a i n

-graph: Graph

+main(in args:String[])

graph

finitestatemachine

symboltablewalker

antlr
1. invokes Lexer,Parser

1

1

2. creates

1

1

 3. invokes

3

1

walks on

3

1

3.1 fills1 1

3.2/3.3 input

2

2

3.2 modifies; 3.3 translates
2

1

uses

2

1

caches nodes

1

1

Figure 4.1: jCreol architecture UML diagram. The antlr, graph, walker,
symboltable and finitestatemachine packages are depainted in detail in the
figures 4.2, 4.4, 4.6, 4.5 and 4.7, respectively.

• Next, a walker traversing the graph fills a symbol table which main-
tains a dictionary relating identifiers of classes, interfaces, data struc-
tures, functions, and variables with their corresponding nodes in the
graph.

• In the following step another walker moves on the graph which provides
the names of the nodes of the graph as an input for a finite state
machine which recognizes identifiers and modifies the graph to resolve
these.

• Finally, a third walker is called which wanders on the modified graph
and again controls a finite state machine. The automaton is supplied
by an external program which in our case is KeYCreol.

ANTLR

For creating the lexer and the parser the ANTLR parser generator2 was used.
A good introduction to ANTLR can be found in [Par07]. A comprehensive
description of lexers and parsers is available in [ASU86] chapters 3 and 4,
respectively.

In figure 4.2 there is an overview of the antlr package in jCreol, visual-
izing that the tokens produced by the lexer are handed over to the parser.
ANTLR does not strictly separate between lexer and parser. Hence both
are in the same source code file called ”Creol.g” which can be found in the
antlr package of jCreol.

2ANother Tool for Language Recognition. http://www.antlr.org

http://www.antlr.org/

4.1. ARCHITECTURE 19

Figure 4.2: UML diagram of the architecture of the antlr package in jCreol.
Methods and attributes are simplified. The displayed methods of Creol-
Parser are used to launch the parser at the corresponding rule.

Token names consist of capital letters in ANTLR so we will keep this
notation in the examples.

Lexer The task of a lexer is to determine the category of each word in
the Creol source code and indicate its category by a token. For example, a
token can represent an integer, one or more keywords of the Creol language
or the plus operator. Let us consider an example:

1 class Example
2 begin

3 var i : Bool ;
4 op f oo == i :=true

5 end

Listing 4.1: Creol code example

The sample class given above would be converted into the token stream:

1 CLASS CLASS IDENTIFIER BEGIN VAR IDENTIFIER COLON
2 CLASS IDENTIFIER SEMICOLON OP IDENTIFIER DOUBLE EQUAL
3 IDENTIFIER ASSIGN TRUE END

Listing 4.2: Token stream resulting from listing 4.1

We note that the meaning of the token IDENTIFIER is not unique for
instance as it might betoken a variable name or a function name. This is
where the parser comes into play.

Parser The parser determines the syntactical structure of a token stream
using a grammar. For example the grammar rule given in listing 4.3 is
able to accept all arithmetic expressions just consisting of plus, minus and
integers.

1 expr −> (expr ((PLUS | MINUS) expr)∗)
2 | INTEGER

Listing 4.3: Grammar rule example

20 CHAPTER 4. JCREOL: A PARSING LIBRARY

The words in capital letters are the tokens produced by the lexer whereas
the words in lower case are non-terminal symbols which should be replaced
by the parser until there are just tokens left. The vertical symbolizes a
decision meaning that just one of the alternatives is chosen. The asterisk,
usually called Kleene star, stands for zero or arbitrary many occurrences.
A parser examining an expression would start just with expr and replace
it by appropriate instances of the right side of the rule until there are no
appearances of expr left.

Continuing the previous examples, the resulting parse tree for the code
given in listing 4.1 and its tokens in listing 4.2 is pictured in figure 4.3.

root

start

declaration

class_decl

class class_identifier begin class_attributes class_methods end

Example attribute ;

var var_decl_list

var_decl

expr : type

i Bool

op

method_with_body

method_identifier method_body

foo == statement

expr

i

:= expr

true

Figure 4.3: Parse tree of listing 4.1. Each node without an frame represents
one application of a rule of the grammar. The (non-)terminals occurring in
the right hand side of the rule are displayed as children of the left hand side.
The positions of the code snippets (internally represented by tokens) in the
tree are illustrated by the nodes with a frame. Some non-terminals were
skipped.

There are different strategies for parsers. Two of them will be mentioned
here.

LR(1) parsers use a bottom-up strategy. They read from left to right
emblematized by L, try to expand the right most instance of a non-terminal

4.1. ARCHITECTURE 21

typified by R and just look at one token to decide which grammar rule to
apply expressed by the (1). They are known to be complicated to design.
A LR(1) parser is used in the Creol compiler. The corresponding grammar
can be found in Appendix A of [Kya08]).

LL(1) parsers differ from LR(1) parsers in their strategy, which is top-
down, and in the way of expansion. They use the left most non-terminal
for rule application instead of the right most. Such a parser is used by
ANTLR and therefore a LL(1) grammar for Creol was created within this
thesis (see Appendix A for the grammar). The languages recognized by
LL(1) are a proper subset of the LR(1) languages, so a LL(1) grammar does
not necessarily exist for a given LR(1) grammar.

More detailed information about LL and LR parsers can be looked up
in [ASU86].

On a parse tree some cosmetic transformations like cutting unnecessary
chains of nodes and creating of new nodes with meaningful names are per-
formed by rewriting rules. The successive tree is the abstract syntax tree
(AST) which is processed by other parts of the program.

Graph

The graph data structure is a directed, acyclic graph (see section 2.2). An
overview of its program structure be found in figure 4.4.

In the program for vertices the corresponding class GraphNode and for
edges the class GraphEdge exist. As the abstract syntax tree is translated
to the graph the notion of parents and children are kept assuming that the
directed edges always point from a parent to its children. Internally the
directed edges have to be stored in both the node of their origin and of their
ending because the walker has to traverse them in both directions.

After resolving references nodes representing declarations might have
several parents (see figure 4.9). Hence a walker wandering the graph has
several possibilities to reach a node. On account of this the program main-
tains a directed spanning tree. The initial AST is already a spanning tree.
Therefore each edge which is redirected in the process of resolving references
is marked as not being part of the spanning tree. Whether a edge belongs
to spanning tree or not is expressed in the program by the belongsToTree
attribute of each edge. In a spanning tree there is exactly one path to each
node, so the walker can simply follow the spanning tree ensuring a unique
visiting order of the vertices.

An example for a graph with its spanning tree is illustrated in figure 4.9.

Symbol table

Some of the nodes in the graph will be used frequently and thus are cached
by the symbol table (cf. [ASU86]). This is done by the table attribute of the

22 CHAPTER 4. JCREOL: A PARSING LIBRARY

Figure 4.4: UML diagram of the graph data structure in jCreol leaving
out set methods. The text and the tokenName attributes of GraphNode
store the actual program snippet and its token name, respectively. The
fillSymbolTable and resolve methods of Graph launch the walker with the
corresponding behavior. runFSM accepts a finite state machine layout and
runs it on the graph.

SymbolTable class referring to figure 4.5. The nested HashMaps distinguish
between the types class, interface, data type and function on the first level
and by identifier on the second level. The vector is necessary because there
might be several instances with the same identifier. It stores the nodes of
their declaration.

The look up of variables by their name uses nested scopes since a variable
declared in a class might be hidden by a variable declared in a method for
example. The symbol table stores a reference to the most inner scope e.g. of
a method. Outer scopes can be reached via the parent attribute of the Scope
class. EnterScope and LeaveScope creates a new inner scope and deletes the
most inner scope, respectively.

Walker

The walker wanders on the graph data structure implementing the visitor
design pattern (cf. [GHJV95]). It performs a left-depth-first search (similar
to section 22.3 of [CLRS01]) on the spanning tree using two stacks to store

4.1. ARCHITECTURE 23

Figure 4.5: UML diagram of the symbol table in jCreol. The get and
add methods of Scope are only called by their corresponding methods in
SymbolTable which hence offers an unified interface to the other parts of the
program.

which child is next to visit and from which parent it came from3.
The walker can be supplied with different behaviors implementing the

interface Behavior of figure 4.6. This simplifies the process of reusing jCreol
for other purposes due to the fact that any non context sensitive operation
to be performed on the graph can be implemented by defining a single new
class.

Let us have a look at the two behaviors supplied with jCreol.

FillSymbolTable adds a reference to all nodes in the graph declaring a
class, interface, data type, or function to the symbol table.

Walker2FSM forwards the actions taken by the walker to the finite state
machine.

Finite state machine

The finite state machine is used to track the context the walker is in on
the graph and to execute actions on specific nodes of the graph. A UML
diagram of the package is available in figure 4.7. In the following the finite
state machine used by the program is specified which is an adapted version
of a Mealy machine probably named after [Mea55].

3As each node has exactly one parent in the spanning tree, one could store this infor-
mation in the node as well.

24 CHAPTER 4. JCREOL: A PARSING LIBRARY

walker

Walker

-parentStack: Stack<Integer>

-childStack: Stack<Integer>

+walk(in behavior:Behavior,
 in root:GraphNode): void

behavior

<<interface>>

Behavior

+init(in root:GraphNode)

+finish(in root:GraphNode)

+down(in GraphNode:parent,
 in GraphNode:child)

+downNotInTree(in parent:GraphNode,
 in child:GraphNode)

+up(in parent:GraphNode,
 in child:GraphNode)

Walker2FSM

-fsm: FiniteStateMachine

Fil lSymbolTable

-symbolTable: SymbolTable

-type: String

-node: GraphNode

executes

Figure 4.6: UML diagram of the walker package in jCreol. init and fin-
ish are activated by the Walker class before and after the run, respectively.
down and up are called if moving from parent to child and vice versa. down-
NotInTree is executed when there is an edge which is not in the spanning
tree.

Definition 4.1.1. A finite state machine is a tuple F = (S, s0, Σ1, Σ2, Γ, T, G)
where

• S is a finite set of states

• s0 is the start state. s0 ∈ S

• Σ1 = {up, down, downNotInTree} is an input alphabet

• Σ2 is an input alphabet which contains all possible tokens

• Γ a set of actions containing at least the empty action ǫ

• T : (S×Σ1 ×Σ2) → S a transition relation mapping a state and input
to a consequent state

• G : (S × Σ1 × Σ2) → Γ an output relation naming the action to be
performed on a transition

As each transition is determined by two input symbols provided by the
Walker2FSM behavior of the walker, the transition attribute of the State
class is implemented as a nested HashMap. The outer HashMap distin-
guishes between up, down and downNotInTree. up denotes that the walker
is moving from a child to a parent. down expresses that the walker is chang-
ing from a parent to a child. downNotInTree is a notification when there is a

4.2. USING JCREOL 25

child which is connected by an edge not belonging to the spanning tree. The
inner HashMap identifies the next state for a given token, delivered as an
input for the finite state machine, which is the token belonging to the node
the walker is approaching. The actions attribute follows the same scheme.
Alike the extensible design of the walker the finite state machine supports

Figure 4.7: UML diagram of the finite state machine in jCreol. The FiniteS-
tateMachine class forms the interface to the other packages of the program.
The input method of FiniteStateMachine forwards its calls to the input
method of the current state which returns the next state and runs the ac-
tion of the transition if available. The add* methods of State are called by
the build method of the class Layout to create the transitions.

the existence of several layouts achieved by the Layout class.

Resolve This layout resolves references of classes, data types, functions,
interfaces and variables by replacing each identifier by a non spanning tree
edge to its declaration node available in the symbol table (see figure 4.9 for
an example). An exemplary part of the finite state machine can be found
in figure 4.8.

4.2 Using jCreol

jCreol currently supports only Linux platforms.

26 CHAPTER 4. JCREOL: A PARSING LIBRARY

As external libraries log4j4, junit5 and ANTLR3 are requisite to compile
and run. For plotting functionalities currently graphviz6 and the image
viewers feh and eog7 are utilized where the latters are exchangeable by any
other image viewing software.

There are different possibilities to invoke jCreol. Either only the parser
is run separately or with resolving of references where in both cases the
resulting graph can be drawn. Additionally the layout of the finite state is
displayable.

External programs Besides the main class the jCreolExternal class can
run all parts of jCreol. It is designed to be used by external programs and
supports loading of sequences of statements or complete Creol programs.

When invoking jCreol externally a layout for a finite state machine has
to be supplied which is the last to be applied to the AST. To accomplish
this, the Layout and the Action classes have to be inherited and thereby
adjusted by the external program. In this stage of the development it is
particularly important to visualize the results of jCreol to be able to design
the layout of the finite state machine.

KeY, for instance, uses jCreol to parse the content of modalities and to
create the related KeY AST.

Hints for developers To further design the grammar the ANTLRWorks8

framework is a helpful tool since it checks grammars for errors and provides
debugging facilities.

The log4j library is heavily used if the level is set to debug. Errors
occurring during execution are printed by the logger and do not necessarily
crash the program.

A number of test cases for the grammar as well as the complete program
are in the folder test and are runnable automatically simplifying the process
of detecting bugs.

4.3 Limitations and further work

The resolving of references in the present version is limited in the sense that
it does not support overloading of methods. To achieve these extended func-
tionalities the symbol table has to store information about the parameters
of each method.

4logging.apache.org/log4j/
5www.junit.org
6www.graphviz.org
7www.gnome.org/projects/eog/
8www.antlr.org/works/

http://logging.apache.org/log4j/
http://www.junit.org
http://www.graphviz.org
http://www.gnome.org/projects/eog/
http://www.antlr.org/works/

4.3. LIMITATIONS AND FURTHER WORK 27

The present version of jCreol does not provide type checking or similar
support to check the validity of Creol code. While parsing a complete pro-
gram, references to classes, interfaces, or variables are resolved and throw er-
rors if not declared. Except for the resolving all code is parsed which is valid
according to the grammar available in Appendix A. However, the grammar
allows non-legal statements. To keep the generative approach of jCreol one
could supply the AST tree grammar walker available in the sources with
checks regarding properties of the AST. Another possibility would be to in-
voke the actual Creol compiler before processing a Creol program and reject
it on compiling errors. This approach would connect the accepted programs
more closely to development of the Creol language itself avoiding forming
another Creol branch accepted by jCreol.

The present grammar (see Appendix A) accepts a superset of the Creol
language. It is extended by KeY specific rules for schema variables (section
8.1) and the special return statement (section 7.3). To get rid of those fea-
tures in the grammar, one would have to create a second separate grammar.
The reason is that there is currently no inheritance mechanism for grammars
in ANTLR39. The other option would be to allow it in the grammar and
apply a check against those features which can be turned on and off.

9see ANTLR3 wiki. Accessed 11.05.2009

http://www.antlr.org/wiki/display/ANTLR3/inheritance+or+some+other+grammar+sharing+mechanism

28 CHAPTER 4. JCREOL: A PARSING LIBRARY

start

PROGRAM

CLASS

EnterScope

INTERFACE

EnterScope

LeaveScope

SUPER METHODS

INHERITS IMPLEMENTSClassResolve InterfaceResolve OP

EnterScope LeaveScope

LeaveScope

SUPER

INHERITS InterfaceResolve

Figure 4.8: Parts of the finite state machine for resolving references. Dashed
arrows embody transitions T : (S × down × Σ2) → S. Continuous arrows
stand for transitions T : (S×up×Σ2) → S. As every state is always reached
using the same token of Σ2 it is printed inside the state. Actions are written
next to transitions.

4.3. LIMITATIONS AND FURTHER WORK 29

ID

Example

DECL

TYPE i

datatype

var

SUPER METHODS

op

BODY

:=

ATTRIBUTES

ID

foo

class

PRAGMAS

TYPE from

true

PROGRAM

datatype

Bool TYPE

TYPE

Data

Figure 4.9: Graph with resolved references (e.g. the variable i or the type
Bool) generated out of listing 4.1. Dashed arrows specify edges of the graph
not belonging to the spanning tree. The data types Bool and Data belong
to the Creol library and were added automatically. Unrelated parts of the
library were left out in this figure. Nodes named in capital letters are added
by (cosmetic) rewriting rules. Names in lower case show code snippets oc-
curring in listing 4.1 or the library.

30 CHAPTER 4. JCREOL: A PARSING LIBRARY

Chapter 5

Overview of the KeY tool

This chapter provides an overview of the KeY tool [ABB+05, BHS07] in
general. Its adaption for Creol is described in chapter 8. The theory behind
the KeY tool is elaborated in [BHS07] and our adaption for Creol is available
in the chapters 6 and 7.

The KeY tool is a development tool which supports the formal analysis
of software. It aims to be a user-friendly software, thus lowering the entry
level of formal methods into the software development process. The software
can be launched without installation using the Java Webstart1 version on
http://www.key-project.org. It is written in Java and published under the
GNU general public license.

At the same time the analysis process is rooted in a well-founded theory.
It uses symbolic execution with induction (originally by [Bur74]). Symbolic
execution follows the control flow of a program, but instead of using explicit
values it uses symbolic values. The effect of a statement is applied accord-
ing to its operational semantics. Thereby one run of a symbolic execution
can stand for infinitely many ordinary runs of a program. For instance,
while symbolically executing the statement x := x + 1 we would consider
all possible values of x in one step. Therefore a version of dynamic logic
[Pra77, Har79] is used which is a logic extended by types (similar to types
in programs) and modalities containing the code to be symbolically exe-
cuted. The run of a symbolic execution checks source code against a given
specification. The single steps in a symbolic execution run are encoded in a
special language called taclets [Hab00a, Hab00b] which is described in sec-
tion 8.1. Eventually, all source code will be executed symbolically. Then
(also already during symbolic execution) the remaining logical formulae are
simplified with respect to arithmetic and logical properties using the internal
prover or external decision procedures like Yices [DdM06], CVC [SBD02],
and Simplify [DNS05], until the specification has been shown. The internal
theorem prover of KeY uses a sequent calculus [Gen35]. During a run the

1http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp

31

http://www.key-project.org
http://java.sun.com/javase/technologies/desktop/javawebstart/index.jsp

32 CHAPTER 5. OVERVIEW OF THE KEY TOOL

symbolic state is kept in updates [Bec01], which essentially are postponed
logical substitutions and provide an additional stage of simplification. More
details about updates can be found in chapter 6.

Originally KeY was developed for the verification of Java Card2 where
the specifications could be written in the Java Modelling Language (JML)
[BCC+05], the Object Constraint Language (OCL) [WK99], or directly in
the logic used by the software. Recently, adaptions of the KeY tool for other
purposes including the verification of the C programming language [Mür08]
and of hybrid systems [PQ08] were developed.

Research using the KeY tool covered different topics in the software
verification area, e.g. the creation of finite counter examples [Rüm05], the
verification of concurrent Java [BK07], the generation of Junit test cases
[EH07], and proof visualization [Bau06].

2http://java.sun.com/javacard/

http://java.sun.com/javacard/

Chapter 6

Creol dynamic logic

A first-order logic extended by sorts and modalities which contain program
code enabling reasoning about programs is introduced in this chapter. We
use a dynamic logic [Pra77, Har79] which is similar to Hoare Logic [Hoa69]
or the weakest precondition calculus [Dij75].

Let us start with a simple example to show what we are up for: Knowing
x equals zero we can prove that after executing the incrementing statement
x := x+1, it will equal one: x

.
= 0 → 〈x := x+1〉x

.
= 1. In this case 〈 〉

is the modality, which contains the statement x := x+1. → is the logical
implication meaning if the left hand side, x

.
= 0, holds then the right hand

side of the implication has to hold. The modality creates a state update
which changes the interpretation of x to 1. So the formula x

.
= 1 after the

modality holds.

Some basic understanding of first-order logic will be required. There are
many textbooks with elaborated introductions, e.g. [Sch00],[Fit90].

The chapter is divided into four different parts. Section 6.1 establishes
sorts. Thereafter section 6.2 describes the syntax of logical formulae. The
corresponding semantics are discussed in section 6.3. Finally section 6.4
presents a sequence calculus for the logical formulae.

The definitions of this chapter are taken from [BHS07] chapters 2 and 3
and are slightly adapted. Another similar introduction to a dynamic logic
calculus for C can be found in [Mür08].

6.1 Sorts

First, we extend classical first-order logic by sorts. The type hierarchy of
section 3 will be represented by a sort hierarchy in the logic. Similar to
the type system we distinguish between static and dynamic sorts. The
theoretical background of this section was developed in [Gie05].

Definition 6.1.1. A sort hierarchy is a tuple (T , Td, Ts,⊑) where

33

34 CHAPTER 6. CREOL DYNAMIC LOGIC

• Td a finite set of dynamic sorts

• Ts a finite set of static sorts

• T is a finite set of sorts Td ∪ Ts = T

• ⊑: T × T is a sub sort relation, introducing a partial order on T

• Bottom ∈ Td, Top ∈ Ts with ∀A ∈ T : Bottom ⊑ A ⊑ Top

• T is closed under greatest lower bounds w.r.t. ⊑

We write A ⊓ B for the greatest lower bound of A and B and A ⊔ B for
the least upper bound if it exists. An example for the greatest lower bound
using figure 6.1 is: Bool ⊔ intDom = Data.

Top

Data

Any

Interface

Class

objDom

Bottom

Bool

Int

LabelboolDom

intDom

methLabelDomNull

Figure 6.1: Parts of the sort hierarchy used by the KeY system. An arrow
from A to B represents A ⊑ B. Sorts with gray background are dynamic
sorts. A sort with white background is a static sort. Depending on the
analyzed program there might be no or many interfaces with sub sorting
between them and there might be classes with sub sorting between them
and sub sorting of their implemented interfaces illustrated by the dashed
arrows (see Def. 6.2.4).

6.1. SORTS 35

We will use static sorts for terms and dynamic sorts for the domains the
terms will be interpreted in. As the Bottom sort is sub sort of all sorts every
term can be interpreted. Using the minimal sort hierarchy Ts = {Top} and
Td = {Bottom} the well known first-order logic emerges.

Example 6.1.1. Let us instantiate Ts by {Top, Int} and Td by {intDom,
Bottom}. In addition let Bottom ⊑ intDom ⊑ Int ⊑ Top. Our resulting
sort hierarchy is:

({Top, Int, intDom, Bottom}, {Bottom, intDom}, {Int, Top},⊑)

This is the sort hierarchy to be used in the following examples.

The partial order ⊑ is transitive meaning A ⊑ B and B ⊑ C implies
A ⊑ C. Therefore we are not able to express direct sub sorts. This requires
another definition.

Definition 6.1.2. For a sort hierarchy (T , Td, Ts,⊑) the direct sub sort
relation ⊑0⊆ T × T is defined for any A, B ∈ T as:
A ⊑0 B iff A ⊑ B and A 6= B and

for any C ∈ T with A ⊑ C ⊑ B it follows A = C or B = C

Example 6.1.2. In the sort hierarchy of Example 6.1.1 it holds Int ⊑0 Top
and intDom ⊑0 Int.

As Creol has predefined types we need to define a minimal sort hierarchy
which contains their correspondent. The translation of the type hierarchy of
section 3 to the sort hierarchy is done by an injective function which maps
each type to a sort with exactly the same name. The difference is that we
need more sorts than types to create a well-founded sort hierarchy.

Definition 6.1.3. A CreolDL sort hierarchy is a sort hierarchy (T , Td, Ts,
⊑) such that

• Td contains all domains of appendix B.8.

• {Data, Int, Bool, Label, Any, Interface, Class} ⊆ Ts fulfilling the re-
lations of figure 6.1

• {History, ObjectHistory, SendingHistory} ⊆ Ts fulfilling the rela-
tions of figure 7.3

• {Method, Message, TermLabel, NewLabel} ⊆ Ts fulfilling the rela-
tions of figure 7.2

The described sort hierarchy is drawn in the figures 6.1, 7.3 and 7.2.
From now on a sort hierarchy will always be a CreolDL sort hierarchy unless
stated otherwise.

36 CHAPTER 6. CREOL DYNAMIC LOGIC

6.2 Syntax

To construct dynamic logic formulae different sets of names will be neces-
sary and those are kept in the signature. The set of functions is split into
rigid and non-rigid symbols where the first have the same meaning in every
program state whereas the meaning of the latter can change, e.g. because of
an assignment (see Def. 6.3.10). All predicates are rigid.

Definition 6.2.1. Given a sort hierarchy (T , Td, Ts,⊑) a signature is
Σ = (V Sym, FSymr, FSymnr, PSym, α) where:

• the set of variables V Sym, the sets of function symbols FSymr,FSymnr

and the set of predicate symbols PSym are pairwise disjoint

• α is the sort function such that

– ∀v ∈ V Sym : α(v) ∈ Ts

– ∀f ∈ FSymr ∪ FSymnr : α(f) ∈ T ∗
s × Ts

– ∀p ∈ PSym : α(f) ∈ T ∗
s

From now on the abbreviation FSym := FSymr ∪ FSymnr will be
used. Furthermore, we will write f : A1, . . . , An → A instead of α(f) =
((A1, . . . , An), A) and P : A1, . . . , An instead of α(P) = (A1, . . . , An).

Example 6.2.1. For the sort hierarchy of Example 6.1.1 a signature could
be

Σ = ({x}, {1, 2, 3, +,−}, {a, b}, {
.
=}, α)

such that α(x) = Int, α(a) = α(b) = ((), Int), α(+) = α(−) = ((Int, Int),
Int) and α(1) = α(2) = α(3) = ((), Int). Or using the abbreviating nota-
tion: + : Int, Int → Int and

.
= : Int, Int. The sets are disjoint: It holds

that FSymnr ∩ FSymr = ∅, for example.

Alike the sort hierarchy we need some special functions and predicates
to reason about Creol. They can be looked up in the appendices B.9 and
B.10. We call a signature containing them a CreolDL signature, which will
be all signatures mentioned from now on.

The next definitions depend mutually on each other but to improve read-
ability they are distributed to the Definitions 6.2.2, 6.2.3 and 6.2.5. We will
define terms (Def. 6.2.2) which are the parameters of predicates. Formulae
(Def. 6.2.5) consist out of predicates, modalities with code and logical sym-
bols connecting them. Updates1 (Def. 6.2.3) representing state updates of
processed code can prefix both terms and formulae.

Definition 6.2.2. Given a sort hierarchy (T , Td, Ts,⊑) and a signature Σ
the sets of terms {TermA}A∈Ts

are inductively defined as the least system
of sets fulfilling

1Updates are postponed substitutions

6.2. SYNTAX 37

• x ∈ TermA for any variable x ∈ V Sym with α(x) = A

• f(t1, . . . , t2) ∈ TermA for any function symbol f : A1, . . . , An → A ∈
FSym with ti ∈ TermA′

i
where α(ti) = A′

i ⊑ Ai (1 ≤ i ≤ n)

• (if φ then t1 else t2) ∈ TermA for all φ ∈ Formulae(⇒ Def. 6.2.5),
for any t1 ∈ TermA1, t2 ∈ TermA2 with A = A1 ⊔ A2

• {u}t ∈ TermA for all updates u ∈ Updates(⇒ Def. 6.2.3) and all
terms t ∈ TermA

• (ifExMin x φ then t1 else t2)∈ TermA for all variables x ∈ V Sym, all
formulae φ ∈ Formulae(⇒ Def. 6.2.5) and any terms t1 ∈ TermA1,
t2 ∈ TermA2 with A = A1 ⊔ A2

Logical constants are treated as functions of arity zero.

Example 6.2.2. Continuing the previous examples we can write the term
+(x, a) using prefix form or as a− 2 in infix form. Please note that there is
no meaning connected to the symbols. We just defined the syntax.

We turn our attention towards state updates of our logic which are de-
scribed in detail in [Bec01]. An update is a postponed substitution on the
formula or term it prefixes2. Updates are often caused by an assignment in
the program.

Definition 6.2.3. Given a signature Σ for a sort hierarchy (T , Td, Ts,⊑)
the set of updates is the least set fulfilling:

• Functional update: (f(t1, . . . , tn) := t) ∈ Updates for all terms
f(t1, . . . , tn) ∈ TermA with f ∈ FSymnr and t ∈ TermA′ such that
A′ ⊑ A

• Parallel update: (u1 || u2) ∈ Updates for all u1, u2 ∈ Updates

• Quantified update: (for x; φ; u) ∈ Updates for all u ∈ Updates, x ∈
V Sym and φ ∈ Formulae(⇒ Def. 6.2.5)

• Update application: ({u1}u2) ∈ Updates for all u1, u2 ∈ Updates

Note that in a functional update f is non rigid implying that its meaning
can change (see Def. 6.3.10).

2Hoare logic [Hoa69] or classical dynamic logic [HKT00] work as a backwards calculus
in resolving the last statement first. A possibly created substitution is applied on the post
condition.

In contrast the logic of this chapter processes the first statement first, keeps updates
and applies them together after no statements are left. The notion of updates provide
another stage in the logic where they can be simplified before application.

38 CHAPTER 6. CREOL DYNAMIC LOGIC

Example 6.2.3. Building on the previous examples we can write {a :=
a + 2} or {a := b || b := a}. We observe that a, b ∈ FSymnr. It will be of
particular importance in the next section.

Before we define formulae we consider Creol programs because they can
occur in formulae. They have to be restricted as we do not want to deal with
incorrect programs like not compiling ones. We will assume that programs
have unique identifiers. This is not a restriction on programs as one can
easily come up with new names by adding numbers for example. Finally,
we ensure that all classes and interfaces are typed correctly.

Definition 6.2.4. Given a sort hierarchy (T , Td, Ts,⊑) and a corresponding
signature Σ a normalized Creol program p is a set of class and interface
declarations satisfying:

• p is compile correct

• identifiers are unique

• for all interfaces I: I ∈ Ts with Null ⊑0 I ⊑0 Any and I ⊑0 I ′ for all
interfaces I ′ it is inheriting

• for all classes C: C ∈ Td with Null ⊑0 C ⊑0 Top, C ⊑0 I for all
interfaces I it is implementing and C ⊑0 C ′ for all classes C ′ it is
inheriting

We denote the set of normalized Creol programs by Π.
Formulae express logical statements. Unlike in first-order logic, dynamic

logic formulae can contain Creol statements in a modality. A modality can
either be a box [p] or a diamond 〈p〉3. The diamond and the box are used
to express total correctness and partial correctness, respectively (see section
6.3).

Definition 6.2.5. The set Formulae of formulae is defined to be the least
set which satisfies:

• true, false ∈ Formulae

• P (t1, . . . , tn) ∈ Formulae for all P ∈ PSym and terms ti ∈ TermA′

i

with A′
i ⊑ Ai (1 ≤ i ≤ n)

• ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ → ψ) ∈ Formulae for any φ, ψ ∈ Formulae

• ∀x.φ, ∃x.φ for any φ ∈ Formulae and any x ∈ V Sym

• {u}φ ∈ Formulae for all φ ∈ Formulae and u ∈ Updates

3 Diamond and box are similar to Dijkstra’s wp and wlp ([Dij75]), respectively.
The Hoare triple {φ}p{ψ} ([Hoa69]) is similar to φ → [p]ψ.

6.2. SYNTAX 39

• 〈p〉φ, [p]φ ∈ Formulae for all φ ∈ Formulae and any Creol program
p ∈ Π.

We will abbreviate the formula (φ → ψ1) ∧ (¬φ → ψ2) by if φ then ψ1

else ψ2.

Example 6.2.4. Resuming the recent examples we can write formulae like:

• 〈a := 2〉(a
.
= 1 + 1)

• {b := a}true

• ({b := 2}b − 1
.
= a) → a

.
= 1

• true ∨ ¬a
.
= a + 1

Later, when the calculus is introduced (⇒ Def. 6.4), we will be interested
in closed formulae as known from first-order logic. In a closed formula all
variables are bound by a quantifier. A free variable is not bound by a
quantifier.

Definition 6.2.6. We define the set fv(t) of free variables of a term t as

• fv(v) = {v} for v ∈ V Sym

• fv(f(t1, . . . , tn)) =
⋃

i=1,...,n fv(ti) where f ∈ FSym and ti terms

• fv(if φ then t1 else t2) = fv(φ) ∪ fv(t1) ∪ fv(t2)

• fv({u}t) = fv(u) ∪ fv(t)

• fv(ifExMin x.φ then t1 else t2) = ((fv(φ) ∪ fv(t1))\{x}) ∪ fv(t2)

The set fv for an update u is defined as follows

• fv(f(t1, . . . , tn) := t) = fv(t) ∪
⋃n

i=1 fv(ti)

• fv(u1 || u2) = fv(u1) ∪ fv(u2)

• fv(for x; φ; u) = (fv(φ) ∪ fv(u))\{x}

We extend fv to formulae φ,ψ by

• fv(true) = fv(false) = ∅

• fv(P (t1, . . . , tn)) =
⋃

i=1,...,n fv(ti) for P ∈ PSym and ti terms

• fv(¬φ) = fv(φ)

• fv(φ ∧ ψ) = fv(φ ∨ ψ) = fv(φ → ψ) = fv(φ) ∪ fv(φ)

• fv(∀x.φ) = fv(∃x.φ) = fv(φ)\{x}

• fv({u}φ) = fv(u) ∪ fv(φ)

• fv(〈p〉φ) = fv([p]φ) = fv(φ)

A formula φ is called closed iff fv(φ) = ∅

40 CHAPTER 6. CREOL DYNAMIC LOGIC

6.3 Semantics

In this section we assign meaning to the formulae described in the previous
section. It is divided in four parts namely the semantics of updates, terms,
formulae, predicates, and functions which mutually depend on each other,
but are divided for readability.

Predicates and functions

A first-order logic model determines the interpretation of functions and pred-
icates. Though, the interpretation of a division by zero yields a problem:
Which value should we assign to 1/0 ? The KeY system follows the under-
specification approach characterized in [Häh05]. Instead of using a partial
function the function is considered to be total (defined for all inputs), but
the value it delivers for critical inputs is not known.

However, we define partial models which fix parts of the interpretation of
predicates and functions. The reason is that we will freeze the interpretation
of all rigid functions and all predicates by a partial model and leave the
interpretation of non rigid functions to models refining the partial model.
In Definition 6.3.3 we will show that a model is a special case of a partial
model.

Definition 6.3.1. Given a sort hierarchy (T , Td, Ts,⊑) and a signature Σ
a partial model is a quintuple M = (T0,D0, δ0, D0, I0) consisting of a set of
sorts T0 ⊆ Td, a set D0 called the partial domain, a sort function δ : D0 → T0,
a fixing function D0 and a partial interpretation I0, where:

• ∀A ∈ T : DA
0 := {d ∈ D0|δ(d) ⊑ A} 6= ∅

• ∀f : A1, . . . , An → A0 ∈ FSym fulfilling for all i Ai ∈ T0:
D0 yields a set of tuples of domain elements D0(f) : DA1

0 × . . .×DAn

0

and I yields a function I(f) : D0(f) → DA0
0

• ∀f : A1, . . . , An → A0 ∈ FSym where ∃i Ai /∈ T0: D0(f) = ∅

• ∀P : A1, . . . , An ∈ PSym fulfilling for all i Ai ∈ T0:
D0 yields a set of tuples of domain elements D0(f) : DA1

0 × . . .×DAn

0

and I yields a subset I0(P) ⊆ D0(P)

• ∀P : A1, . . . , An ∈ PSym where ∃i Ai /∈ T0: D0(P) = ∅

This complex definition requires some explanations. A term is inter-
preted in a domain. D0 represents the part of the domain which is fixed. δ
assigns a sort to each element of the fixed domain. D0 determines the pa-
rameters for which the interpretation for functions or predicates are known.
The parameters of a function are related to the output of the function by I.
The intended meaning of a predicate is P (x̄) is true if x̄ ∈ I(P) (see Def.
6.3.12).

6.3. SEMANTICS 41

Example 6.3.1. We proceed with our series of examples by defining a
partial model for our sort hierarchy

({Top, Int, intDom, Bottom}, {Bottom, intDom}, {Int, Top},⊑)

and a signature Σ = ({x}, {1, 2, 3, /}, {a, b}, {
.
=}, α):

M = ({Bottom, intDom}, Z, δ0, D0, I0)

where

• DintDom
0 = Z

• D0(/) = Z × Z\{0}

• D0(
.
=) = Z × Z

• I0(1) = 1, I0(2) = 2, I0(3) = 3

• I0(/)(x, y) = z such that 0 ≤ x − y ∗ z < |y|

We note that the interpretation for the division is unknown if y 6= 0.

As a partial model leaves out some fragment of the interpretation we can
imagine another partial model which fixes more parts of the interpretation.

Definition 6.3.2. A partial model M1 = (T1,D1, δ1, D1, I1) refines another
partial model M0 = (T0,D0, δ0, D0, I0), if

• T1 ⊇ T0

• D1 ⊇ D0

• ∀d ∈ D0 : δ1(d) = δ0(d)

• ∀f ∈ FSym : D1(f) ⊇ D0(f)

• ∀f ∈ FSym : ∀(d1, . . . , dn) ∈ D0(f) : I1(d1, . . . , dn) = I0(d1, . . . , dn)

• ∀P ∈ PSym : D1(P) ⊇ D0(P)

• ∀P ∈ PSym : I1(P) ∩ D0(P) = I0(P)

A partial model refines another model if it strengthens the constraints
on the interpretation and leaves the interpretation of the original model
untouched.

Example 6.3.2. Continuing the previous example we extend D0(/) to
D1(/) = Z × Z and its interpretation to

I1(/)(x, y) =

{
z such that 0 ≤ x − y ∗ z < |y| if y 6= 0
some arbitrary but fixed d ∈ DInt otherwise

Now, terms with a division through zero are interpreted by an unknown
value which is the standard approach of KeY.

42 CHAPTER 6. CREOL DYNAMIC LOGIC

The notion of models usually used in first-order logic are a special case
of partial models.

Definition 6.3.3. A partial model M0 = (T0,D0, δ0, D0, I0) is a model iff

• ∀f : A1, . . . , An → A0 ∈ FSym: D0(f) = DA1
0 × . . . ×DAn

0

• ∀P : A1, . . . , An ∈ PSym: D0(P) = DA1
0 × . . . ×DAn

0

Intuitively a model fixes the complete interpretation of functions and
predicates. Example 6.3.1 was a partial model not being a model whereas
example 6.3.2 is both.

States

The execution of an statement like a := 1 can be seen as an state change
such that it holds a

.
= 1 in the new state. However, some interpretations

should never change, e.g. of the plus operator. To express this in logic
we define Kripke structures which relate such states to each other through
programs fixing the interpretation of all non program variables.

Definition 6.3.4. Let a sort hierarchy (T , Td, Ts,⊑) for a signature Σ be
given. A Kripke structure is a tuple K = (M,S, ρ) consisting of a partial
model M = (T0,D0, δ0, D0, I0), a set S of states and a program relation ρ,
requiring that

• D0 is a partial ordered set with ∀Dsub ⊆ D0: Dsub has a minimum

• T0 = T

• ∀f : A1, . . . , An → A ∈ FSym

D0(f) =

{
∅ f ∈ FSymnr

DA1
0 × . . . ×DAn

0 f ∈ FSymr

• ∀P : A1, . . . , An ∈ PSym: D0(P) = DA1
0 × . . . ×DAn

0

• S contains all models refining M

• ∀S1, S2 ∈ S and p ∈ Π started in S1 terminates in S2: (S1, p, S2) ∈ ρ

We will abbreviate the tuples of the models S ∈ S as S = (D, δ, I)
since the sorts are fixed and D is unnecessary for models. Note that the
interpretation of all rigid symbols is fixed in M and therefore the same in
all states.

Again some special requirements are necessary to reason about Creol
programs which are expressed in the following definition.

Definition 6.3.5. For a given sort hierarchy and a corresponding signature
a CreolDL Kripke structure is a Kripke structure K = ((T0,D0, δ0, D0, I0),S,
ρ) where

6.3. SEMANTICS 43

• Z = DintDom
0

• {tt, ff} = DboolDom
0

• {null} = DNull
0

• and the other domains of Appendix B.8

• The order ¹ of D0 is given by:

– if δ0(x) 6= δ0(y) then







x ¹ y if δ0(x) ⊑ δ0(y)
y ¹ x if δ0(y) ⊑ δ0(x)
x ¹ y if δ0(x) ≤lex δ0(y) and neither

δ0(x) ⊑ δ0(y) nor δ0(y) ⊑ δ0(x)
where ≤lex is the lexicographic order

– if δ0(x) = δ0(y) then

∗ if δ0(x) = booleanDomain then x ¹ y iff x = ff

∗ if δ0(x) = integerDomain then x ¹ y iff
x ≥ 0 and y < 0 or
x ≥ 0 and y ≥ 0 and x ≤ y, or
x < 0 and y < 0 and x ≥ y

∗ if A = δ0(x) ⊑0 Top then x ¹ y iff indexA(x) ¹ indexA(y)
where indexT : DT → Z is an arbitrary but fixed bijective
mapping for T ∈ T0

∗ if δ0(x) = Null then x = y

The intDom sort are the mathematical integers Z as one would expect.
boolDom has just two elements and Null one. The remaining domains of
a CreolDL Kripke structure will be explained in chapter 7. The rather
complicated definition of the partial order on D0 is necessary to resolve
clashing updates uniquely (see Def. 6.3.11). All Kripke structures to be
used in the following text are considered to be CreolDL Kripke structures.

Terms

Parts of the meaning of terms are already fixed, namely functions, by the
model of the given state. However, variables were not mentioned. Hence we
establish a variable assignment.

Definition 6.3.6. Given a partial model M a variable assignment is a func-

tion β : V Sym → D fulfilling β(x) ∈ Dα(x) for all x ∈ V Sym. The modi-
fication βd

x of a variable assignment β for any variable x ∈ V Sym and any
domain element d ∈ Dα(x) is

βd
x(y) :=

{
d if x = y
β(y) otherwise

44 CHAPTER 6. CREOL DYNAMIC LOGIC

The variable assignment provides a domain element for each variable.

Example 6.3.3. Pursuing the previous examples we can assign an value to
x by writing β(x) = 17. If we want to change the value of x to 0 we express
it as β0

x(x) = 0.

The interpretation of the model of the current state, the variable assign-
ment, the semantics of formulae and updates are linked together to specify
the meaning of terms.

Definition 6.3.7. Given a signature for a sort hierarchy for a Kripke struc-
ture K = (M,S, ρ) and a variable assignment β for any state S ∈ S the
valuation function valS for terms is inductively defined as:

• valS,β(x) = β(x) for any x ∈ V Sym

• valS,β(f(t1, . . . , tn)) = I(f)(valS,β(t1), . . . , valS,β(tn)) for any f ∈ FSym
and terms t1, . . . , tn

• valS,β(if φ then t1 else t2) =

{
valS,β(t1) if S, β |= φ (⇒ Def. 6.3.12)
valS,β(t2) if S, β 6|= φ (⇒ Def. 6.3.12)

for all formulae φ and terms t1,t2

• valS,β({u}t) = valS1,β(t) with S1 = valS,β(u)(S) (see Def. 6.3.11) for
any update u and any term t

• valS,β(ifExMin x φ then t1 else t2) =






valS,βd
x
(t1) ∃d ∈ Dα(d) such that S, βd

x |= φ(⇒ Def.6.3.12) and

∀d′ ∈ Dα(d) with S, βd′

x |= φ : d ¹ d′

valS,βd
x
(t2) otherwise

Example 6.3.4. Given the signature and the model of example 6.3.2 and
the variable assignment of the previous example we can evaluate the term
1 + x:

valS,β(1 + x) = I(+)(valS,β(1), valS,β(x)) = I(f)(1, 0) = 1 + 0 = 1

Updates

To capture the semantics of updates we will need four definitions. An update
will only change the interpretation I of the model of the current state. First,
we define a semantic update to capture the semantics of a functional update.

Definition 6.3.8. Given a signature Σ for a sort hierarchy (T , Td, Ts,⊑) a
semantic update is a triple (f, (d1, . . . , dn), d0) such that

f : A1, . . . , An → A0 ∈ FSymnr, di ∈ DAi (0 ≤ i ≤ n)

Once again, please note that the function f is non-rigid so its semantics
are modifiable.

6.3. SEMANTICS 45

Example 6.3.5. The update {a := 2} is represented as a semantic update
as (a, (), 2).

A problem considering updates are clashes, namely we have two updates
changing the interpretation of the same function in different ways. How-
ever, we introduce a set which does not contain such clashes and show a
transformation of all possible updates to this set later.

Definition 6.3.9. A set CU of semantic updates is called consistent if
∀(f, (d1, . . . , dn), d), (f ′, (d′1, . . . , d

′
m), d′) ∈ UC:

f = f ′ ∧ n = m ∧ ∀i ∈ {1, . . . , n} : di = d′i → d = d′

From now on we write CU for the set of all sets of consistent semantic
updates.

Example 6.3.6. The set {(a, (), 2), (a, (), 3)} of semantic updates is not
consistent since it updates the location a with two different values.

A set of consistent updates does not contain clashes by definition so we
can specify the modification of the model.

Definition 6.3.10. Given a sort hierarchy, a signature, a Kripke structure
and for a model S = (D, δ, I) ∈ S. For any set CU ∈ CU of consistent
semantic updates, the modification CU(S) = (D′, δ′, I ′) where

• D = D′

• δ = δ′

• I ′(f)(d1, . . . , dn) =

{
d if (f, (d1, . . . , dn), d) ∈ CU
I(f)(d1, . . . , dn) otherwise

Intuitively a set of semantic updates will change the interpretation of
the functions in the set.

Now, we are ready to link (syntactical) updates with semantical up-
dates by a rather complicated function. The possibly occurring clashes
are resolved. In parallel updates the last update for a function wins, e.g.
{a := 1 || a := 2} is equivalent to {a := 2}. For quantified updates the up-
date assigning the element being the least with respect to ¹ will be applied.
This is the reason for the existence of the ifExMin term (see Def. 6.2.2).

Definition 6.3.11. Let a sort hierarchy, a signature, a Kripke K = (M,S, ρ)
and a variable assignment β be given. For every state S ∈ S the valuation
function valS,β : Updates → CU is inductively defined by

• valS,β(f(t1, . . . , tn) := s) = {(f, (d1, . . . , dn), d)} where d = valS,β(s)
and di = valS,β(ti) (1 ≤ i ≤ n)

46 CHAPTER 6. CREOL DYNAMIC LOGIC

• valS,β(u1 || u2) = (U1\C)∪U2 where U1 = valS,β(u1), U2 = valS,β(u2)

and C =

{

(f, (d1, . . . , dn), d′)

∣
∣
∣
∣

(f, (d1, . . . , dn), d′) ∈ U1 and
(f, (d1, . . . , dn), d) ∈ U2 with d 6= d′

}

• valS,β(for x; φ; u) = U where

U =







there is a ∈ Dα(x) such that
(f, (d1, . . . , dn), d) ((f, (d1, . . . , dn), d), a) ∈ dom and b 6¹ a

for all ((f, (d1, . . . , dn), d′), b) ∈ dom







with dom =
⋃

a∈{d∈Dα(x)|S,βa
x |=φ}(valS,β(u) × {a})

• valS,β({u1}u2) = valS′,β(u2) where S′ = valS,β(u1)(S).

Example 6.3.7. Let us resolve the clash in the parallel update mentioned
above: {a := 1 || a := 2}. In this case a := 1 yields the set U1 = {(a, (), 1)}
and a := 2 yields U2 = {(a, (), 2)}. The complicated set C contains the first
update: C = U1 = {(a, (), 1)}. Thus valS,β(a := 1 || a := 2) = valS,β(a :=
2).

Formulae

The only thing left for this section is the meaning of formulae. The notable
lines in the following definition are the modalities which are not available in
first-order logic.

Definition 6.3.12. Given a sort hierarchy, a signature, a Kripke structure
K = (M,S, ρ) and a variable assignment β we define the validity relation
|= for every state S = (T ,D, δ, D, I) ∈ S:

• S, β |= true

• S, β 6|= false

• S, β |= P (t1, . . . , tn) iff (valS,β(t1), . . . , valS,β(tn)) ∈ I(P)

• S, β |= ¬φ iff S, β 6|= φ

• S, β |= φ ∧ ψ iff S, β |= φ and S, β |= ψ

• S, β |= φ ∨ ψ iff S, β |= φ or S, β |= ψ (or both)

• S, β |= φ → ψ iff S, β 6|= φ or S, β |= ψ (or both)

• S, β |= ∃x φ iff S, βd
x |= φ for at least one d ∈ Dα(x)

• S, β |= ∀x φ iff S, βd
x |= φ for all d ∈ Dα(x)

• S, β |= {u}φ iff S1, β |= φ with S1 = valS,β(u)(S)

• S, β |= 〈p〉φ iff there exists at least one state S ∈ S with (S, p, S′) ∈ ρ
and S′, β |= φ

6.4. SEQUENT CALCULUS 47

• S, β |= [p]φ iff for all states S ∈ S with (S, p, S′) ∈ ρ and S′, β |= φ

where φ, ψ are formulae, x is a variable, u is an update and t1, . . . , tn are
terms.

Example 7.2.4 uses the above definition.

Validity

Using the semantics of formulae we can establish the logical satisfiability
and validity similar to first-order logic.

Definition 6.3.13. Given a signature for a sort hierarchy, a formula φ ∈
Formulae and a normalized program p ∈ Π:

For a Kripke structure K = (M,S, ρ): φ is satisfiable if there is some
state S ∈ S and some variable assignment β such that S, β |= φ

Given a Kripke structure K = (M,S, ρ): φ is K-valid if for all states
S ∈ S and for all variable assignments β: S, β |= φ

φ is logically valid if φ is K-valid for all Kripke structures K

Partial and total correctness

When verifying programs there are two different notions of correctness,
namely partial and total correctness.

Definition 6.3.14. For a sort hierarchy for a signature for a Kripke struc-
ture K the triple (φ, p, ψ) ∈ Formulae × Π × Formulae is called

• partially correct if φ → [p]ψ is K-valid.

• totally correct if φ → 〈p〉ψ is K-valid.

The definition of the box modality does not require a final state to exist.
Therefore non terminating programs are partially correct.

Example 6.3.8. To show that a program p terminates we use the tuple
(true, p, true) which corresponds to the formula true → 〈p〉true.

6.4 Sequent calculus

The section introduces a calculus consisting of rules to formalize calculating
with the logic. Sequent calculi were first used by Gentzen in [Gen35].

Definition 6.4.1. A sequent is pair of sets of closed formulae

φ1, . . . , φn =⇒ ψ1, . . . , ψm

48 CHAPTER 6. CREOL DYNAMIC LOGIC

To simplify we group some formulas in ∆ := φ1, . . . , φj and Γ := ψ1, . . . , ψk.
The sequent above could be rewritten to ∆, φ =⇒ ψ, Γ for instance. The in-
tended meaning of a sequent is (φ1 ∧ . . .∧φn) → (ψ1 ∨ . . .∨ψm). To express
the logical validity of a formula φ we write =⇒ φ.

We need a standardized notion to express rules changing sequents. A
sequent rule transforms one or more sequents in a logically sound way.

Definition 6.4.2. A sequent rule contains n ∈ N0 sequents as premises and
one as conclusion.

premises
︷ ︸︸ ︷

Γ1 =⇒ ∆1 ... Γn =⇒ ∆n

Γ =⇒ ∆
︸ ︷︷ ︸

conclusion

To reason about soundness one shows: If all premises are valid the con-
clusion is valid. The application of a rule is the other way round: In order
to prove a goal matching the conclusion prove its premises. Let us have a
look at four rules (non-exhaustive) in propositional logic:

implicationRight
Γ, ψ =⇒ φ, ∆

Γ =⇒ ψ → φ, ∆
closeGoal

Γ, φ =⇒ φ, ∆

andRight
Γ =⇒ φ, ∆ Γ =⇒ ψ, ∆

Γ =⇒ φ ∧ ψ, ∆
closeTrue

Γ =⇒ true, ∆

The implicationRight rule moves the bottom ψ to the left side of the
sequent arrow =⇒ as the intended meaning of a sequence proposes it. By
identifying the tautology φ → φ the closeGoal rule closes a goal. andRight
is valid as if the premises are given the conclusion must hold. If true occurs
on the right side of the sequent arrow the right side turns true which makes
the implicit implication of the sequent arrow logically valid.

Pure first-order logical sequent rules like closeGoal and implicationRight
or rules handling the typed logic are not subject to this thesis. They can be
looked up in chapter 2 of [BHS07]. We will present the Creol specific rules
in the following sections of this chapter.

We define a proof consisting of many applied rules.

Definition 6.4.3. A proof of a formula φ is a tree (⇒ Def.2.2.4) where
each node is annotated by a sequent. The root is annotated by =⇒ φ. Every
other node is additionally annotated by a sequent rule relating the conclusion
of its sequent with its parent and the premises with its descendants.

Example 6.4.1. For P ∈ PSym the formula P → P is logically valid since
P → P = ¬P ∨ P = true. Thus we should be able to prove it with our
sequent rules. Our proof obligation is:

=⇒ P → P

6.4. SEQUENT CALCULUS 49

The direction of application of sequent rules is from bottom to top:

closed

P =⇒ P

=⇒ P → P

where we applied first the implicationRight rule and afterwards closeGoal.

Completeness and Soundness

A calculus is called complete if all valid statements are derivable. Soundness
expresses the property that all derivable statements are valid. Because of
Gödels Incompleteness theorem [Göd31] it is impossible to create a first-
order calculus with arithmetic which is both complete and sound. Therefore
we focus on sound calculus. However, it was shown in [Pla04] for a related
calculus, ODL [BP06], which captures the essence of CreolDL that it is rel-
ative complete. A relative complete calculus does not add any new incom-
pleteness in comparison to a first-order calculus with arithmetic. Relative
completeness was defined in [Coo78].

Notation

In the following sections we will write U for a possibly empty sequence of
updates. p, q will be normalized Creol programs out of Π. A possibly
empty sequence of following statements will be denoted by ; ω. To improve
readability a general rule of the form:

Γ, Uφ1
1, . . . , Uφ1

m1
=⇒ Uψ1

1, . . . , Uψ1
n1

, ∆
...
Γ, Uφk

1, . . . , Uφk
mk

=⇒ Uψk
1 , . . . , Uψk

nk
, ∆

Γ, Uφ1, . . . , Uψm =⇒ Uψ1, . . . , Uψn, ∆

will be abbreviated by:

φ1
1, . . . , φ

1
m1

=⇒ ψ1
1, . . . , ψ

1
n1

...
φk

1, . . . , φ
k
mk

=⇒ ψk
1 , . . . , ψk

nk

φ1, . . . , ψm =⇒ ψ1, . . . , ψn

If the context U ,∆,Γ is of importance it will be mentioned and the rule will
be equipped with its context.

There are (rewriting) rules where even the context of the sequent arrow
is unnecessary since they can be applied in any context. In this case we will
only write:

φ′
1, . . . , φ

′
m

φ1, . . . , φn

50 CHAPTER 6. CREOL DYNAMIC LOGIC

Modalities

Rules not known from first-order calculi address modalities. The simplest
case is that the modality is empty. During a proof involving modalities we
will be in this situation at least one time, namely when all statements of the
modality have been processed (e.g. converted into updates). If the modal-
ity is empty it does not relate two different states of the Kripke structure
anymore, so we remove it.

=⇒ φ

=⇒ 〈〉φ

=⇒ φ

=⇒ []φ

Chapter 7

Reasoning about Creol

In this chapter the dynamic logic of the previous chapter is extended to
reason about Creol. We begin with the rules addressing sequential Creol
without method calls in section 7.1. Thereafter the theory for reasoning
about concurrency and method calls is described in section 7.2. How the
knowledge of these two sections is used to reason about a complete Creol
program is specified in section 7.3. Finally the chapter is completed by
section 7.4 which identifies limitations and further work.

7.1 Sequential calculus

We begin with control flow statements in the first paragraph and in the
second part of this section we cover assignments and expressions.

Statements

Being familiar with rules handling modalities in general we can fill the
modalities with Creol statements. To reach the point where the modal-
ity is empty from which we can proceed in the well understood first-order
reasoning we must be able to treat all Creol statements.

To start off easy we will look at the skip statement. The skip statement
has no effect by definition. What do we with it then? We remove it:

=⇒ 〈ω〉φ

=⇒ 〈skip; ω〉φ

Example 7.1.1. So let us use this rule in our first prove about the simplest
Creol program:

1 skip

51

52 CHAPTER 7. REASONING ABOUT CREOL

We want to show that after executing skip the program does terminate.
Thus we have to use the diamond as it expresses total correctness:

=⇒ 〈skip〉true

A proof using a sequent calculus is written from bottom to top because the
rules are applied in this manner:

closed

=⇒ true

=⇒ 〈〉true

=⇒ 〈skip〉true

First, we apply the just introduced rule for the skip statement. Then we have
an empty modality which is removed by the corresponding rule introduced
in section 6.4. What is left is a sequent arrow with true on the right side
which closes our proof.

We were using the diamond expressing total correctness. To reason about
partial correctness of programs containing the skip statement, we would
have to compose exactly the same rule using the box. We will avoid this
unnecessary overhead by writing the diamond iff it holds for partial and total
correctness and the box if the rule is only valid under partial correctness.
The only exception is the block statement (see section 3), where the rules
hold only for the used modalities:

=⇒ true

=⇒ [block; ω]φ

=⇒ false

=⇒ 〈block; ω〉φ

It is impossible to reach the next state after the block statement. For the
box this means that the formula φ is not required to hold. The diamond
guarantees the existence of a successor state which contradicts the block
statement. So it is replaced by false.

The block statement was a special one so let us turn towards more usual
ones. The concept of control flow statements like if-then-else and while (or
any other loop) are wide spread in programming languages. We begin with
if-then-else. Intuitively we should try to find out whether the condition of
the if statement is true or false and then we symbolically execute only the
remaining branch:

=⇒ if texp
.
= TRUE then 〈p; ω〉φ else 〈q; ω〉φ

=⇒ 〈if texp then p else q end; ω〉φ

where texp is a variable or a literal. Please note that TRUE is a term and
together with texp it is a parameter of the predicate

.
=. If we cannot deduce

whether texp is interpreted as TRUE or FALSE the calculus will split the
logical if construct into two branches.

7.1. SEQUENTIAL CALCULUS 53

Example 7.1.2. Given the program which terminates because the condition
of the if statement is fulfilled:

1 i f true

2 then skip

3 else block

4 end

We can prove that it actually terminates by writing:

〈if true then skip else block end〉true

We calculate using the if-then-else introduced rule:

closed

=⇒ true

=⇒ 〈〉true

=⇒ 〈skip〉true

=⇒ if true then 〈skip〉true else 〈block〉true

=⇒ if TRUE
.
= TRUE then 〈skip〉true else 〈block〉true

=⇒ 〈if true then skip else block end〉true

At first the if-then-else rule is applied which translates the code to a logical
formula containing both branches as modalities. Thereafter the equality
predicate

.
= evaluates to true as both arguments are the same. Subsequently

the logical if is substituted by its then branch what brings us in the same
situation as in the previous example.

Why did we require that texp is a variable or a literal and did not
allow all Boolean expressions? There is a pitfall with expressions in Creol.
As mentioned in section 3 a division by zero leads to a blocking behavior.
Because a division by zero can occur in a Boolean expression, e.g. 2

0 > 1, we
have to unfold all expressions1. Applying this to the if-then-else statement
we create a new Boolean variable v and assign the expression exp to it:

=⇒ 〈v := exp ; if v then p else q end; ω〉φ

=⇒ 〈if exp then p else q end; ω〉φ

where exp matches all expressions, but literals and variables. So considering
matchings texp ∩ exp = ∅. For the newly created v := exp the rules for
assignments discussed in the next paragraph will unfold the expression even

1if we reasoned only about partial correctness the unfolding would be unnecessary.
From this point of view the given calculus is incomplete. Using a transformation function
from Creol functions (e.g. +) to logical functions the development of the corresponding
partial correctness rules should be straightforward.

54 CHAPTER 7. REASONING ABOUT CREOL

more to look for divisions by zero. Example 7.1.3 contains an instance of
such an unfolding process where the matchings of texp and exp are explicitly
mentioned.

The given sequents do not match a if-then statement having no else
branch. The reason is the lack of a optional statement of the taclet language
used (see section 8.1). Thus we write the two analogous rules by just leaving
out the else branch.

=⇒ if texp
.
= TRUE then 〈p; ω〉φ else 〈ω〉φ

=⇒ 〈if texp then p end; ω〉φ

=⇒ 〈v := exp ; if v then p end; ω〉φ

=⇒ 〈if exp then p end; ω〉φ

We proceed with the analysis of while statements. The easiest, but in-
complete technique, to handle the while statement is unrolling the loop.
Thereby we transform the while loop by checking the condition once by a if
statement,and executing the body once. Afterwards the while statement is
executed leading to a equivalent program transformation:

=⇒ 〈if texp then p ; while texp do p end end; ω〉φ

=⇒ 〈while texp do p end; ω〉φ

=⇒ 〈v := exp; while v do p; v:=exp end; ω〉φ

=⇒ 〈while exp do p end; ω〉φ

These rules do not cover the case of unbounded loops such as while true
because this rule would be applicable infinitely often without resolving the
loop. To cope with such loops we can use loop invariants. In the context of
Creol loop invariants have to be treated with caution because of the method
calls the loop might contain. Hence loop invariants will be explained in
section 7.2.

A typical Creol statement is the box or non deterministic choice between
two branches (see section 3). Only one of the branches is executed. But as
we do not know in general which one, we have to symbolically execute both
of them:

=⇒ 〈stmt2〉φ
=⇒ 〈stmt1〉φ

=⇒ 〈stmt1 [] stmt2〉φ

Our rule does not capture cases in which a statement is ready for execution
and the other is not where we could neglect one branch. However, this affects
only completeness and not correctness. A more complete rule would have
to look ahead which statement is ready. Though, in general boxes could be
nested arbitrarily deep complicating the identification of ready branches.

7.1. SEQUENTIAL CALCULUS 55

The last statement to be accounted in this section is the prove statement.
It is an assertion in the code which must hold. Thus we simply create another
prove obligation:

=⇒ 〈ω〉φ
=⇒ texp

.
= TRUE

=⇒ 〈prove texp; ω〉φ

=⇒ 〈v := exp; prove v; ω〉φ

=⇒ 〈prove exp; ω〉φ

Expressions

As mentioned in section 3 variables are initialized implicitly in our dialect
of Creol. Thus the rules for variable declarations convert the declaration to
an update with the standard value:

=⇒ {i := 0}〈ω〉φ

=⇒ 〈var i : Int; ω〉φ

=⇒ {b := false}〈ω〉φ

=⇒ 〈var b : Bool; ω〉φ

=⇒ {o := null}〈ω〉φ

=⇒ 〈var o : Any; ω〉φ

=⇒ {l := null}〈ω〉φ

=⇒ 〈var l : Label[]; ω〉φ

General expressions can contain divisions by zero which forces us to take
apart the expressions. The following rules will address all cases where the
right hand side is an expression. A special case is the assignment of a literal
or a variable (matched by texp) which is side effect free:

=⇒ {a := texp}〈ω〉φ

=⇒ 〈a := texp; ω〉φ

Another simple case is if a expression is surrounded by parenthesis:

=⇒ 〈v:=exp; ω〉φ

=⇒ 〈v:=(exp); ω〉φ

=⇒ 〈v:=texp; ω〉φ

=⇒ 〈v:=(texp); ω〉φ

For each integer operator of arity two we need four different rules because
there are four combinations of exp and texp. All non-terminal-expressions
are converted by assigning them to a new variable:

=⇒ 〈v’:=exp2; v:=texp1+v’; ω〉φ

=⇒ 〈v:=texp1+exp2; ω〉φ

=⇒ 〈v’:=exp1; v:=v’+texp2; ω〉φ

=⇒ 〈v:=exp1+texp2; ω〉φ

=⇒ 〈v’:=exp1; v’’:=exp2; v:=v’+v’’; ω〉φ

=⇒ 〈v:=exp1+exp2; ω〉φ

56 CHAPTER 7. REASONING ABOUT CREOL

Eventually all expressions use the terminal rule which creates an update:

=⇒ {v := texp1 + texp2}〈ω〉φ

=⇒ 〈v:=texp1+texp2; ω〉φ

For the functions − and ∗ the corresponding rules are analogous to +. So
they are left out for brevity.

Example 7.1.3. We turn towards an example for an assignment using some
integer calculations to clarify the difference between texp and exp:

1 i := 1 + 3 ∗ 0

The calculation results in i = 1. So we express this in a proof obligation:

=⇒ [i:=1+3*0]i
.
= 1

First the most upper operator is a plus. The left parameter of the plus is
1 which is a literal and therefore matched by texp. The right parameter is
3 ∗ 0 is neither a variable nor a literal. That is why it is matched by exp.
Applying the corresponding rule we create a new variable:

...

=⇒ [v’:=3*0; i:=1+v’]i
.
= 1

=⇒ [i:=1+3*0]i
.
= 1

Now, the first statement is the assignment of v′ involving two instances of
texp. Thus it is converted to an update which is simplified in the next step:

...

=⇒ {v′ := 0}[i:=1+v’]i
.
= 1

=⇒ {v′ := 3 ∗ 0}[i:=1+v’]i
.
= 1

=⇒ [v’:=3*0; i:=1+v’]i
.
= 1

[i:=1+3*0]i
.
= 1

The only statement left is the assignment of i. But in contrast to the begin-
ning of the proof it does not contain instances of exp any more, so it can be
converted to an update. Thereafter the first update is applied on the second
one:

...

{v′ := 0 || i := 1 + 0}i
.
= 1

{v′ := 0}{i := 1 + v′}i
.
= 1

=⇒ {v′ := 0}[i:=1+v’]i
.
= 1

=⇒ {v′ := 3 ∗ 0}[i:=1+v’]i
.
= 1

=⇒ [v’:=3*0; i:=1+v’]i
.
= 1

[i:=1+3*0]i
.
= 1

7.2. CONCURRENT CALCULUS 57

The update is simplified again and applied to the formula. Then equality is
replaced by true what allows us to close the proof:

closed

=⇒ true

=⇒ 1
.
= 1

=⇒ {v′ := 0 || i := 1}i
.
= 1

=⇒ {v′ := 0 || i := 1 + 0}i
.
= 1

...

Handling a division works in way except for the update creation. If a
division through zero occurs the statement has to be replaced by block what
is the reason for the unfolding of expressions:

=⇒ if texp2 6= 0 then {v := texp1/texp2}〈ω〉φ else 〈block; ω〉φ

=⇒ 〈v:=texp1/texp2; ω〉φ

Unary minus is simply reduced to the minus of arity two by rewriting it:

=⇒ 〈v:=0-w; ω〉φ

=⇒ 〈v:=-w; ω〉φ

Rules covering Boolean operations follow the scheme of the integer rules.
There are no special cases leading to a blocked object.

7.2 Concurrent calculus

The rules discussed so far look very similar for every programming language.
But we will use several special techniques to reason about Creol. Those are
informally introduced in the following paragraphs.

Each object of a Creol program is assumed to have its own processor
(see section 3). The scheduling policy of the threads (instances of a method)
sharing the processor is cooperative assuring that the thread can only loose
the processor on a release-point. Continuing after a release point the values
of all global variables could possibly have been modified by other threads.
Hence, a sound verification calculus has to assume that the value of global
variables is unknown after each release-point. This would lead to a highly
incomplete calculus as nearly every program relies on some assumptions
about the global variables. To counter this problem a class invariant will
be used which serves as a contract between all threads about the global
variables.

Asynchronous communication between different objects with possible
message overtaking is an important property of Creol. To enable us showing

58 CHAPTER 7. REASONING ABOUT CREOL

some properties of such a system a history which records all the communi-
cation between the objects of the system is used. It is challenging to reason
about a history which is shared by a number of objects working concurrently
because it might be unknown for certain events which happened first. To
avoid the necessity of proving all permutations of such sets of events (for
example faced while verifying concurrent Java [BK07]) we will verify one
class at the time. Thereby we consider only a part of the history namely
the communication of the current object. Afterwards a proof of the com-
posability of all those local histories has to be done to verify the complete
system.

In basic program verification method calls are replaced by their imple-
mentation (inlining). However, a method can be called an arbitrary number
of times leading to several proofs of the same code. To avoid this one can
use contracts which specify assumptions about the input for a method and
guarantees about properties of the output. Using this technique one has to
prove every implementation of a method exactly once and can just use this
contract every time the method is called.

There are several publications about verifying Creol using the described
concepts for a wp [Dij75] calculus in [DJO08a] or a Hoare logic [Hoa69] in
[DJO06, Bla08]. My calculus will mainly be based on them. Composing
of histories is described in [DJO08b, JO02]. The notion of a history or
trace was classically used in [Hoa83, Dah77]. Contracts are a form of a rely
guarantee style [Jon81].

We will follow a bottom up approach by first introducing the domains
being specific for reasoning about Creol. Thereafter we will see terms and
predicates which are interpreted on those domains.

The section is structured as follows. First the representation of object
identifiers in the logic is discussed. Thereafter method identifiers and labels
relating invocation messages to completion messages are established. The
next step, namely the introduction of messages, builds on the previous no-
tions of this section. Sequences of messages form histories which are the
subject of the following paragraphs. Then release-points, loop invariants,
and method calls make use of histories.

For brevity we will assume during this section that a sort hierarchy for a
CreolDL signature for a CreolDL Kripke structure is given in all definitions.
An overview of all domains, rigid functions, and predicates is in Appendix
B.

Object identifiers

During a run of a Creol program an object hierarchy is created. As every
object (except the first one) must have been created by another already
existing object the layout of the type hierarchy should look like a tree if
viewed as graph. We will capture this in the definition of the domain of

7.2. CONCURRENT CALCULUS 59

object identifiers.

Definition 7.2.1. The domain of object identifiers objDom ∈ Td is a set:

∞⋃

i=0

objDomi

where
objDom0 := {p(0)}
objDomi := {p(o, i)|i ∈ N0, o ∈ objDomi−1}

The intention behind this definition is that every object numbers its
children with an increasing number according to the order they are created
in. The integer in the object identifiers does not enumerate the number of
created objects. The only assumption is that an object created later has an
higher integer. How this is achieved is described in Definition 7.2.6.

Example 7.2.1. In figure 7.1 the integers of the parent relation p are printed
for each object. The object identifier of the bottom left object would be
p(p(p(0), 2), 0) whereas the object on the middle right would be named by
p(p(0), 25).

0

2 12 25

0 1 3

Figure 7.1: Example for an object hierarchy

To express the parent relation in form of terms we define the parent
function.

Definition 7.2.2. The parent function parent : Any, Int → Any ∈ FSymr

is interpreted as I0(parent)(o, i) = p(o, i).

Method identifiers

To talk about messages invoking a certain method of an object we need
method identifiers. The domain is represented by a set of names which
correspond to the allowed identifiers in Creol.

Definition 7.2.3. The method domain methDom ∈ Td is described by the
following expression

methDom := { , a, b, . . . , z} × { ,′ , a, b, . . . , z, A, B, . . . , Z, 0, 1, . . . , 9}∗

60 CHAPTER 7. REASONING ABOUT CREOL

Labels

A history consists of messages of method invocations, method completions
and messages indicating that a new object was created. To relate an invo-
cation message with its completion message in a history we will use a label
uniquely identifying the communication procedure. A label for method calls
relates two objects, namely the caller and the callee, a method and an in-
teger (similar to section 3). The integer is used as sequence number as the
tuple (caller, callee, method) is not unique if the same method is called sev-
eral times. The labels for method calls will be kept in the methLabelDom
domain. For object creation messages we define similar labels which contain
the created object and an integer. Its parent is implicitly encoded in its
identifier. The class of the created object does not have to be mentioned as
the identifier will be typed by the class.

Definition 7.2.4. The domain of method labels methLabelDom ∈ Td is

methLabelDom :=

{

〈o1, o2, m, i〉

∣
∣
∣
∣

o1, o2 ∈ objDom, m ∈ methDom
i ∈ intDom

}

The domain of new object labels newLabelDom ∈ Td is

newLabelDom := {〈p(o, i), i〉|o ∈ objDom, i ∈ intDom}

So far we illustrated the label domains. But they are just sets terms
are interpreted in. Thus we continue with the introduction of functions for
labels. We start with a function com which is interpreted as a label talking
about communication in form of message calls and a function new which
is interpreted as a label out of newLabelDom. Additionally, we need some
functions to access the attributes of com and new.

Definition 7.2.5. The communication label function com : Any, Any,
Method, Int → Label ∈ FSymr is interpreted as I0(com)(o1, o2, m, i) =
〈o1, o2, m, i〉. Its parameters can be accessed by the functions:

• toCaller : Label → Any ∈ FSymr

with I0(toCaller)(〈o1, o2, m, i〉) = o1

• toCallee : Label → Any ∈ FSymr

with I0(toCallee)(〈o1, o2, m, i〉) = o2

• toMethod : Label → Method ∈ FSymr

with I0(toMethod)(〈o1, o2, m, i〉) = m

• toId : Label → Int ∈ FSymr with I0(toId)(〈o1, o2, m, i〉) = i

The new object label function new : Any, Int → NewLabel ∈ FSymr is
interpreted as I0(new)(o, i) = 〈o, i〉. Its parameters can be accessed by the
functions:

7.2. CONCURRENT CALCULUS 61

• toNew : NewLabel → Any ∈ FSymr with I0(toNew)(〈o, i〉) = o

• toIdNew : NewLabel → Int ∈ FSymr with I0(toIdNew)(〈o, i〉) = i

Under the fixed interpretation we give the related rewriting rules:

o1

toCaller(com(o1, o2, m, i))

o2

toCallee(com(o1, o2, m, i))
m

toMethod(com(o1, o2, m, i))

i

toId(com(o1, o2, m, i))
o

toNew(new(o, i))

i

toIdNew(new(o, i))

where o1, o2 ∈ TermAny, m ∈ TermMethod and i ∈ TermInt.
To guarantee that the integer used in a label is unique during a proof we

add a ghost class attribute. It will contain the next integer to be used for a
sent invocation or new object message.

Definition 7.2.6. The sequence number L :→ Int ∈ FSymnr is a non
rigid function.

During a proof we will increment it after each sent message.

Messages

The last step before building up the actual history are messages. Every mes-
sage contains a label and some data. In the case of a invocation message the
data are the parameters of the invoked method. For a completion message
the return values are saved in the data field. A new object message has the
parameters for the init method of the class.

Definition 7.2.7. The message domain msgDom is defined as

{〈t, l, d̄〉|t ∈ {invoc, comp}, l ∈ methLabelDom, d̄ ∈ domData∗}

∪{〈new, l, d̄〉|l ∈ newLabelDom, d̄ ∈ domData∗}

where the data domain domData :=
⋃

dom∈Td,dom⊑Data dom

The first parameter of a message determines its type.

Example 7.2.2. The message 〈invoc, 〈o1, o2, m, 10〉, (4, 3)〉 is a invocation
message send from object o1 to o2 where the method m was invoked with the
parameters 4 and 3. Assuming that m computes the sum the corresponding
completion message 〈comp, 〈o1, o2, m, 10〉, (7)〉 has exactly the same label
and the return value 7.

Having discussed the domains of messages we define a function for each
message type.

62 CHAPTER 7. REASONING ABOUT CREOL

Definition 7.2.8. The message functions are defined as follows:

• msgInvoc : Label, Data∗ → Message ∈ FSymr with
I0(msgInvoc)(〈o1, o2, m, i〉, d) = 〈invoc, 〈o1, o2, m, i〉, d〉

• msgComp : Label, Data∗ → Message ∈ FSymr with
I0(msgComp)(〈o1, o2, m, i〉, d) = 〈comp, 〈o1, o2, m, i〉, d〉

• msgNew : NewLabel, Data∗ → Message ∈ FSymr with
I0(msgNew)(〈o, i〉, d) = 〈new, 〈o, i〉, d〉

In figure 7.2 the sorts and domains involving messages are pictured.

Top

Method Message TermLabel

Null

Bottom

methDom

msgDom

methLabelDom newLabelDom

Label NewLabel

Figure 7.2: Sort hierarchy of the messages

Histories

Now, we can build up a history being a sequence of messages. The history
domain contains all those sequences. Thereby we will use the symbol a for
concatenation two sequences of messages, so appending a single message is
a special case of it. ǫ is the empty sequence such that for any history h :
haǫ = h and ǫah = h.

Definition 7.2.9. The history domain histDom is defined as

histDom :=
∞⋃

i=0

histDomi

where
histDom0 := {ǫ},
histDomi := {ham|h ∈ histDomi−1, m ∈ msgDom}

7.2. CONCURRENT CALCULUS 63

While reasoning about a Creol program using histories the central ques-
tion is what is the intended meaning of the history. As there are no assump-
tions about the underlying network (see section 3) the only known order of
messages is the sending order. During transmission they might have been
reordered such that we cannot assume anything about the order they are
arriving in.

A system wide global history speaking about the sending time of each
message is easy to imagine. But representing the history from an object
view2 leads to some uncertainty as the actual point in time when a message
was sent by another object is unknown. The consequence is that the logic
handling the history of an object is blown up to handle the uncertainty. But
as this notion is the well understood one (calculi using them in [DJO06,
DJO08a], work on composing them in [DJO08a, JO02]) we will create our
calculus in this setting. Other approaches are discussed in section 7.4.

The composition of histories is not covered in this work. The prior
theoretical investigations require adaption and refinement to be applicable
to the approach of this thesis. The problem of composition is undecidable
in the general case like most of the issues we are dealing with.

Let us turn to the local histories of objects. The representation of the
history as a simple list of messages in form of terms is not possible. First, be-
cause the point in time a message from another object was sent is unknown.
Second, to make things worse, not even the time of arrival is known. For
example if we reach a statement l?(x) in execution the corresponding mes-
sage might have arrived some time before. Third, we never know whether
new method invocations are arriving from other objects.

The last point raises another issue. In general, during execution of any
statement, messages could arrive which would require us to note this in all
rules concerning statements. We get around this problem by lazily extending
the corresponding history on an history access. This view is equivalent to
the eager extension of histories if one restricts oneself to the verification of
complete methods.

The good news is that this uncertainty covers only messages sent by
other objects. About messages sent by the object itself the sending time
and hence order is known. This is the motivation to keep two histories of
each object. The first one is the sending history which will have to sort
SendingHistory and will essentially be a list of messages represented by
terms. The second history is the complete history of the object whose terms
will have the sort ObjectHistory. Properties about the object history will be
expressed by predicates ensuring the occurrence of certain messages only.
Therefore the interpretation of the object history is never completely fixed
which allows incoming messages for example.

2Just considering messages which either are send by the object or to the object: h ↾ o,
see Def. 7.2.10

64 CHAPTER 7. REASONING ABOUT CREOL

Having a sending and a object history implies that all messages being
sent must be mentioned twice. This leads to a overhead as we will have to
check the consistency of both histories frequently.

So far a history h ∈ histDom displays communication between all ob-
jects of the system. To express a history which just consists of messages
concerning a certain object we define the projection operator h ↾ o which
removes all messages not being sent to or from a object o. It will be used
to interpret object histories. To reflect only messages which are sent by a
object o we will write h ↾ o→ which is necessary to interpret sending histo-
ries. Both operators are projections in the sense that applying them twice
has the same effect as applying them once.

Definition 7.2.10. For a history h ∈ histDom the projection h ↾ o to the
messages sent by or to an object o ∈ objDom is defined as:

ǫ ↾ o = ǫ

ha〈t, 〈o1, o2, m, i〉, d̄〉 ↾ o =

{
h ↾ o if o 6= o1, o 6= o2

(h ↾ o)a〈t, 〈o1, o2, m, i〉, d̄〉 otherwise

ha〈new, 〈o1, i〉, d̄〉 ↾ o =

{
h ↾ o if o 6= o1, p(o, i) 6= o1

(h ↾ o)a〈new, 〈o1, i〉, d̄〉 otherwise

For a history h ∈ histDom the projection h ↾ o→ to the messages sent by
an object o ∈ objDom is defined as:

ǫ ↾ o→ = ǫ

ha〈t, 〈o1, o2, m, i〉, d̄〉 ↾ o→ =

{
h ↾ o→ if o 6= o1

(h ↾ o→)a〈t, 〈o1, o2, m, i〉, d̄〉 otherwise

ha〈new, 〈o1, i〉, d̄〉 ↾ o→ =

{
h ↾ o→ if p(o, i) 6= o1

(h ↾ o→)a〈new, 〈o1, i〉, d̄〉 otherwise

So we are talking about the history of an object, but we never introduced
the object formally, right? For this reason we will use this when we need a
reference to the object we are currently verifying.

Definition 7.2.11. A reference to the object subject to verification is always
given by this :→ Any ∈ FSymr where the interpretation is fixed during a
proof by I0(this) ∈ objDom.

Now we are capable of introducing the domains the SendingHistory and
ObjectHistory will be interpreted in:

Definition 7.2.12. The sending history domain sendHistDom ∈ Td is:

sendHistDom := {h ↾ I0(this)→|h ∈ histDom}

The object history domain objHistDom ∈ Td is:

objHistDom := {h ↾ I0(this)|h ∈ histDom}

7.2. CONCURRENT CALCULUS 65

In figure 7.3 is a picture of all domains and sorts involving the history.
objHistDom ⊂ histDom and sendHistDom ⊂ histDom which makes them
sub sorts of histDom.

Top

History

SendingHistory

sendHistDom

ObjectHistory

objHistDom

histDom

Bottom

Figure 7.3: Sort hierarchy of the history

To access the histories naturally during our proofs both histories will be
additives ghost class attributes of the object. The meaning of the additional
class attributes, both histories, can change during a verification procedure.
Hence they have to be non-rigid functions.

Definition 7.2.13. The sending history HS :→ SendingHistory ∈ FSymnr

and the object history HO :→ ObjectHistory ∈ FSymnr are non-rigid func-
tions.

As mentioned before the sending history will be a list in form of terms.
We know already about the message functions from Definition 7.2.8 the
only thing missing is a function which appends a message to a given sending
history. The hist function will do so.

To check the consistency of the sending history with a object history we
need to fix a common history where both started at. The startsAt function
which attaches a sending history to a object history will do so.

Definition 7.2.14. The history function hist : SendingHistory, Message
→ SendingHistory ∈ FSym appends a Message to a history by

I0(hist)(h, msg) = hamsg

The starts at function startsAt : ObjectHistory → SendingHistory ∈
FSym relates an object history with a sending history:

I0(startsAt)(h) = h ↾ I0(this)→

66 CHAPTER 7. REASONING ABOUT CREOL

We introduced all necessary tools express a sending history as a list
which leads us to the following example:

Example 7.2.3. For HO ∈ TermObjectHistory, L ∈ TermLabel and D ∈
TermData the term

hist(startsAt(HO), msgInvoc(L, D))

describes a history which is extended by a invocation message. We can check
this by calculating the val function of Definition 6.3.12:

valS,β(hist(startsAt(HO), msgInvoc(L, D)))
= I0(hist)(valS,β(startsAt(HO)), valS,β(msgInvoc(L, D)))
= I0(startsAt)(valS,β(HO))aI0(msgNew)(valS,β(L), valS,β(D))))
= valS,β(HO)a〈invoc, valS,β(L), valS,β(D)〉
We have no more knowledge about HO, L and D so the evaluation ends
here.

The object history is described by different predicates. One of the most
intuitive ones is Comp which is evaluated to true if a given history contains
a completion message for a given label. Invoc and New assure the same
issue for invocation and new object messages.

Definition 7.2.15. There are three predicates evaluating to true iff a mes-
sage of a given label is contained in a history:

• new object message predicate New : ObjectHistory, Any ∈ PSym
with

I0(New)(h, o) =






(h, o) ∈

objHistDom
×objDom

∣
∣
∣
∣
∣
∣

∃d̄ ∈ domData∗

∃i ∈ intDom :
〈new, 〈o, i〉, d̄〉 ∈ h







• The invocation message predicate Invoc : ObjectHistory,Label∈PSym
with

I0(Invoc)(h, l) =

{

(h, l) ∈
objHistDom×
methLabelDom

∣
∣
∣
∣

∃d̄ ∈ domData∗ :
〈invoc, l, d̄〉 ∈ h

}

• The completion message predicate Comp : ObjectHistory, Label ∈
PSym with

I0(Comp)(h, l) =

{

(h, l) ∈
objHistDom×
methLabelDom

∣
∣
∣
∣

∃d̄ ∈ domData∗ :
〈comp, l, d̄〉 ∈ h

}

To clarify the definition let us consider an example:

7.2. CONCURRENT CALCULUS 67

Example 7.2.4. For l ∈ TermLabel, o ∈ TermAny and di ∈ TermData

the history: h := 〈invoc, l, d1〉
a〈comp, l, d2〉 describes a method invocation

and its completion message. Assuming the constants HO, O2 and L are
interpreted as I(HO) = h, I(O2) = o and I(L) = l, we can write the formula
¬New(HO, O2) ∧ Comp(HO, L) which should be valid. Let us inspect this
by evaluating:

S, β |= ¬New(HO, O2) ∧ Comp(HO, L)
iff S, β |= ¬New(HO, O2) and S, β |= Comp(HO, L)
iff S, β 6|= New(HO, O2) and S, β |= Comp(HO, L)

iff
(valS,β(HO), valS,β(O2)) /∈ I(New) and
(valS,β(HO), valS,β(L)) ∈ I(Comp)

iff (h, o) /∈ I(New) and (h, l) ∈ I(Comp)

iff
(h, o) /∈

{

(h, o′) ∈
objHistDom
×Any

∣
∣
∣
∣

∃d̄ ∈ domData∗ ∃i ∈ intDom
〈new, 〈o, i〉, d̄〉 ∈ h

}

(h, l) ∈

{

(h, l′) ∈
objHistDom
×methLabelDom

∣
∣
∣
∣

∃d̄ ∈ domData∗ :
〈comp, l′, d̄〉 ∈ h

}

iff (h, o) /∈ ∅ and (h, l) ∈ {(h, l)}

During the verification procedure of a class it will be necessary to extend
existing object histories. Thus we define the Prefix predicate meaning that
a given history starts with all the messages of another given history.

Definition 7.2.16. The prefix predicate

Prefix : ObjectHistory, ObjectHistory ∈ PSym

is interpreted as follows:

I0(Prefix) =

{

(h1, h2) ∈
objHistDom×
objHistDom

∣
∣
∣
∣

∃h3 ∈ objHistDom :

ha

1 h3 = h2

}

Each history is a prefix of itself (choose h3 = ǫ). So if the prefix predicate
receives the same history twice as its parameters it is always true. The
corresponding rule for a history H ∈ TermObjectHistory is:

true

Prefix(H, H)

The prefix relation is a transitive relation which can be checked in the above
definition by concatenating the two obtained h3 to a new one. We give a rule
which expresses the transitivity for histories H1, H2, H3 ∈ TermObjectHistory:

Prefix(H1, H2), P refix(H2, H3), P refix(H1, H3) =⇒

Prefix(H1, H2), P refix(H2, H3) =⇒

68 CHAPTER 7. REASONING ABOUT CREOL

We note that given Prefix(H1, H2)∧ Invoc(H1, L) we should be able to
conclude Invoc(H2, L). The reason is that all messages of H1 are in H2 as
well. So the invocation message with label L must be in H2, too. The same
holds for the Comp and the New predicates. We capture the behavior in
the following rules ensuring the monotonicity:

Invoc(H1, L), P refix(H1, H2), Invoc(H2, L) =⇒

Invoc(H1, L), P refix(H1, H2) =⇒

Comp(H1, L), P refix(H1, H2), Comp(H2, L) =⇒

Comp(H1, L), P refix(H1, H2) =⇒

New(H1, O), P refix(H1, H2), New(H2, O) =⇒

New(H1, O), P refix(H1, H2) =⇒

where H1, H2 ∈ TermObjectHistory, L ∈ TermLabel and O ∈ TermAny.

We can apply similar reasoning to find out that a message not contained
in a history must not be contained in its prefixes. Therefore we write the
following rules:

¬Invoc(H2, L), P refix(H1, H2),¬Invoc(H1, L) =⇒

¬Invoc(H2, L), P refix(H1, H2) =⇒

¬Comp(H2, L), P refix(H1, H2),¬Comp(H1, L) =⇒

¬Comp(H2, L), P refix(H1, H2) =⇒

¬New(H2, O), P refix(H1, H2),¬New(H1, O) =⇒

¬New(H2, O), P refix(H1, H2) =⇒

H1, H2, L, O chosen as in the previous rules.

The object history domain contains a lot of histories which are invalid
with respect to program execution. For example there might be a completion
message in the history for a method which was never invoked. To restrict the
histories we use the predicate Wf3. It will ensure that for every completion
message there is an invocation message in the history. Furthermore the
history has to start with the creation message of the object this. Furthermore
we require that every sent message has a higher sequence number in its label
than all previously sent messages (the second parameter of wf).

Definition 7.2.17. The well-formed predicate Wf : ObjectHistory, Int ∈
PSym evaluates to true according to I0(Wf) = {(h, o, i) ∈ objHistDom ×
intDom|wf(h, i) = 1} where wf : objHistDom × intDom → {0, 1} such
that

3Similar to the inReachableState predicate of KeY for Java

7.2. CONCURRENT CALCULUS 69

• wf(ha〈invoc, 〈o1, o2, m, i〉, d̄〉, j) =







wf(h, i) if I0(this) = o1, i < j
wf(h, j) if I0(this) = o2

0 otherwise

• wf(ha〈comp, 〈o1, o2, m, i〉
︸ ︷︷ ︸

l

, d̄〉, j) =







wf(h, i) if I0(this) = o2 and
∃d̄′ ∃〈invoc, l, d̄′〉 ∈ h

wf(h, j) if I0(this) = o1, i < j,
∃d̄′ ∃〈invoc, l, d̄′〉 ∈ h

0 otherwise

• wf(ha〈new, 〈o, i〉, d̄〉, j) =







1 if I0(this) = o and h = ǫ
wf(h, i) if p(I0(this), i) = o and i < j
0 otherwise

Please note that the above definition does not allow the occurrence of two
invocation messages for a given completion message because one would have
to occur after other one which contradicts i < j. This fairly complicated
definition requires an example.

Example 7.2.5. Given the object history h := msga

1 msga

2 msg3 with:

• msg1 = 〈new, 〈I0(this), 3〉, 5〉

• msg2 = 〈invoc, 〈I0(this), o1, m1, 2〉, 17〉

• msg3 = 〈invoc, 〈o2, I0(this), m2, 1〉,−2〉

where oi ∈ objDom and mi ∈ methDom. The history should be well-formed
such that wf(h, 18) = 1 because it starts with the object creation message
of this, then a invocation message send by this which satisfies 17 < 18 and
at last an invocation message received from another object. Hence neither
a invocation message for a completion message is missing nor the sequence
number is increasing. Let us calculate it. By applying the second case of
invocation messages where the receiver is this, we obtain:

wf(h, 18) = wf(msga

1 msga

2 〈invoc, 〈o2, I0(this), m2, 1〉,−2〉, 18)

Now, we use the first case of invocation messages:

= wf(msga

1 〈invoc, 〈I0(this), o1, m1, 2〉, 17〉, 18)

and finally the first case of new object messages leads us to:

= wf(〈new, 〈I0(this), 3〉, 5〉, 17) = 1

After the example about the interpretation of the Wf predicate we turn
our attention towards sequent rules which express properties of the interpre-
tation. We will use H for terms of sort ObjectHistory, I for integer terms,
O for terms of sort Any, L for terms with sort Label and M for methods.

70 CHAPTER 7. REASONING ABOUT CREOL

First, we know that the messages a well-formed history consists of are
either sent to or by the object this. Therefore the following rules are valid:

Comp(H, L), Wf(H, I), toCaller(L) = this ∨ toCallee(L) = this =⇒

Comp(H, L), Wf(H, I) =⇒

Invoc(H, L), Wf(H, I), toCaller(L) = this ∨ toCallee(L) = this =⇒

Invoc(H, L), Wf(H, I) =⇒

New(H, parent(O, I2)), Wf(H, I), O = this ∨ parent(O, I2) = this =⇒

New(H, parent(O, I2)), Wf(H, I) =⇒

Second, for a completion message there should be an invocation message:

Wf(H, I), Comp(H, L), Invoc(H, L) =⇒

Wf(H, I), Comp(H, L) =⇒

Third, a label which was not used for a invocation must not be used for a
completion:

Wf(H, I),¬Comp(H, L),¬Invoc(H, L) =⇒

Wf(H, I),¬Invoc(H, L) =⇒

Next, if we have to show that a history is well-formed, it is allowed to
strengthen the well-formed predicate:

=⇒ ∃I ′.(Wf(H, I ′) ∧ I ′ ≤ I)

=⇒ Wf(H, I)

Where I ′ must neither occur in H nor in I. Additionally, a well-formed
history contains the creation message of the object this:

Wf(H, I), New(H, this) =⇒

Wf(H, I) =⇒

Finally, we can impose conditions on the integers of the parent relation, if
the message is sent by this and the label is given explicitly:

Wf(H, I), Invoc(H, com(this, O, M, I2)), I2 < I =⇒

Wf(H, I), Invoc(H, com(this, O, M, I2)) =⇒

Wf(H, I), Comp(H, com(O, this, M, I2)), I2 < I =⇒

Wf(H, I), Comp(H, com(O, this, M, I2)) =⇒

Wf(H, I), New(H, new(parent(this, I2), I2)), I2 < I =⇒

Wf(H, I), New(H, new(parent(this, I2), I2)) =⇒

7.2. CONCURRENT CALCULUS 71

Now, the object history and the sending history have been discussed. What
is left to do, are the predicates involving both of them. To check whether
all the messages of the sending history are included in the object history we
use the Cons predicate. In addition, it ensures the well-formed properties
of the sending history.

Definition 7.2.18. The consistent predicate:

Cons : SendingHistory, ObjectHistory, Int ∈ PSym

has the following interpretation:

I0(Cons) =






(hs, ho, i) ∈

sendHistDom×
objHistDom×
intDom

∣
∣
∣
∣
∣
∣

∃h1 ∈ sendHistDom

ha

1 hs = ho ↾ this→
and wf(ho, i)







We need some rules which check the consistency of the predicate. Thereby
the sending history is processed recursively and for each message its occur-
rence in the object history is checked:

=⇒ Cons(HS , HO, J) ∧ Invoc(HO, com(this, callee, M, J)) ∧ J < I

=⇒ Cons(hist(HS , msgInvoc(com(this, callee, M, J), D)), HO, I)

=⇒ Cons(HS , HO, J) ∧ New(HO, new(parent(this, J))) ∧ J < I

=⇒ Cons(hist(HS , msgInvoc(new(parent(this, J), J), D)), HO, I)

To ensure well-formedness we add the Invoc predicate to the succedent:

=⇒ Cons(HS , HO, I)
∧Invoc(HO, com(caller, this, M, J))
∧Comp(HO, com(caller, this, M, J))

=⇒ Cons(hist(HS , msgComp(com(caller, this, M, J), D)), HO, I)

Finally, if the sending history starts at a object history we have to make sure
that the initial object history contains the other one as a prefix:

=⇒ Wf(HO,2, I) ∧ Prefix(HO,2, HO)

=⇒ Cons(hist(startsAt(HO,2)), HO, I)

Release-points

At a release-point the processor is handed over to other processes (see section
3). Thus all class attributes might have been overwritten when continuing
after a release-point what makes it difficult to reason about it. Our approach
uses the class invariant to express properties of the class attributes. We
require the class invariant to hold at every release-point of all methods.
Thus we do not need to consider other threads while verifying a method.

Let us start with a notation for the class attributes declared in the code:

72 CHAPTER 7. REASONING ABOUT CREOL

Definition 7.2.19. The vector of class attributes is denoted by W ∈ FSym∗
nr.

Please not that we have three additional class attributes, namely HO,
HS and L which are not contained in W.

To overwrite all class attributes we use anonymous updates (cf. [BHS07],
chapter 3) which replace the non-rigid function by an arbitrary new one
nothing is known about:

Definition 7.2.20. Let a CreolDL signature for a sort hierarchy, a sequent
Γ =⇒ ∆ and a vector v̄ (or set v) of program variables be given. For every
fi : A1, . . . , Ani

→ A ∈ v̄ (0 ≤ i ≤ n): let f ′ : A1, . . . , Ani
→ A ∈ FSymr be

a fresh w.r.t Γ ∪ ∆ rigid function symbol, then the update:

u1 || . . . || un

with

ui = for xi
1; true; . . . for xi

ni
; true; fi(x

i
1, . . . , x

i
ni

) := f ′
i(x

i
1, . . . , x

i
ni

)

is called anonymizing update for the sequent Γ =⇒ ∆ and denoted by Av̄.

Given the above definition we write AW to anonymize the class at-
tributes.

Anonymizing the object history is a bit more complicated because we
want to relate the old history with the new one by a prefix. Therefore we
have to save the old history before anonymizing:

Definition 7.2.21. For a CreolDL signature for a sort hierarchy and a
sequent Γ =⇒ ∆ containing φ the object history anonymizing formula FH is
defined as:

FHO
(φ) := ∀HO,pre.(HO

.
= HO,pre → ∀HO,new.({HO := HO,new}φ))

where Hpre, Hnew is new w.r.t Γ and ∆.

Example 7.2.6. In our proofs we will be interested in extensions of the
history which are prefixed by the old history. We can express this as
FH(Prefix(HO,pre, HO,new)).

To anonymize the sequence number L we will proceed analogous to the
history:

Definition 7.2.22. For a CreolDL signature for a sort hierarchy and a
sequent Γ =⇒ ∆ containing φ the sequence number anonymizing formula
FL is defined as:

FL(φ) := ∀Lpre.(L
.
= Lpre → ∀Lnew.({L := Lnew}φ))

where Lpre, Lnew is new w.r.t Γ and ∆.

7.2. CONCURRENT CALCULUS 73

A class invariant has to be supplied with each class. In particular we are
always interested in well-formed histories. Hence, we add the well-formed
predicate to all given class invariants by:

Definition 7.2.23. A given class invariant InvC,program is extended to
InvC := InvC,program ∧ Wf(HO,L).

Finally, we finished all necessary definitions to discuss the rules involving
release-points. At a release-point we have to show that the class invariant
holds when arriving there and we can assume it when continuing afterwards:

=⇒ InvC ∧ Cons(HS ,HO,L)

=⇒
AW(FL(FHO

({HS := startsAt(HO)}
(Prefix(Hpre, Hnew) ∧ InvC ∧ Lpre < Lnew → [ω]φ))))

=⇒ [release; ω]φ

The upper branch ensures both that the class invariant holds and that the
two histories are consistent. The lower branch allows other threads to have
modified all class attributes. The sending history is reinitialized (see Def
7.2.21). While reasoning about Creol we will typically define new predicates
which express certain properties of the history. Those are checked at the
sending history between two release-points and usually are contained in the
class invariant. For an example see chapter 9.

We can handle the await statement similar to the release statement. The
guard can is either wait or l? or a expression. In the case of await wait we
can equivalently rewrite it to release:

=⇒ [release; ω]φ

=⇒ [await wait; ω]φ

If the guard is an expression, which in general could enclose a division by
zero, we proceed analogous to integer arithmetic by decomposing it:

=⇒ [v:=exp; await v; ω]φ

=⇒ [await exp; ω]φ

where v is a new variable. This rule is sound in the context of Creol as there
will be no processor release during the decomposition of the expression.
When we arrive at a await statement with a terminal expression there are
two possibilities. First, the guard could be true, so the processor does not
release. Second, the processor releases because the guard was false.

=⇒

if texp
.
= TRUE

then [ω]φ

else

InvC ∧ Cons(HS ,HO,L)
∧AW(FL(FHO

({HS := startsAt(HO)}
(

Prefix(Hpre, Hnew) ∧ InvC

∧Lpre < Lnew ∧ texp
.
= TRUE → [ω]φ

)

)))

=⇒ [await texp; ω]φ

74 CHAPTER 7. REASONING ABOUT CREOL

The invariant and the consistency check are in the else-branch as they only
have to hold if the processor releases.

await l? can be handled similarly. The difference is the check whether
the corresponding completion message has arrived and whether the label is
not null.

=⇒ l 6= null

=⇒

if Comp(HO, l)
then [ω]φ

else

InvC ∧ Cons(HS ,HO,L)
∧AW(FL(FHO

({HS := startsAt(HO)}
(

Prefix(Hpre, Hnew) ∧ InvC ∧ Lpre < Lnew

∧¬Comp(Hpre, l) ∧ Comp(Hnew, l) → [ω]φ

)

)))

=⇒ [await l?; ω]φ

Loop invariants

To verify loops which do not terminate or where the number of iterations is
parameterized we use loop invariants. The principle is similar to induction.
We show that the invariant holds in the beginning and after each iteration:

incorrect

=⇒ InvLoop

=⇒ InvLoop ∧ texp → [p]InvLoop

=⇒ InvLoop ∧ ¬texp → [ω]φ

=⇒ [while texp do p end; ω]φ

The above rule is incorrect because updates (from before the loop) about
possibly modified variables in p are available in the lower two branches. Of
course, we can anonymize them as in the previous section but first we have
to define which variables are modified in a program.

Definition 7.2.24. A modifier set Mod is a set of pairs (φ, f(t1, . . . , tn))
with φ ∈ Formulae, f(t1, . . . , tn) ∈ TermTop and f ∈ FSymnr.

Because of the formula we can use dynamic logic to describe which vari-
ables are modified. Otherwise a description is sometimes impossible. We
continue with assigning meaning to a modifier set.

Definition 7.2.25. A modifier set is correct for program p ∈ Π, if for all
state pairs (S1, p, S2) ∈ ρ):

(S1, S2) |= Mod

where (S1, S2) |= Mod iff

for all f : A1, . . . , An → A ∈ FSymnr

7.2. CONCURRENT CALCULUS 75

for all (d1, . . . , dn) ∈ DA1 × · · · × DAn

I1(f)(d1, . . . , dn) 6= I2(f)(d1, . . . , dn) implies there is (φ, f(d1, . . . , dn))
∈Mod and a variable assignment β such that

di = valS1,β(ti) (0 ≤ i ≤ n) and S1, β |= φ

We note that a modifier set can be a super set of the actual modified
variables.

For a correct loop invariant rule we do not only need to overwrite the
modifier set of the loop body but also the histories and the sequence number.
The reason is that there could be method calls inside a loop. Now, we assume
a modifier set of p is M :

=⇒ InvLoop ∧ Wf(HO,L) ∧ Cons(HO,HS)

=⇒

AM (FHO
(FL({HS := startsAt(Hnew)}





(Prefix(Hpre, Hnew) ∧ Wf(Hnew) ∧ Lpre < Lnew ∧ InvLoop)
∧(texp → [p]InvLoop ∧ Wf(HO,L) ∧ Cons(HO,HS))
∧(¬texp → [ω]φ)



)))

=⇒ [while texp do p end; ω]φ

The two lower branches of the incorrect loop invariant rule are merged into
one due to the fact that they need the same updates. To create a new history
prefixing the old one we have to check for well-formedness and consistency.
So this is done for the initial loop invariant and after execution of the body.

Method calls

In Creol all methods declared in interfaces are supplied with a contract.
A contract contains two formulae where the first is a condition on the in
parameters of a method and the second is a condition on the out parameters.

Definition 7.2.26. A method contract is a tuple (Pre, Post, mod, label)
such that

• Pre := Pre′ ∧ Invoc(HO, label) ∈ Formulae is the precondition con-
taining only the in parameters as program variables

• Post := Post′ ∧ Invoc(HO, label) ∧ Comp(HO, label) ∈ Formulae is
the postcondition containing only the out parameters as program vari-
ables

• Pre′, Post′ do not contain histories4

4 Allowing histories in pre- and post conditions leads to the problem of history com-
position which is unsolved in this work.

76 CHAPTER 7. REASONING ABOUT CREOL

• mod ∈ {box, diamond} is set to diamond iff the contract requires ter-
mination

• label ∈ TermLabel describing the label belonging to the method call

An init method contract is a tuple (Preinit, mod, object) where

• Preinit := Pre∧New(HO, o) ∈ Formulae is the precondition contain-
ing only the class parameters as program variables

• Pre does not contain histories

• mod ∈ {box, diamond} is set to diamond iff the contract requires ter-
mination

• object ∈ TermAny describing the object identifier belonging to the ob-
ject

The idea for a method invocation rule is to extend the history by a
sending message and to prove the precondition of the corresponding method.

=⇒ Wf(HO,L) ∧ o 6= null

=⇒

{l := com(this, o, m,L)}{HS := hist(HS , msgInvoc(l, x̄))}(FHO

({L := L + 1}





Wf(Hnew,L) ∧ Prefix(Hpre, Hnew)
∧Invoc(Hnew, l) ∧ ¬Invoc(Hpre, l)
∧¬Comp(Hpre, l)

→
〈ω〉φ
∧Pre



))

=⇒ 〈l!o.m(x̄); ω〉φ

To check for consistency we write o 6= null in the upper branch. If the
old object history would not be well-formed, the new object history would
be malformed as well. Therefore Wf is in the upper branch. The sequence
number L is incremented to ensure that the new label is unique. The manip-
ulation of the object history is not straight forward. An overview is given in
figure 7.2. The newly sent message must not occur in the old history but is
in the new history. Also the completion message must not been seen before
the method invocation.

The completion statement just adds the completion predicate to the
object history. The sending history is untouched. For correctness we have
to show that the method was actually invoked and the label does not equal
null.

=⇒ l 6= null ∧ Wf(HO,L) ∧ Invoc(HO)

=⇒ Aȳ(FHO

(
Wf(Hnew,L) ∧ Prefix(Hpre, Hnew)
∧Comp(Hnew, l) ∧ Post

→ 〈ω〉φ

)

)

=⇒ 〈l?(ȳ); ω〉φ

7.3. VERIFYING A CREOL PROGRAM 77

HO,1 HO,2 HO,3 HO,4

¬Invoc(HO,1, l) Invoc(HO,2, l) Invoc(HO,3, l) Invoc(HO,4, l)
¬Comp(HO,1, l) Comp(HO,4, l)

HS hist(HS , msgInvoc)

. . . ; l!obj.meth(); . . . ; l?(x);

Figure 7.4: The intention behind the method call rules. Upper lines: Object
history where Prefix(HO,i, HO,i+1) for 1 ≤ i ≤ 3. Middle line: Sending
history omitting parameters of msgInvoc. Bottom: Code

The new statement is very similar to a method call as it implicitly invokes
the init method of the newly created object. In general a init method has
to be supplied with a precondition as well.

=⇒ Wf(HO,L)

=⇒
{o := parent(this,L)}{HS := hist(HS , msgNew(o,L))}FHO

(

{L := L + 1}(

(
Wf(Hnew,L) ∧ Prefix(Hpre, Hnew)
∧¬New(Hpre, o) ∧ New(Hnew, o)

→
Preinit

∧〈ω〉φ

)

))

=⇒ 〈o := new C(x̄); ω〉φ

Like for a method call we extend both histories by the corresponding new
object message. The object reference is initialized as child of the current
object this.

7.3 Verifying a Creol program

In order to verify a complete Creol program we have to verify all methods
of all classes and then show the composability of those proofs. Hence, the
verification consists of a series of proofs of methods.

Verifying a method

In the following we consider a method with the vectors x̄, ȳ as parameters
and body a sequence of statements:

1 op m (in x ; out y) == body

Additionally assuming that a contract of the method is given the proof
obligations are:

=⇒ {HS := startsAt(HO)}(Pre ∧ InvC → 〈body; return〉Post ∧ InvC)

The return statement was never mentioned before. It is an artificial place
holder for the end of the method since a empty modality can occur in other

78 CHAPTER 7. REASONING ABOUT CREOL

cases as well (e.g. loop invariant rule). When the return statement is pro-
cessed in a proof the completion message of the method is sent.

=⇒ Cons(HS ,HO,L) ∧ Invoc(HO, labelm) ∧ Wf(HO,L)

=⇒
FHO

({HS := hist(HS , msgComp(labelm, x̄out))}{L := L + 1}
(

Wf(HO,L) ∧ Prefix(Hpre, Hnew)
∧¬Comp(Hpre, labelm) ∧ Comp(Hnew, labelm)

→ 〈〉φ)

)

)

=⇒ 〈return〉φ

where labelm is the label identifying the method call processed in the method
we verified. Similarly xout are the out parameters of the method.

Investigating an init method is slightly different from a usual method:

1 op i n i t == body

We do not allow release-points or method calls in a init method body (for
which the class invariant must be shown), but require that the class invariant
is established when init terminates.

=⇒
{HS := startsAt(HO)}{L := 0}
(Preinit ∧ Wf(HO,L) → 〈body〉InvC ∧ Cons(HO,HS))

We may assume that the initial object history is well-formed as it consists
only of the object creation message of this.

7.4 Limitations and further work

History For the present the calculus subject to this thesis is a proof of
concept but no more. The main problem with the introduced calculus is
its complexity which results from the two separate representations of the
history.

To simplify the calculus the object history could be discarded and instead
all messages could be added in the order of appearance in the code to a list.
But thereby the unsolved problem of the composition of histories gets even
more complicated since histories from different objects have different orders
in its list. To overcome this issue one probably has to use equivalence classes
of histories. This will presumably investigated by Owe et al.

A major limitation of this work is that histories are not allowed in pre-
and post conditions. Again the reason is the composition of histories. When
proving a method there would be two different histories namely the one de-
scribed by the class invariant and the other one described by the precon-
dition. For a pure object history with no additional predicates this is not
a problem. But for instance when counting messages there will be differ-
ent information about the history from different object viewpoints. Related
theoretical investigations have been done in [JO02, JO04].

7.4. LIMITATIONS AND FURTHER WORK 79

Statements There are several statements of Creol which are currently
not available in the calculus. A minor missing statement is the parallel
assignment, e.g. swapping variables by a,b:=b,a, which seems to be fitting
to parallel updates on first sight, but as a division by zero could occur on the
right hand side it must be fractioned for reasoning about total correctness.

The rule for the non deterministic choice statement [] is incomplete in
its current form. For a step towards completeness one can have a look at
[Bla08]. However, the look ahead in case of nested non deterministic choice
statements complicates the implementation.

In some Creol publications there is an interleave statement ||| which
behaves similar to the non deterministic choice statement except for the
fact that both branches have to be executed. The execution is interleaved
because at each release statement the active branch can be switched. The
verification of this statement is a tedious task since the number of combina-
tions increases exponentially with each release-point.

Several abbreviating statements like synchronous method calls are not
covered by this work. Nevertheless only the rules rewriting the statements
equivalently are absent.

Data structures Sets, lists, tuples and strings are not handled by the
current calculus. The reason is that only finite mathematical sets are sup-
ported by the KeY system. Strings support is ongoing work in KeY. Lists
should be the easiest task as the can be modelled similar to the hist func-
tion. Tuples lead to a problem with the sorts as they can in general contain
different sorts for each entry.

Floating points Floating points in the mathematical sense are currently
only partly supported by the KeY system and therefore not subject to this
work.

80 CHAPTER 7. REASONING ABOUT CREOL

Chapter 8

KeYCreol: A verification

tool

KeYCreol is the realization of the logic presented in the two previous chap-
ters. It is part of the KeY project1.

This chapter starts with the illustration of the architecture of the KeY-
Creol software in section 8.1. How the software can be obtained and used is
the topic of section 8.2. The discussion of inherent limitations and intended
features in section 8.3 completes the chapter.

8.1 Architecture

This section provides a non-exhaustive documentation of the key.lang.creol
package. Thereby the focus lies on the relation between the different classes.
Comments describing the purpose of single functions or attributes are in
the code. The documentation was composed in May 2009 and information
might have changed already. The package is based on key.lang.common cre-
ated by Oleg Mürk (documentation in chapter 5 of [Mür08]) which provides
interfaces and rudimentary implementations of base classes to be used by
non-Java adaptions of KeY.

In the UML diagrams used in this chapter some classes and interfaces
lack a field for attributes or methods. Those were left out to improve read-
ability and to shrink the diagrams to a reasonable size.

Generative approach

In comparison to KeY for Java and to KeYC a more generative approach for
the implementation of KeYCreol consisting of only a few classes was chosen.
Most of the necessary data structures are created on start up. Their layout is
defined in the code or parsed in from a text file. The objects composing the

1http://www.key-project.org

81

http://www.key-project.org

82 CHAPTER 8. KEYCREOL: A VERIFICATION TOOL

data structure can be distinguished by a class attribute. This approach was
used for the abstract syntax tree, the type hierarchy, the finite state machine
creating the abstract syntax tree and the schema variable hierarchy. The
idea is not new as the taclets for example are parsed in on startup as well.

The approach leads to a slightly slower program as the dynamic creation
consumes some computing power. Additionally, the heavy reuse of classes
cuts down some specific methods. E.g. it is not possible to access the con-
dition of an if statement by If.getCondition() because both the AST nodes
holding if and its condition are instances of the same class.

On the other hand the program code was significantly simplified using
this approach. On June 1st 2009 the different packages had the following
numbers in lines of code (leaving out the strategy):

package lines of code

key.java 49906
key.lang.clang 25155
key.lang.creol 2752

The java package is necessarily the biggest as parts of it are reused by
the other two packages. However, in the clang package the same design
principles as in key.java are used and it has about nine times more lines of
code than lang.creol.

One could argue that the package presented in this section does lack
some features in contrast to the other packages which leads to the reduction
in lines of code.

An analysis of the different implementations of the abstract syntax tree of
clang and creol does not support this argument. A comparison of the pack-
ages yields a ratio of one to ten2 in lines of code considering lang.creol.program
and lang.clang.program. Adding new statements to the supported subset of
Creol does not require a single new line in the abstract syntax tree defined
in lang.creol.program and therefore the ratio will remain constant. For a
new statement at most five lines have to be added to the loader package
where the ration is one to eleven3. To summarize a rather pessimistic guess
is that the lines of code were reduced by more than 80%.

In addition, the design approach advocated in this thesis is easier to
adapt to new features as the layout of any data structure can be changed
within a few lines.

Abstract syntax tree

The central work in adapting a new programming or modeling language to
the KeY system is the creation of the abstract syntax tree because it is

2On June 1st 2009: lang.clang.program: 4473 lines verses lang.creol.program: 454 lines
3June 1st 2009: lang.clang.loader : 9557 lines of code. lang.creol.loader : 844 lines of

code

8.1. ARCHITECTURE 83

language specific whereas most logic features can be reused. The abstract
syntax tree (AST) is used to represent Creol statements appearing in modal-
ities. A UML diagram of the architecture of lang.creol.program can be found
in figure 8.1. All classes occurring in an AST of key.lang.common have to

key.lang

creol

schemavariable

program

common

match

program

<<interface>>

INonTerminalProgramElement

+getChildCount(out c:int)

+getProgramElementAt(in index:int,
 out elem:IProgramElement)

+copy(in children:ExtList,
 out copy:IProgramElement)

<<interface>>

IKeyedMatchPat te rnProgram
<<interface>>

IKeyedMatchSourceProgramElement

<<interface>>

ICreolProgramElement

+printAST(out AST:String)

+getToken(out token:String)

+getText(out text:String)

+getSchemaSort(out sort:CreolSchemaSort)

CreolSchemaVar iable

BaseVar iable

CreolProgramVar iable

CreolProgramElement

-token: String

-text: String

-schema: CreolSchemaSort

-children: ICreolProgramElement[]

BaseNonTerminalProgramElement

<<interface>>

IP rogramElement

+match(in source:SourceData,
 in matchCond:MatchConditions,
 out matchCond:MatchConditions)

+getAllVariables(out variables:Set)

+createDefaultPrinter(out printer:IProgramPrinter)

CreolExpression

Figure 8.1: UML diagram: key.lang.creol.program

implement IProgramElement. In key.lang.common the AST is divided in
terminal and non-terminal elements. As the first are a special case of the
latter only INonTerminalProgramElement is inherited by ICreolProgramEle-
ment which is the interface to be implemented by all classes representing
the AST. INonTerminalProgramElement provides all necessary methods for
traversing an AST. Which taclets are applicable is determined via the func-
tions provided by IKeyedMatchSourceProgramElement and IKeyedMatch-
PatternProgram. This process is a comparison of two ASTs, the one of the
taclet possibly containing schema variables and the other one of the given
modality. The most common AST node is a CreolProgramElement. Its text
attribute contains the piece of code represented by it. The token attribute
is the corresponding token which is reused from jCreol (chapter 4). As the

84 CHAPTER 8. KEYCREOL: A VERIFICATION TOOL

KeY core checks for some implemented interfaces CreolProgramVariable and
CreolExpression exist (more details in figure 8.6).

There are different walkers wandering the AST. The corresponding UML
diagram is in figure 8.2. The BaseWalker is supplied by key.lang.common. It

key.lang

common

creol

walker

program

<<interface>>

ICreolProgramElement

walker

BaseWalker

#depth: int

#walk(in node:IProgramElement)

#doAction(in node:IProgramElement)

program

<<interface>>

IP rogramElement

IntroducedVar iables

VariableCol lector

Var iableReplacer

walks on

Figure 8.2: UML diagram: key.lang.creol.walker

traverses ASTs implementing IProgramElement which is inherited by ICre-
olProgramElement and therefore available in all AST nodes. The different
walkers run through the tree and collect information like the used variables
or introduced variables. The VariableReplacer replaces occurrences of vari-
ables by other ones in the AST. There is another walker which exchanges
all schema variables of an AST by its current instantiations. However this
walker does not inherit BaseWalker and it is therefore not in figure 8.2.

The AST is initially created by the loader to be depainted in the next
paragraph.

Loader

The loader is one of the most important parts of the package. It invokes an
instance of jCreol (see chapter 4) which parses the given statements. After-
wards the resulting jCreol AST is translated to the KeY AST of the previous
paragraph. The UML diagram in figure 8.3 provides an overview about the
architecture of key.lang.creol.loader. The class CreolLoader receives all
parsing requests and forwards them to an instance of jCreolExternal which
launches jCreol. Before jCreol finishes it launches another finite state ma-
chine (section 4.1) that is passed to it by CreolLoader. Its purpose is the
creation the KeY AST. Its layout is defined in ASTLayout. The different
Actions are called if the walker handling the finite state machine goes up,
down or visits a edge not belonging to the spanning tree (referring to section
4.1). All Actions cause certain actions in the Translator to build the AST.

8.1. ARCHITECTURE 85

key.lang.creol

loader

jCreol2AST

CreolLoader

-instance: CreolLoader

+getInstance(out i:CreolLoader)

+loadProgramStatements(in code:String,
 in schemaVariableNS:Namespace,
 in programVariableNS:Namespace,
 in sortNS:Namespace,
 in type2Sort:CreolType2Sort,
 out ast:IProgramElement)

+getInitialTypeHierarchy(out th:CreolTypeHierarchy)

-getPreludeURL(out url:URL)

jCreol

finitestatemachine

Layout

#start: State

+build()

Action

-name: String

+run(in parent:GraphNode,
 in child:GraphNode,
 in st:SymbolTable)

jCreolExternal

-graph: Graph

-preludePath: URI

+statement(in statements:String,
 in fsmLayout:Layout)

+prelude(fsmLayout:Layout)

Translator

+start(in schemaVariableNS:Namespace,
 in programVariableNS:Namespace,
 in sortNS:Namespace,
 in type2Sort:CreolType2Sort)

+down(in token:String)

+schemaDown(in schema:String)

+schemaUp()

+up(in child:GraphNode,
 in parent:GraphNode,
 in type:String)

+downNotInTree(in child:GraphNode,
 in type:String)

+finishAndReturn(out AST:IProgramElement)

ASTLayout

-t: Translator

Act ionDown

-schema: String

-t: Translator

Act ionDownNot InTree

-type: String

-t: Translator

ActionUp

-type: String

-schema: String

-t: Translator

stack

program

Fin i teSta teMachine

consists

1

1

launches

*

1

creates
1 1

contains1 1

calls
*

1

calls

*

1

calls

1

*

contains

1

*

uses

2

1

creates

*

1

launches

1

*

Figure 8.3: UML diagram: key.lang.creol.loader

The construction of the AST proceeds in a bottom up manner. The rea-
son is that AST nodes are generally not modifiable in KeY (e.g. no children
can be added after creation of an AST node). The stacks in Translator are
necessary to store to AST nodes which do not have a parent yet and to store
the current schema sort.

lang.creol.loader contains another loader which parses the initial type
hierarchy. It follows the same principles as the described one and therefore
was omitted.

Taclets and schema variables

The rules of the calculus presented in chapter 7 are represented in the
KeY system by a high level language called taclets (except for some spe-

86 CHAPTER 8. KEYCREOL: A VERIFICATION TOOL

cial cases which exceed their expressive power). This section will provide
a brief introduction into the taclet language to explain the role of schema
variables. Taclets were first introduced in [Hab00a, Hab00b]. Elaborated
explanations about the taclet language used in KeY can be found in chapter
4 of [BHS07].

Taclets The conclusion of a rule is divided into \find() and \assume()
where the first contains a logical formula or term and the latter a list of
logical formulae or terms. All the formulae or terms have to be matched
to make the rule applicable. The difference between both clauses is that a
applicable rule will show up in the interface while the cursor is placed on the
formula or term matched by \find(), but not the other way round. The part
matched by \find() can be replaced in using the \replacewith() statement
or a logical formula can be added to the sequence with \add(). Furthermore
a taclet can contain information about variables, e.g. x /∈ fv(φ), expressed
by the \varcond() clause.

We presume with an example. Given the rule below:

Invoc(H1, L), P refix(H1, H2), Invoc(H2, L) =⇒

Invoc(H1, L), P refix(H1, H2) =⇒

we can write it as the following taclet:

1 Invocation monoton {
2 \assumes (Pr e f i x (#H1,#H2) ==>)
3 \ f i nd (Invoc(#H1,#L) ==>)
4 \add (Invoc(#H2,#L) ==>)
5 } ;

In this case the rule with show up as applicable in the graphical interface if
the pointer is above the predicate matching Invoc(#H1, #L) If we do not
write the sequent arrow ==> in the clauses we obtain a rewriting rule. The
taclets can be supplied with the \heuristics() which relates the automatic
application of the rule to a specific strategy. In the simplest case a strategy
can apply some rules before other. The specific strategy used in KeYCreol
is characterized in a following paragraph of this section.

All KeYCreol specific taclets can be found in the folder:
”resources/de/uka/ilkd/key/proof/rules/lang/creol”

Schema variables The formulae or terms to be matched by a taclet can
contain schema variable which represent a category of terms, formulae or
program statements. This concept ensures that the taclet matches a set of
sequents.

Example 8.1.1. In the above listing #H1 is a schema variable matching
any term with sort ObjectHistory.

8.1. ARCHITECTURE 87

To reduce the number of taclets and to limit the number of applica-
ble taclets there are different schema sorts (categories of schema variables)
which can be found in figure 8.4. In the figure an arrow from A to B means

Variable

BoolLiteral

IntegerLiteral

Literal

TerminalExpression

NewExpression

Expression

StatementSemicolonStatement

Method

Class

Unknown

Figure 8.4: Schema sorts

that A will also match B. Unknown matches nothing, but exists for ini-
tialization purposes. Identifiers of a Class or a Method are equipped with
the corresponding schema sorts. SemicolonStatement is the equivalent to
; ω of section 6.4. All statements are matched by Statement. Expression
is the schema sort of all AST nodes which contain a operator connecting
expressions. NewExpression is applied to expressions containing an object
creation. A TerminalExpression represents only literals and variables, which
is essentially the same as texp in section 7.1.

A UML diagram abstracting from the implementation can be looked
up in figure 8.5. The concepts of schema variables and its sorts are avail-
able in the key.lang.common package and inherited or implemented by the
Creol classes. A schema variable (CreolSchemaVariable) can be part of the
AST as it is contained in the code of a modality of a taclet. Therefore ICre-
olProgramElement is implemented by CreolSchemaVariable. All the schema
sorts are kept in the singleton CreolSchemaSorts which the loader uses to
obtain a CreolSchemaSort. Because key.lang.common does distinguish be-
tween schema sorts for a variable and other ones (and this is checked in some
parts of the KeY system) the empty class CreolSchemaSortVariable exists.
Each schema variable stores a reference to its sort which provides the meth-
ods to match it. An AST node (figure 8.1) matches a schema variable if its
schema sort is a sub sort or the same sort as the sort of the schema variable.

88 CHAPTER 8. KEYCREOL: A VERIFICATION TOOL

key.lang

common

creol

schemavariable

SchemaSorts

-instance: SchemaSorts

-sorts: HashMap

+getInstance(out instance:SchemaSorts)

+get(in id:String,
 out schemaSort:CreolSchemaSort)

CreolSchemaSort

-schema: String

-subSorts: Vector

+canStandFor(in pe:IProgramElement,
 in services:ILangServices,
 in sortNS:Namespace,
 in symbolNS:Namespace,
 out b:boolean)

+canStandFor(in s:CreolSchemaSort,
 out b:boolean)

+buildProgramSV(in name:Name,
 out psv:BaseProgramSV)

programsv

BaseProgramSVSort

<<interface>>

IVar iab leProgramSVSort

CreolSchemaSortVar iable

BaseProgramSV

CreolSchemaVar iable
creates

creates

program

<<interface>>

ICreolProgramElement

Figure 8.5: UML diagram: key.lang.creol.schemavariable

Types and sorts

The distinction between types (of a Creol program, section 3) and sorts (of
the logic, section 6.1) is done in the KeY system as well. Each AST node
which is part of an expression contains a sort-type-pair. Other AST nodes
are not typed. The associated classes are pictured in the UML diagram in
figure 8.6.

The classes CreolExpression and CreolProgramVariable occur in the AST
and both implement the interface ITypedProgramElement. This interface
provides a function to retrieve the type pair which is represented by the
KeYJavaType class. CreolType inherits the corresponding base class and
implements the type interfaces of key.lang.common and key.java.abstraction.
All instances of CreolType are unique during run time which is ensured
by CreolTypeHierarchy being the only class where types can be looked up.
CreolType2Sort stores an reference to the type hierarchy and uses it to look
up the types necessary for the type pairs the loader requires. The loader
package creates the initial type hierarchy by parsing prelude.creol.

8.1. ARCHITECTURE 89

key

lang

creol

type

CreolType

-id: String

CreolTypeHierarchy

-datatypes: HashMap

+copy(out th:CreolTypeHierarchy)

+addDatatype(in id:String)

+getDatatype(in id:String,
 out type:CreolType)

program

CreolExpression

-typeAndSort: KeYJavaType

CreolProgramVar iable

-typeAndSort: KeYJavaType

loader

common

type

program

BaseType

<<interface>>

IType

CreolType2Sort

-th: CreolTypeHierarchy

-type2sort: HashMap

+copy(out t2s:CreolType2Sort)

+get(in id:String,
 in sortNS:Namespace,
 out typeAndSort:KeYJavaType)

<<interface>>

ITypedProgramElement

+getTypePair(in services:ILangServices,
 in sortNS:Namespace,
 symbolNS:Namespace,
 out typeAndSort:KeYJavaType)

<<interface>>

IVar iable

+getTypePair(out typeAndSort:KeYJavaType)

java

abstraction

KeYJavaType

-sort: Sort

-type: Type

<<interface>>

Type
contains 1*

lookup type

1

1

lookup typeAndSort 11

fills

1

1

creates

*

*

1

typed by

*

1

contains

1

*

Figure 8.6: UML diagram: key.lang.creol.type

Proof strategy

The current implementation of the strategy is very basic. It comprises only
three different levels which differ in their priority. The highest priority have
rules simplifying the problem or consuming statements. If the search space
has been explored exhaustively the next step is unfolding of predicates, e.g.
the class invariant, that hides a formula. Afterwards rules with higher prior
are usually applicable again. In the case of having tried all rules of both
described levels the well-formed predicate is used to create more predicates.
In well-formed histories a invocation predicate can be generated for a given
completion predicate, for instance.

90 CHAPTER 8. KEYCREOL: A VERIFICATION TOOL

8.2 Using KeYCreol

KeYCreol is available from www.key-project.org upon request. It is licensed
under the GNU general public license.

The current version is a prototype implying that it does provide neither
a full coverage of all Creol statements nor freedom from error.

To compile and run KeYCreol, besides the requirements of KeY 1.4,
jCreol in form of a jar file is a prerequisite. An appropriate script which
creates and copies the file into the library folder of KeY ships with jCreol.

To invoke the interactive prover execute the script runProver residing in
the folder bin with creol as the first argument. An optional further argument
is the path of a key file containing a proof obligation.

The files forming the case studies of this thesis and embodying the rules
concerning histories are in the path:
”examples/lang/creol/hardCodedRules/”
During the development some achievements were captured in test cases for
the system. These files are in the folder: ”examples/ textcase/lang/creol/”

For further information consult the read-me or write to the KeY project.

Development

As noted before there are test cases which can be run after development steps
to check them against bugs. The test cases are runnable automatically using
the runAllProofs script in the bin folder.

Turning the settings of log4j4 to debug for key.lang.creol will produce
detailed logs. The logger settings are read from a file named logger.props in
the .key folder of your home directory.

The system has the capability of printing the layout of the used finite
state machines to a graphviz file what from a picture of the layout can be
generated. To enable this feature a line has to be uncommented in the
CreolLoader file.

In general all methods invoked by parts of the system outside of the
lang.creol package are logged. Missing implementations for additional fea-
tures should result in an adequate log entry.

The added extensions to the KeY system try within their limits to check
input from other parts of the system by assertions. These restrictions might
be to harsh in future uses.

8.3 Limitations and further work

This section describes implementation features which are not available in
current versions of KeYCreol, but it does not mention missing features re-

4Apache Logging Services Project - Apache log4j

http://www.key-project.org
http://logging.apache.org/log4j/

8.3. LIMITATIONS AND FURTHER WORK 91

lated to theoretical issues. Those are listed in section 7.4.

Loading complete Creol programs The main implementation issue left
to do is the loading of complete Creol programs, which should manage open
proof obligations for each method of each class for example.

So far it is only possible to load the bodies of methods. Hence, in order
to verify a program for each method a separate proof obligation has to be
created by hand and some rules have to be adapted. This is because release-
points overwrite all class attributes (see section 7.2) and it is impossible
to write taclets matching on a list of unknown size. Therefore all rules
concerning the history have to be implemented as built-in-rules.

The loading mechanism for complete Creol programs is prepared in the
code, but the corresponding layout of the finite state machine for building
up classes and interfaces is missing.

Having established a loading procedure for complete programs the Creol
compiler could be invoked on given Creol programs to ensure that incorrect
programs are rejected.

Consistency of the AST The design of the AST nodes as one single
class has the disadvantage that node specific consistency checks are difficult
to do. A solution would be to supply the finite state machine creating the
AST with checks on the transitions going up in the graph. For each kind
of AST node there is a state so this would be the right part of the code to
use. A simple check could be the expected number of children, their Schema
sorts and in case of expressions their type.

Missing statements Some statements like synchronous method calls can-
not be parsed by KeYCreol right now. This is a minor problem as the
architecture supports adding statements by only few lines of code.

Pretty-printing The current version does not incorporate any pretty-
printing. All newly created variables and constants in a proof are named
after a standard hardly readable scheme. A first step could be to generate
names according to the sort of the term which would improve readability.

A more advanced topic is the pretty printing of predicates guarantee-
ing the existence of a message in a history. Since these predicates are
monotonous on prefixed histories, a number of them is collected during a
proof. In that case an analysis which of them are useful should lead to a
procedure of hiding unnecessary information.

Additionally, the predicate names could be pretty-printed. For instance,
the Prefix predicate could be abreviated by ≤ and thereby infix form could
be used.

92 CHAPTER 8. KEYCREOL: A VERIFICATION TOOL

Proof strategy The rudimentary proof strategy developed within this
thesis can be extended to make large automatic proofs feasible. To accom-
plish this additional characteristic proofs of Creol programs must be done
which in a second step could be analyzed to create a better heuristic to guide
the automated search.

Taclet language There is a mechanism for writing taclets matching both
the box and the diamond as modalities using schema variables. This reduces
the number of taclets by nearly one half as one would need two taclets for
all statements otherwise. One could introduce a similar tool for logical
operators like − or +. This would allow handling several integer rules with
one taclet.

Currently there is no possibility to match on a variable of a specific type
(or of any type but one). However, it is possible to write logical rules which
are only valid for expressions of a certain type. Again, such a feature would
reduce the number of taclets.

Chapter 9

Case studies

This chapter applies the theory derived in chapter 7 to two different exam-
ples using the verification tool described in chapter 8. Thereby the focus
lies on Creol specific issues leaving out well-understood issues like integer
calculus. First, we will consider a simple bank account where the interaction
between different methods is described by a simple class invariant (adapted
from [Bla08], section 7.1). The second example is about a buffer which can
be written and read from (code inspired from [Bla08], section 4.1). The
first instance is provable fully automatically whereas the later needs a few
interactions.

For simplicity the run methods of the used classes are omitted since they
are empty.

9.1 Bank account

An bank account should have at least two different operations, namely de-
positing money on the account and paying a bill by doing a transaction. To
model this in Creol we define an interface containing these operations.

1 interface BankAccount
2 begin

3 with Any
4 op depos i t (in am : Int)
5 op payB i l l (in am : Int)
6 end

Listing 9.1: Bank account interface

What happens if somebody tries to deposit a negative amount of money?
We want to avoid this situation so we define the pre-condition of the deposit
method as:

Predeposit := am ≥ 0

93

94 CHAPTER 9. CASE STUDIES

There is no return value, so we do not use a post-condition. The same
issue applies to payBill therefore we use a similar pre-condition and no
post-condition:

PrepayBill := am ≥ 0

Let us turn to the implementation of the interface. We need a class attribute
bal for saving the balance of the account. The methods of the interface
modify the balance. A call of deposit simply adds the amount to the balance.
The payBill method checks whether there is enough money on the account
before subtracting. If not the payment will be delayed. Finally, the balance
is initialized by zero in the init method.

1 class BankAccount implements BankAccount
2 begin

3 var bal : Int ;
4 op i n i t == bal := 0
5 with Any
6 op depos i t (in am : Int) == bal := bal + am
7 op payB i l l (in am : Int) == await bal >= am ;
8 bal := bal − am
9 end

Listing 9.2: Bank account class

We note that because of the delayed payments there are no negative values
possible for the balance. Additionally, the balance should equal the sum of
the amounts deposited minus the sum of the amounts of payed invoices. We
express this in the class invariant:

InvC := bal ≥ 0 ∧ SumO(HO) = bal

The predicate SumO needs to be defined. As we have the notion of object
and sending histories we need two different predicates SumO : ObjectHistory
and SumS : SendingHistory to avoid sort errors. To handle the SumS

predicate of a given history we need special rewriting rules. If a completion
message of deposit finishes the sending history the amount is added to the
sum:

compDeposit
SumS(HS) + am

SumS(hist(HS , msgComp(label(O, this, deposit, I), am)))

In case of a payBill completion message exactly the opposite is done:

compPayBill
SumS(HS) − am

SumS(hist(HS , msgComp(label(o, this, payBill, I), am)))

9.2. BUFFER 95

Other messages are handled without changing the sum:

startsAt
SumO(HO)

SumS(startsAt(HO))

invocation
SumS(HS)

SumS(hist(HS , msgInvoc(L, D)))

new
SumS(HS)

SumS(hist(HS , msgNew(L, D)))

compOther
SumS(HS)

SumS(hist(HS , msgComp(label(O, O2, Meth, I), D)))

In the above rules HS ∈ TermSendingHistory, HO ∈ TermObjectHistory, L ∈
TermLabel, D ∈ TermData, O, O2 ∈ TermAny, I, am ∈ TermInt and Meth
∈ TermMethod such that I(Meth) 6= I(payBill), I(Meth) 6= I(deposit).

There are three open goals to verify which correspond to the methods of
the class in listing 9.2 which are automatically provable by the KeY system
and are available in the KeYCreol sources.

9.2 Buffer

A buffer is used to store content to be sent from one to another object.
We distinguish between the writable buffer interface and the readable buffer
interface:

1 interface Writab leBuf fe r
2 begin

3 op put (in x : Any)
4 end

Listing 9.3: WritableBuffer interface

The writeable buffer interface provides a put which intuitively allows to put
an element into the buffer. We want to be sure that no empty elements are
in the buffer. Therefore we require the precondition:

Preput := ¬x
.
= null

From classes implementing the readable buffer interface we can obtain ele-
ments stored in the buffer by using the method get :

1 interface ReadableBuf fer
2 begin

3 op get (out y : Any)
4 end

Listing 9.4: ReadableBuffer interface

96 CHAPTER 9. CASE STUDIES

As we assume non-emptiness for all elements in the buffer we can guarantee
that the received element is not null :

Postget := ¬y
.
= null

Let us proceed with a simple implementation of a buffer storing at maximum
one element. The class implements both interfaces. It has a attribute where
the element is stored. Both methods start with an await statement so that
they continue execution only if the buffer is ready.

1 class Buf f e r implements WriteableBuf fer , ReadableBuf fer
2 begin

3 var c e l l : Any ;
4 op i n i t == skip

5 with Any
6 op put (in x : Any) == await c e l l=null ; c e l l := x
7 op get (out y : Any) == await c e l l !=null ;
8 y := c e l l ; c e l l := null

9 end

Listing 9.5: Buffer class

Considering the listing we realize that put and get will send a completion
message alternatingly beginning with put. In other words the sending history
is always a prefix of (PUT GET)∗ (w.r.t completion messages).

Therefore we introduce the predicate sPrefix:

• sPrefix : SendingHistory ∈ PSym with I0(sPrefix) =

{

h ∈ sendHistDom

∣
∣
∣
∣
h ∈

(
〈comp, 〈o, I0(this), put, i〉, 〉a

〈comp, 〈o, I0(this), get, i〉, d〉

)∗}

Encoding this in a class invariant is not sufficient as we need to know what
the last message in the history was. If the cell does not equal null it must
have been a put completion message.

(¬cell
.
= null) ↔ (sPut(HS) ∧ ¬sGet(HS) ∧ ¬sEmpty(HS))

where sPut(HS) is a predicate interpreted as true iff HS ends with a put
completion message, sGet(HS) is the analogous for get completion messages
and sEmpty(HS) means that the sending history is empty.

Formally we define the predicates as:

• sPut : SendingHistory ∈ PSym with I0(sPut) =

{

h ∈ sendHistDom

∣
∣
∣
∣

∃h1 ∈ sendHistDom :

h = ha

1 〈comp, 〈o, I0(this), put, i〉, 〉

}

9.2. BUFFER 97

• sGet : SendingHistory ∈ PSym with I0(sGet) =

{

h ∈ sendHistDom

∣
∣
∣
∣

∃h1 ∈ sendHistDom :

h = ha

1 〈comp, 〈o, I0(this), get, i〉, d〉

}

• sEmpty : SendingHistory ∈ PSym with
I0(sEmpty) = {h ∈ sendHistDom|h = ǫ}

The intended interplay between the predicates is given in figure 9.1.

Empty
 !Put
 !Get

!Empty
 Put
 !Get

!Empty
 !Put
 Get

Figure 9.1: Finite state machine relating the predicates with the sending
history. The exclamation mark means negation. The class is in the left
state after executing init. The middle state holds after finishing the put
method. We note that there are two transitions yielding the middle state
which results in the part of the class invariant where cell is not null. The
history ends in the right state after completing get.

If the cell equals null it is a bit more complicated: Either a get completion
message completes the sending history or it is the empty history.

(cell
.
= null) ↔ (¬sPut(HS) ∧ (sGet(HS) 6↔ sEmpty(HS)))

Let us compose the class invariant as:

InvC,S :=
((¬cell

.
= null) ↔ (sPut(HS) ∧ ¬sGet(HS) ∧ ¬sEmpty(HS)))

∧((cell
.
= null) ↔ (¬sPut(HS) ∧ (sGet(HS) 6↔ sEmpty(HS))))

∧sPrefix(HS)

For technical reasons the class invariant InvC,S can only be applied if we
have to establish the class invariant. For assuming the class invariant we
need InvC,O which contains exactly the same predicates which talk about
the object history, though.

The verification of the Buffer class is essentially a mathematical induc-
tion, where the begin is the proof of the init method and the steps are the
proofs of put and get.

We are yet missing the rules involving the predicates we introduced in
this section. For the following paragraph we use the notations I ∈ TermInt,
HS ∈ TermSendingHistory, O, D ∈ TermAny and HO ∈ TermObjectHistory.
The sPut predicate is true if the sending history ends with a put completion
message:

true

sPut(hist(HS , msgComp(O, this, put, I), D̄))

98 CHAPTER 9. CASE STUDIES

and false if a get completion message concludes the sending history:

false

sPut(hist(HS , msgComp(O, this, get, I), D̄))

If the sending history just relates to the object history we check the object
history:

oPut(HO)

sPut(startsAt(HO))

The rules for sGet are inverted. The last message being a put completion
message cause it to be false:

false

sGet(hist(HS , msgComp(O, this, put, I), D̄))

The get completion message evaluates it to true:

true

sPut(hist(HS , msgComp(O, this, get, I), D̄))

Again, if the sending history is relating to an object history we replace the
predicates:

oGet(HO)

sGet(startsAt(HO))

Handling the sEmpty predicate is false for non-empty histories:

false

sEmpty(hist(HS , Msg))

oEmpty(HO)

sEmpty(startsAt(HO))

The sPrefix predicate has to check the alternating sequence of completion
messages. To accomplish this we need two additional predicates sPrefixPut,
sPrefixGet which are prefixes expecting the corresponding completion mes-
sage:

• sPrefixGet : SendingHistory ∈ PSym with I0(sPrefixGet) =






h ∈ sendHistDom

∣
∣
∣
∣
∣
∣
∣
∣

h ∈

(
〈comp, 〈o, I0(this), put, i〉, 〉a

〈comp, 〈o, I0(this), get, i〉, d〉

)∗

and ∃h1 ∈ sendHistDom :

h = ha

1 〈comp, 〈o, I0(this), get, i〉, 〉







• sPrefixPut : SendingHistory ∈ PSym with I0(sPrefixPut) =






h ∈ sendHistDom

∣
∣
∣
∣
∣
∣
∣
∣

h ∈

(
〈comp, 〈o, I0(this), put, i〉, 〉a

〈comp, 〈o, I0(this), get, i〉, d〉

)∗

and ∃h1 ∈ sendHistDom :

h = ha

1 〈comp, 〈o, I0(this), put, i〉, 〉







9.2. BUFFER 99

The sPrefix predicate is exchanged for the associated predicate. If the
history ends with a completion message of put it is sPrefixGet :

sPrefixGet(HS)

sPrefix(hist(HS , msgComp(com(O, this, put, I), D̄)))

And the other way round:

sPrefixPut(HS)

sPrefix(hist(HS , msgComp(com(O, this, get, I), D̄)))

The relation of two histories translates the predicate accordingly:

oPrefix(HO)

sPrefix(startsAt(HO))

sPrefixPut and sPrefixGet alternate the sending history:

sPrefixGet(HS)

sPrefixPut(hist(HS , msgComp(com(O, this, put, I), D̄)))

sPrefixPut(HS)

sPrefixGet(hist(HS , msgComp(com(O, this, get, I), D̄)))

and finish with supplying the correct state:

oPrefix(HO) ∧ (¬oPut(HO) ∧ (oGet(HO) 6↔ oEmpty(HO)))

sPrefixGet(startsAt(HO))

oPrefix(HO) ∧ (oPut(HO) ∧ ¬oGet(HO) ∧ ¬oEmpty(HO))

sPrefixPut(startsAt(HO))

The three methods of Buffer are provable interactively by KeYCreol and
reside in the repository with its saved proofs.

100 CHAPTER 9. CASE STUDIES

Chapter 10

Conclusions

This thesis presented the theory and a prototypic implementation of a veri-
fication system for Creol rooted in a theoretically well-founded environment
based on the KeY software and its dynamic logic. Its functionality was
successfully shown in two Creol-specific examples where statements about
the interaction of different threads inside an object could be proved close to
automatically. It shows that all the objectives of section 1.1 have been met
and this work represents to my best knowledge the first time such proofs
were achieved by a verification tool for Creol.

The axiomatization of the communication history proved itself to be
a challenging but feasible task. In this work, a hybrid approach between
explicit and implicit representations of the history capturing all communi-
cation knowledge from the perspective of a single object was instantiated.
The drawback of frequent consistency checks between both representations
can only be bypassed by restricting the calculus to one representation with
its associated incompleteness in terms of (un)certainty in the history. As
such a decision is still desirable, the next step must be a rigorous formaliza-
tion of the composition of communication histories where a trade between
treatment of the ambiguity in the representation and dealing with it in the
composition can simplify matters.

While working on the case-studies the know fact was reinforced that au-
tomated program verification is more reliable than proofs of correctness by
hand. Humans tend to overlook certain details of the problem. On the con-
trary, a computer strictly explores all possibilities defined by the underlying
calculus. Collaterally, mechanic proofing of apparently small problems turns
out to be a cumbersome task. Using an automated prover, one ends up in
an development cycle for the verification conditions which starts with the
refinement of previous thoughts and ends with a proof attempt. It is thus
highly beneficial to know the underlying proof system as it helps to find the
flaw in a failed proof attempt and therefore decreases the time used by a
development cycle.

101

102 CHAPTER 10. CONCLUSIONS

The main open issue to be investigated after this work is the composition
of communication histories. Without the composition, method contracts
cannot embody statements about histories which does not affect correctness
but completeness of the calculus. Such updated contracts would enable
reasoning about methods to be called only in particular contexts of the
communication history. Additionally, the correctness of the total system is
not guaranteed by the verification of the methods of all classes without a
proof of composability since intrinsic deadlocks or race conditions might still
remain.

There have been theoretical investigations in [JO02, JO04], but they
need to be extended to the framework presented within this thesis.

Further detail in regards to discussions on the inherent limitations of this
work and suggestions for advancing beyond it can be found in the sections
4.3, 7.4 and 8.3.

Appendix A

Creol Grammar

1 s t a r t −> de c l a r a t i on ∗
2
3 d e c l a r a t i on −> i n t e r f a c e d e c l | data type dec l
4 | f u n c t i o n d e c l | c l a s s d e c l
5
6 c l a s s d e c l −> CLASS CLASS IDENTIFIER
7 va r de c l no i n i t a r gument ? supe r dec l rw
8 pragma rw BEGIN c l a s s a t t r i b u t e s c la s s methods END
9

10 c l a s s a t t r i b u t e s −> (a t t r i b u t e SEMICOLON?)∗
11
12 pragma rw −> pragma∗
13
14 pragma −> PRAGMA CLASS IDENTIFIER pa r ame t e r l i s t ?
15 SEMICOLON?
16
17 supe r dec l rw −> s upe r d e c l ∗
18
19 supe r d e c l −> (CONTRACTS | IMPLEMENTS | INHERITS)
20 c l a s s l i s t
21
22 c l a s s l i s t −> (c l a s s e l emen t (KOMMA c l a s s e l emen t)∗)
23
24 c l a s s e l emen t −> CLASS IDENTIFIER pa r ame t e r l i s t ?
25
26 a t t r i bu t e −> VAR v a r d e c l l i s t
27
28 c la s s methods −> (anon with de f ? w i th de f ∗)
29
30 anon with de f −> method with body+ inva r i an t ∗

103

104 APPENDIX A. CREOL GRAMMAR

31
32 wi th de f −> WITHˆ type method with body+ inva r i an t ∗
33
34 va r de c l no i n i t a r gument −> LPAREN
35 v a r d e c l n o i n i t l i s t ? RPAREN
36
37 pa r ame t e r l i s t −> LPAREN e x p r l i s t ? RPAREN
38
39 i n t e r f a c e d e c l : INTERFACE CLASS IDENTIFIER
40 va r de c l no i n i t a r gument ? i n t e r f a c e s u p e r pragma rw
41 BEGIN inva r i an t ? in t e r f a c e methods END
42
43 in t e r f a c e methods −> wi th dec l ∗
44
45 i n t e r f a c e s u p e r −> i n t e r f a c e i n h e r i t s ∗
46
47 i n t e r f a c e i n h e r i t s −> INHERITS c l a s s l i s t ∗
48
49 data type dec l −> DATATYPE type from? pragma∗
50
51 from −> FROM t y p e l i s t ?
52
53 f un c t i o n d e c l −> FUNCTION
54 id o r op va r de c l no i n i t a r gument ? COLON type
55 pragma∗ funct ion body
56
57 funct ion body −> DOUBLE EQUAL (expr | extern)
58
59 i d o r op −> (IDENTIFIER | operator)
60
61 operator −> IN | NOT | EQUIVALENCE | IMPLICATION | XOR
62 | OR | AND | EQUALITY | INEQUALITY | comp op
63 | PROJECTION | CONCAT | PREPEND | APPEND | PLUS
64 | MINUS | MULT | DIV | MOD | POW | NUMBER SIGN
65
66 w i th dec l −> WITH type method decl+ inva r i an t ∗
67
68 method with body −> OPˆ IDENTIFIER method param?
69 r e qu i r e s ? ensure s ? pragma∗ method body
70
71 method body −> DOUBLE EQUAL (dec l s ta t ement | extern)
72
73 extern −> EXTERNAL STRING
74

105

75 method decl −> (OP IDENTIFIER method param? r e qu i r e s ?
76 ensure s ? pragma ∗)
77
78 r e qu i r e s −> REQUIRES expr
79
80 ensure s −> ENSURES expr
81
82 method param −> (LPAREN method param in ?
83 method param out ? RPAREN)
84
85 method param in −> (IN? v a r d e c l n o i n i t l i s t)
86
87 method param out −> (SEMICOLON? OUT
88 v a r d e c l n o i n i t l i s t)
89
90 v a r d e c l l i s t −> va r d e c l (KOMMA var de c l)∗
91
92 va r d e c l −> v a r d e c l n o i n i t (ASSIGN expr or new)?
93
94 v a r d e c l n o i n i t −> expr COLON type
95
96 v a r d e c l n o i n i t l i s t −> v a r d e c l n o i n i t
97 (KOMMA va r d e c l n o i n i t)∗
98
99 s t a r t s t a t ement −> (statement | a t t r i bu t e

100 (SEMICOLONˆ dec l s ta t ement)?)?
101
102 dec l s ta t ement −> statement | a t t r i bu t e SEMICOLON
103 dec l s ta t ement
104
105 statement −> cho i c e s tmt (INTERLEAVEˆ statement)?
106
107 cho i c e s tmt −> seq stmt (BOX cho i c e s tmt)?
108
109 seq stmt −> bas i c s tmt (SEMICOLON seq stmt)?
110
111 bas i c s tmt−> smal l s tmt | c on t r o l f l ow s tmt | expr stmt
112
113 expr stmt−> expr ((KOMMA expr)∗ ASSIGN exp r o r n ew l i s t
114 | (EXCLENATION MARK expr)) ?
115
116 expr or new−> expr | NEW (CLASS IDENTIFIER | SCHEMAVAR)
117 pa r ame t e r l i s t ?
118

106 APPENDIX A. CREOL GRAMMAR

119 e xp r o r n ew l i s t −> expr or new
120 (KOMMA exp r o r n ew l i s t)?
121
122 con t r o l f l ow s tmt −> whi l e s tmt | do whi l e s tmt
123
124 whi l e s tmt −> WHILE expr i nva r i an t ? measure ?
125 DO statement END
126
127 measure −> MEASURE expr BY id o r op
128
129 i nva r i an t −> INV expr
130
131 do whi l e s tmt −> DO statement i nva r i an t ? measure ?
132 WHILE expr
133
134 smal l s tmt −> SKIP | RELEASE | BLOCK | RETURN
135 | BEGIN statement END | (ASSERT | AWAIT |
136 EXCLENATION MARK | POSIT | PROVE) expr
137
138 expr −> equ iva l enc e expr (IN equ iva l enc e expr)∗
139
140 equ iva l enc e expr −> impl expr (EQUIVALENCE impl expr)∗
141
142 impl expr −> xor expr (IMPLICATION xor expr)∗
143
144 xor expr −> or expr (XOR or expr)∗
145
146 or expr −> and expr (OR and expr)∗
147
148 and expr −> not expr (AND and expr)?
149
150 not expr −> (NOT not expr) | equa l s expr
151
152 equa l s expr −> comp expr ((EQUALITY | INEQUALITY)
153 comp expr)?
154
155 comp expr −> p r o j e c t i o n exp r (comp op p r o j e c t i o n exp r)?
156
157 comp op −> LESS THAN | GREATER THAN | LESS OR EQUAL
158 | GREATER OR EQUAL
159
160 p ro j e c t i on exp r−> concat expr (PROJECTION concat expr)∗
161
162 concat expr −> prepend expr (CONCAT prepend expr)∗

107

163
164 prepend expr −> append expr (PREPEND prepend expr)?
165
166 append expr −> add expr (APPEND add expr)∗
167
168 add expr −> mult expr ((PLUS |MINUS) mult expr)∗
169
170 mult expr −> power ((MULT | DIV | MOD) power)∗
171
172 power −> f a c t o r (POW fa c t o r)∗
173
174 f a c t o r −> MINUS f a c t o r | NUMBER SIGN f a c t o r
175 | a t om w i th t r a i l e r
176
177 a t om w i th t r a i l e r : atom (
178 ((AT type) | DOT method ca l l (a s type)? | bounds
179 | a r g l i s t (a s type)?
180 | (QUESTION MARK l h s l i s t p a r e n ?) | AS type
181) t r a i l e r r e s t ?)?
182
183 t r a i l e r r e s t −> (DOT (IDENTIFIER | SCHEMAVAR) a r g l i s t
184 (as type) ?) | bounds
185
186 method ca l l −> IDENTIFIER a r g l i s t | SCHEMAVAR a r g l i s t
187
188 atom −> TRUE | FALSE | INTEGER | FLOAT | STRING
189 | IDENTIFIER | THIS | CALLER | NULL | NIL | NOW
190 | HISTORY | LBRACK e x p r l i s t ? RBRACK
191 | LBRACES exp r i n b r a c e s RBRACES
192 | LPAREN expr in par en ? RPAREN
193 | IF expr THEN statement (ELSE statement)? END
194 | SCHEMAVAR
195
196 a r g l i s t −> (LPAREN (e x p r l i s t)? (SEMICOLON l h s l i s t ?)?
197 RPAREN)
198
199 bounds −> BOUND L CLASS IDENTIFIER
200 (BOUND R CLASS IDENTIFIER)? a r g l i s t (a s type)?
201 | BOUND R CLASS IDENTIFIER
202 (BOUND L CLASS IDENTIFIER)? a r g l i s t (a s type)?
203
204 l h s l i s t p a r e n −> LPAREN l h s l i s t ? RPAREN
205
206 l h s l i s t −> l h s (KOMMA lh s)∗

108 APPENDIX A. CREOL GRAMMAR

207
208 l h s −> IDENTIFIER (AT type)? | UNDERSCORE as type
209 | SCHEMAVAR
210
211 as type −> AS type
212
213 expr in par en −> e x p r l i s t | (FORALL|EXISTS |SOME)
214 v a r d e c l n o i n i t COLON expr
215
216 e x p r l i s t −> (expr (KOMMA expr)∗)
217
218 exp r i n b r a c e s −> (setmaker | VERTICAL b i n d i n g l i s t
219 VERTICAL)?
220
221 setmaker −> expr (
222 ((KOMMA expr)∗) | (COLON expr VERTICAL expr))
223
224 b i n d i n g l i s t −> binding (KOMMA binding)∗
225
226 binding −> expr MAPSTO expr
227
228 type −> CLASS IDENTIFIER t y p e l i s t b r a c k e t s ?
229 | type bracke t | APOSTROPHE IDENTIFIER
230
231 type bracke t −> LBRACK t y p e l i s t RBRACK
232
233 t y p e l i s t b r a c k e t s −> LBRACK t y p e l i s t ? RBRACK
234
235 t y p e l i s t −> (type (KOMMA type)∗)

Listing A.1: Creol Grammar

Appendix B

Glossary of symbols

B.1 Sets

Notation Meaning

∈ is a member of
/∈ is not a member of
∅ empty set with no members
{a} set with one member a
{a, b, c} set with members a, b and c
{x | F (x)} set of all x such that F (x) holds
A ⊆ B A subset of B
A ∪ B union of A and B
A ∩ B intersection of A and B
A\B all members of A which are not in B
|A| number of members in A
A × B {(a, b)|a ∈ A, b ∈ B}
ā tuple
A∗ all tuples with elements of A
Z integers
N {1, 2, 3, . . . }

B.2 Graphs

Term Meaning

graph set of nodes with connections between the nodes
directed graph graph where the connections are not symmetric
path a sequence of nodes following connections in a graph
acyclic no paths forming a circle exist
tree acyclic graph where each node is reachable by exactly one path
leaf node in tree with no leaving connections
spanning tree subgraph being a tree and containing all nodes

109

110 APPENDIX B. GLOSSARY OF SYMBOLS

B.3 Sorts

Notation Meaning

T all sorts
Td dynamic sorts for domain elements
Ts static sorts for terms
⊑ subsort relation between two sorts
⊑0 direct subsort
⊔ greatest lower bound of two sorts
⊓ least upper bound of two sorts

The sort hierarchy containing all sorts is pictured in the figures 6.1, 7.2 and
7.3.

B.4 Syntax

Notation Meaning

Σ signature containing symbols
V Sym set of variable symbols
FSym set of function symbols
FSymr set of rigid function symbols
FSymnr set of non-rigid function symbols
PSym Set of predicate symbols
α sort function of symbols
TermA set of terms of sort A
Formulae set of logical formulae
φ, ψ formulae
{a := 1} functional update
|| parallel update
Updates set of updates
p, q programs
Π set of normalized Creol programs
〈p〉 diamond modality
[p] box modality
¬φ φ is not true
φ ∧ ψ both φ and ψ are true
φ ∨ ψ both φ or ψ or both are true
φ → ψ φ or ψ or both are true
φ ↔ ψ (φ → ψ) ∧ (ψ → φ), both true or both false
φ 6↔ ψ (¬φ ↔ ψ), exactly one true and one false
if φ then ψ1 else ψ2 (φ → ψ1) ∧ (¬φ → ψ2)
∃x.φ there exists x such that φ
∀x.φ for all x such that φ
fv free variable function

B.5. SEMANTICS 111

B.5 Semantics

Notation Meaning

D domain
DA domain of sort A
δ sort function of domain elements
D function fixing parameters of partial interpretation
I interpretation of terms and predicates
K Kripke structure
M partial model
S set of states or models
S state S ∈ S
ρ state transition relation
β variable assignment
βd

x variable assignment, update value of x by d
valS,β valuation function
S, β |= φ φ is valid under β and S

B.6 Sequent calculus

Notation Meaning

φ1, . . . , φn =⇒ ψ1, . . . , ψm (φ1 ∧ · · · ∧ φn) → (ψ1 ∨ · · · ∨ ψm)
∆ φ1, . . . , φn

Γ ψ1, . . . , ψm

U updates
; ω possibly empty sequence of statements

Sequent rule

premises
︷ ︸︸ ︷

Γ1 =⇒ ∆1 ... Γn =⇒ ∆n

Γ =⇒ ∆
︸ ︷︷ ︸

conclusion

112 APPENDIX B. GLOSSARY OF SYMBOLS

B.7 Reasoning about Creol

Notation Meaning

exp matches expressions with top level operator
texp matches literals and variables
L sequence number
a concatenation of messages
ǫ empty history
h ↾ o history projected to communication of o
h ↾ o→ history projected to messages sent by o
HS sending history
HO object history

W class attributes
Av̄ anonymizing update for variables v̄
FHO

(φ) object history anonymizing formula
FL(φ) sequence number anonymizing formula
InvC class invariant
Pre pre-condition
Post post-condition

B.8. DOMAINS 113

B.8 Domains

Name Set

Null {null}

boolDom {tt, ff}

intDom Z

objDom
⋃∞

i=0 objDomi

where
objDom0 := {0},
objDomi := {p(o, i)|i ∈ N0, o ∈ objDomi−1}

methDom { , a, b, . . . , z} × { ,′ , a, b, . . . , z, A, B, . . . , Z, 0, 1, . . . , 9}∗

methLabelDom {〈o1, o2, m, i〉 |o1, o2 ∈ objDom, m ∈ methDom, i ∈ intDom}

newLabelDom {〈p(o, i), i〉|o ∈ objDom, i ∈ intDom}

msgDom {〈t, l, d̄〉|t ∈ {invoc, comp}, l ∈ methLabelDom, d̄ ∈ domData∗}
∪{〈new, l, d̄〉|l ∈ newLabelDom, d̄ ∈ domData∗}
where domData :=

⋃

dom∈Td,dom⊑Data dom

histDom
⋃∞

i=0 histDomi

where
histDom0 := {ǫ},
histDomi := {ham|h ∈ histDomi−1, m ∈ msgDom}

sendHistDom {h ↾ I0(this)→|h ∈ histDom}

objHistDom {h ↾ I0(this)|h ∈ histDom}

114 APPENDIX B. GLOSSARY OF SYMBOLS

B.9 Rigid functions

Syntax

function symbol sorts

+ Int, Int → Int

− Int, Int → Int

∗ Int, Int → Int

/ Int, Int → Int

− Int → Int

. . . ,−1, 0, 1, 2, . . . → Int

FALSE → Bool

TRUE → Bool

null → Null

(A) Top → A

parent Any × Int → Any

com Any, Any, Method, Int → Label

toCaller Label → Any

toCallee Label → Any

toMethod Label → Method

toId Label → Int

new Any, Int → NewLabel

toNew NewLabel → Any

toIdNew NewLabel → Int

msgInvoc Label, Data∗ → Message

msgComp Label, Data∗ → Message

msgNew NewLabel, Data∗ → Message

hist SendingHistory, Message → SendingHistory

startsAt ObjectHistory → SendingHistory

B.9. RIGID FUNCTIONS 115

semantics

semantics

I0(+)(x, y) = x + y

I0(−)(x, y) = x − y

I0(∗)(x, y) = x ∗ y

I0(/)(x, y) =







z such that if y 6= 0
0 ≤ x − y ∗ z < |y|
some arbitrary but otherwise
fixed d ∈ DInt

I0(−)(x) = −x

I0(i) = i for i ∈ Z

I0(FALSE) = ff

I0(TRUE) = tt

I0(null) = null

I0((A))(x) =







x if δ0(x) ⊑ A
some arbitrary but otherwise
fixed d ∈ DA

I0(parent)(o, i) = p(o, i)

I0(com)(o1, o2, m, i) = 〈o1, o2, m, i〉

I0(toCaller)(〈o1, o2, m, i〉) = o1

I0(toCallee)(〈o1, o2, m, i〉) = o2

I0(toMethod)(〈o1, o2, m, i〉) = m

I0(toId)(〈o1, o2, m, i〉) = i

I0(new)(o, i) = 〈o, i〉

I0(toNew)(〈o, i〉) = o

I0(toIdNew)(〈o, i〉) = i

I0(msgInvoc)(〈o1, o2, m, i〉, d) = 〈invoc, 〈o1, o2, m, i〉, d〉

I0(msgComp)(〈o1, o2, m, i〉, d) = 〈comp, 〈o1, o2, m, i〉, d〉

I0(msgNew)(〈o, i〉, d) = 〈new, 〈o, i〉, d〉

I0(hist)(h, msg) = hamsg

I0(startsAt)(h) = h ↾ I0(this)→

116 APPENDIX B. GLOSSARY OF SYMBOLS

B.10 Predicates

Syntax

predicate symbol sort

< Int, Int

≤ Int, Int

> Int, Int

≥ Int, Int
.
= Top, Top

quanUpdateLeq Top, Top

⊏−A Top

Invoc ObjectHistory, Label

Comp ObjectHistory, Label

New ObjectHistory, Any

Prefix ObjectHistory, ObjectHistory

Wf ObjectHistory, Int

Cons SendingHistory, ObjectHistory, Int

B.10. PREDICATES 117

Semantics

semantics

I0(<) = {(x, y) ∈ Z × Z|x < y}

I0(≤) = {(x, y) ∈ Z × Z|x ≤ y}

I0(>) = {(x, y) ∈ Z × Z|x > y}

I0(≥) = {(x, y) ∈ Z × Z|x ≥ y}

I0(
.
=) = {(x, y) ∈ Z × Z|x = y}

I0(quanUpdateLeq) = {(x, y) ∈ Top × Top|x ≺ y}

I0(⊏−A)(x) = DA

I0(Invoc)(h, l) =

{

(h, l) ∈
objHistDom×
methLabelDom

∣
∣
∣
∣
∃d̄ ∈ Data∗ : 〈invoc, l, d̄〉 ∈ h

}

I0(Comp)(h, l) =

{

(h, l) ∈
objHistDom×
methLabelDom

∣
∣
∣
∣
∃d̄ ∈ Data∗ : 〈comp, l, d̄〉 ∈ h

}

I0(New)(h, o) =

{

(h, o) ∈
objHistDom×
objDom

∣
∣
∣
∣

∃d̄ ∈ Data∗ ∃i ∈ intDom :
〈new, 〈o, i〉, d̄〉 ∈ h

}

I0(Prefix) =

{

(h1, h2) ∈
objHistDom×
objHistDom

∣
∣
∣
∣

∃h3 ∈ objHistDom :

ha

1 h3 = h2

}

I0(Wf) = {(h, o, i) ∈ objHistDom × intDom|wf(h, i) = 1}
where wf : objHistDom × intDom → {0, 1}:

wf(ha〈invoc, 〈o1, o2, m, i〉, d̄〉, j) =







wf(h, i) if I0(this) = o1 and i < j
wf(h, j) if I0(this) = o2

0 otherwise

wf(ha〈comp, 〈o1, o2, m, i〉
︸ ︷︷ ︸

l

, d̄〉, j) =







wf(h, i) if I0(this) = o2 and
∃d̄′ ∃〈invoc, l, d̄′〉 ∈ h

wf(h, j) if I0(this) = o1 and i < j
and ∃d̄′ ∃〈invoc, l, d̄′〉 ∈ h

0 otherwise

wf(ha〈new, 〈o, i〉, d̄〉, j) =







1 if I0(this) = o and h = ǫ
wf(h, i) if p(I0(this), i) = o and i < j
0 otherwise

I0(Cons) =






(hs, ho, i) ∈

sendHistDom×
objHistDom×
intDom

∣
∣
∣
∣
∣
∣

∃h1 ∈ sendHistDom

ha

1 hs = ho ↾ this→
and wf(ho, i)







118 APPENDIX B. GLOSSARY OF SYMBOLS

Bibliography

[ABB+05] Wolfgang Ahrendt, Thomas Baar, Bernhard Beckert, Richard
Bubel, Martin Giese, Reiner Hähnle, Wolfram Menzel, Woj-
ciech Mostowski, Andreas Roth, Steffen Schlager, and Peter H.
Schmitt. The KeY tool. Software and System Modeling, 4:32–
54, 2005.

[ÁdBdRS03] Erika Ábrahám, Frank S. de Boer, Willem-Paul de Roever,
and Martin Steffen. A tool-supported assertional proof system
for multithreaded Java. In Susan Eisenbach, Gary T. Leavens,
Peter Müller, Arnd Poetzsch-Heffter, and Erik Poll, editors,
Proc. of the Workshop on Formal Techniques for Java-like
Programs - FTfJP’2003, 2003.

[AO97] Krzysztof R. Apt and Ernst-Rüdiger Olderog. Verification of
sequential and concurrent programs (2nd ed.). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1997.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
principles, techniques, and tools. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986.

[Bal04] Heide Balzert. Lehrbuch der Objektmodellierung: Analyse und
Entwurf mit der UML 2. Spektrum Akademischer Verlag, 2.
edition, 2004.

[Bau06] Markus Baum. Proof Visualization. Studienarbeit, Depart-
ment of Computer Science, University of Karlsruhe, 2006.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David Cok, Michael Ernst, Joe
Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll.
An overview of JML tools and applications. International
Journal on Software Tools for Technology Transfer, 7(3):212–
232, June 2005.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification
of Java Card programs. In I. Attali and T. Jensen, editors,

119

120 BIBLIOGRAPHY

Java on Smart Cards: Programming and Security. Revised
Papers, Java Card 2000, International Workshop, Cannes,
France, volume 2041 of LNCS, pages 6–24. Springer, 2001.

[BHS07] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, edi-
tors. Verification of Object-Oriented Software: The KeY Ap-
proach. LNCS 4334. Springer-Verlag, 2007.

[BK07] Bernhard Beckert and Vladimir Klebanov. A dynamic logic
for deductive verification of concurrent programs. In Mike
Hinchey and Tiziana Margaria, editors, Proceedings, 5th IEEE
International Conference on Software Engineering and Formal
Methods (SEFM), London, UK. IEEE Press, 2007.

[Bla07] Jasmin Christian Blanchette. Overview over
the Creol language. available online at
http://heim.ifi.uio.no/creol/blanchette07essay.pdf,
May 2007. accessed 13-May-2009.

[Bla08] Jasmin Christian Blanchette. Verification of assertions in
Creol programs. Master’s thesis, University of Oslo, Oslo,
Norway, May 2008.

[BP06] Bernhard Beckert and André Platzer. Dynamic logic with non-
rigid functions: A basis for object-oriented program verifica-
tion. In U. Furbach and N. Shankar, editors, Proceedings, In-
ternational Joint Conference on Automated Reasoning, Seat-
tle, USA, volume 4130 of LNCS, pages 266–280. Springer,
2006.

[Bur74] Rod M. Burstall. Program proving as hand simulation with a
little induction. In Information Processing ’74, pages 308–312.
Elsevier/North-Holland, 1974.

[ByECD+06] Mike Barnett, Bor yuh Evan Chang, Robert Deline, Bart Ja-
cobs, and K. Rustanm. Leino. Boogie: A modular reusable
verifier for object-oriented programs. In Formal Methods
for Components and Objects: 4th International Symposium,
FMCO 2005, volume 4111 of Lecture Notes in Computer Sci-
ence, pages 364–387. Springer, 2006.

[CDE+08] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lin-
coln, Narcisco Mart́ı-Oliet, José Meseguer, and Carolyn
Talcott. Maude manual (version 2.4). available online
at http://maude.cs.uiuc.edu/maude2-manual/, October
2008. accessed 24-May-2009.

http://heim.ifi.uio.no/creol/blanchette07essay.pdf
http://maude.cs.uiuc.edu/maude2-manual/

BIBLIOGRAPHY 121

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms. The MIT
Press, Cambridge, MA, USA, 2001.

[Coo78] Stephen A. Cook. Soundness and completeness of an axiom
system for program verification. SIAM Journal of Computing,
7(1):70–90, 1978.

[COR+95] Judy Crow, Sam Owre, John Rushby, Natarajan Shankar, ,
and Mandayam Srivas. A tutorial introduction to PVS. April
1995.

[Dah77] O.-J. Dahl. Can program proving be made practical? Les
Fondements de la Programmaion, pages 57–114, December
1977.

[DdM06] B. Dutertre and L. de Moura. The yices smt solver. Tool paper
at http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and
formal derivation of programs. Commun. ACM, 18(8):453–
457, 1975.

[DJO04] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. Rea-
soning about asynchronous method calls and inheritance. In
Chunming Rong, editor, Proc. of the Norwegian Informatics
Conference (NIK’04), pages 213–224. Tapir Academic Pub-
lisher, November 2004.

[DJO05] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. Verifi-
cation of concurrent objects with asynchronous method calls.
In Proceedings of the IEEE International Conference on Soft-
ware Science, Technology & Engineering(SwSTE’05), pages
141–150. IEEE Computer Society Press, February 2005.

[DJO06] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. A hoare
logic for concurrent objects with asynchronous method calls.
Technical Report 315, Department of Informatics, University
of Oslo, 2006.

[DJO08a] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. A com-
positional proof system for dynamic object systems. Technical
Report 351, Department of Informatics, University of Oslo,
2008.

[DJO08b] Johan Dovland, Einar Broch Johnsen, and Olaf Owe. Observ-
able behavior of dynamic systems: Component reasoning for

122 BIBLIOGRAPHY

concurrent objects. In Dina Goldin and Farhad Arbab, editors,
Proc. Workshop on the Foundations of Interactive Computa-
tion (FInCo’07), volume 203 of Electronic Notes in Theoreti-
cal Computer Science, pages 19–34. Elsevier, May 2008.

[DJOS08] Johan Dovland, Einar Broch Johnsen, Olaf Owe, and Martin
Steffen. Incremental reasoning for multiple inheritance. Tech-
nical Report 373, Department of Informatics, University of
Oslo, 2008.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An Efficient
SMT Solver, volume 4963/2008 of Lecture Notes in Computer
Science, pages 337–340. Springer Berlin, April 2008.

[DNS05] David Detlefs, Greg Nelson, and James B. Saxe. Simplify: a
theorem prover for program checking. J. ACM, 52(3):365–473,
2005.

[dRdBH+01] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann,
Jozef Hooman, Yassine Lakhnech, Mannes Poel, and Job
Zwiers. Concurrency verification: introduction to composi-
tional and noncompositional methods. Cambridge University
Press, New York, NY, USA, 2001.

[EH07] Christian Engel and Reiner Hähnle. Generating unit tests
from formal proofs. In Yuri Gurevich and Bertrand Meyer, ed-
itors, Proceedings, 1st International Conference on Tests And
Proofs (TAP), Zurich, Switzerland, volume 4454 of LNCS.
Springer, 2007.

[Fit90] Melvin Fitting. First-order logic and automated theorem prov-
ing. Springer-Verlag New York, Inc., New York, NY, USA,
1990.

[Flo67] Robert W. Floyd. Assigning meanings to programs. In
Proceedings Symposium for Applied Mathematics, Vol. XIX,
pages 19–32. American Mathematical Society, Providence,
R.I., 1967.

[FM07] Jean-Christophe Filliâtre and Claude Marché. The
why/krakatoa/caduceus platform for deductive program veri-
fication. pages 173–177. 2007.

[Gen35] Gerhard Gentzen. Untersuchungen über das logische
schließen. Mathematische Zeitschrift, 39:176–210 and 405–
431, 1935.

BIBLIOGRAPHY 123

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented
software. Addison-Wesley Professional, 1995.

[Gie05] Martin Giese. A Calculus for Type Predicates and Type Coer-
cion. In B. Beckert, editor, A Calculus for Type Predicates and
Type Coercion, volume 3702 of LNAI, pages 123–137, Koblenz,
Germany, September 2005. Springer.

[Göd31] Kurt Gödel. Über formal unentscheidbare Sätze der Prin-
cipia Mathematica und verwandter Systeme I. Monatshefte
für Mathematik und Physik, 38:173–198, 1931.

[GvN47] Herman H. Goldstine and John von Neumann. Planning and
coding of problems for an electronic computing instrument.
Part II, vol. I. Technical report 1, Institute for Advanced
Study, April 1947.

[Hab00a] Elmar Habermalz. Ein dynamisches automatisierbares inter-
aktives Kalkül für schematische theoriespezifische Regeln. PhD
thesis, Universität Karlsruhe, 2000.

[Hab00b] Elmar Habermalz. Interactive theorem proving with schematic
theory specific rules. Technical Report 19/00, Fakultät für
Informatik, Universität Karlsruhe, 2000.

[Häh05] Reiner Hähnle. Many-valued logic, partiality, and abstraction
in formal specification languages. Logic Journal of the IPGL,
13(4):415–433, July 2005.

[Har79] David Harel. First-Order Dynamic Logic. Springer, 1979.

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic
Logic. MIT Press, 2000.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Commun. ACM, 12(10):576–580, 1969.

[Hoa83] C. A. R. Hoare. Communicating sequential processes. Com-
mun. ACM, 26(1):100–106, 1983.

[Hoa03] C. A. R. Hoare. The verifying compiler: A grand challenge
for computing research. J. ACM, 50(1):63–69, 2003.

[JO02] Einar Broch Johnsen and Olaf Owe. A compositional formal-
ism for object viewpoints. In Bart Jacobs and Arend Rensink,
editors, Proceedings of the 5th International Conference on
Formal Methods for Open Object-Based Distributed Systems

124 BIBLIOGRAPHY

(FMOODS 2002), pages 45–60. Kluwer Academic Publishers,
March 2002.

[JO04] Einar Broch Johnsen and Olaf Owe. Object-oriented spec-
ification and open distributed systems. In Olaf Owe, Stein
Krogdahl, and Tom Lyche, editors, From Object-Orientation
to Formal Methods: Essays in Memory of Ole-Johan Dahl,
volume 2635 of Lecture Notes in Computer Science, pages 137–
164. Springer-Verlag, 2004.

[Jon81] C.B. Jones. Development Methods for Computer Programs in-
cluding a Notion of Interfence. PhD thesis, Oxford University,
1981.

[Kya08] Marcel Kyas. Creol tools user guide for version 0.0m. available
online at http://heim.ifi.uio.no/~kyas/creoltools/,
November 2008. accessed 13-May-2009.

[Mea55] George H. Mealy. A method for synthesizing sequential cir-
cuits. Bell System Technical Journal, 34(5):1045–1079, 1955.

[Mür08] Oleg Mürk. Deductive verification of c programs in key. Mas-
ter’s thesis, Chalmers University of Technology, Gothenburg,
Sweden, January 2008.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel.
Isabelle/HOL — A Proof Assistant for Higher-Order Logic,
volume 2283 of LNCS. Springer, 2002.

[Par07] Terence Parr. The Definitive ANTLR Reference: Build-
ing Domain-Specific Languages. The Pragmatic Bookshelf,
Raleigh, 2007.

[Pla04] André Platzer. An object-oriented dynamic logic with up-
dates. Master’s thesis, Universität Karlsruhe, Fakultät für
Informatik, September 2004.

[PQ08] André Platzer and Jan-David Quesel. KeYmaera: A hy-
brid theorem prover for hybrid systems. In Alessandro Ar-
mando, Peter Baumgartner, and Gilles Dowek, editors, Auto-
mated Reasoning, Third International Joint Conference, IJ-
CAR 2008, Sydney, Australia, Proceedings, volume 5195 of
LNCS, pages 171–178. Springer, 2008.

[Pra77] Vaughan R. Pratt. Semantical considerations on Floyd-Hoare
logic. In Proc. 17th Annual IEEE Symposium on Founda-
tion of Computer Science, Houston, TX, USA, pages 109–121.
IEEE Computer Society, 1977.

http://heim.ifi.uio.no/~kyas/creoltools/

BIBLIOGRAPHY 125

[Rüm05] Philipp Rümmer. Generating counterexamples for Java Dy-
namic logic. In Wolfgang Ahrendt, Peter Baumgartner, and
Hans de Nivelle, editors, Preliminary Proceedings of Workshop
on Disproving at CADE 20, pages 32–44, July 2005.

[SBD02] Aaron Stump, Clark W. Barrett, and David L. Dill. Cvc:
a cooperating validity checker. In In 14th International
Conference on Computer-Aided Verification, pages 500–504.
Springer, 2002.

[Sch00] Uwe Schöning. Logik für Informatiker. Spektrum Akademis-
cher Verlag, 5. edition, 2000.

[Tur49] Alan M. Turing. Checking a large routine. In Report of a
Conference on High Speed Automatic Calculating Machines,
pages 67–69, Cambridge, 1949.

[WK99] Jos Warmer and Anneke Kleppe. The Object Constraint Lan-
guage: Precise Modelling with UML. Object Technology Se-
ries. Addison-Wesley, Reading/MA, 1999.

[YJO06] Ingrid Chieh Yu, Einar Broch Johnsen, and Olaf Owe. Type-
safe runtime class upgrades in Creol. In Roberto Gorrieri and
Heike Wehrheim, editors, Proc. 8th International Conference
on Formal Methods for Open Object-Based Distributed Sys-
tems (FMOODS’06), volume 4037 of Lecture Notes in Com-
puter Science, pages 202–217. Springer-Verlag, June 2006.

