
RETRACTED
The Use of Fault-tolerant Clock Synchronization

Algorithms for Time Scales
Attila Kinali,∗

∗Max Planck Institute for Informatics, Saarland Informatics Campus, Germany

Abstract—Clock ensembles are at the core of many applications
in which precise time or frequency is required. The widely
used time scale algorithms need cumbersome modifications when
clocks can be potentially faulty. Fault-tolerant clock synchro-
nization algorithms from distributed systems allow to build time
scales without the need of special detection systems for anomalous
behavior of the clocks. We present a short overview of the general
principles underlying these algorithms and their advantages and
disadvantages when being used for time scales.

I. INTRODUCTION

A. Background

Conventional time scale algorithms compute a weighted
average of the contributing clocks (see e.g. [1]). This averaging
causes problems with continuity of the time scale when a clock
is inserted or removed from the ensemble.

Detection of anomalous behavior is not supported by most
time scale algorithms and has to be handled by an external
wrapper, often requiring additional information on the internal
state of the contributing clocks to be reliable. This not only
makes the system quite complex, but also incurs a trade-
off: false positives of the fault detection mechanism result in
healthy clocks being excluded, while false negatives result in
including faulty clocks. This becomes a problem especially if
clocks show a lot of intermittent faults, which is typical for
harsh environments like in space applications.

The distributed systems community has been employing
clock synchronization algorithms which are fault-tolerant for
some time. These algorithms do not try to detect erroneous
behavior, but instead mask it, which allows having a single
algorithm handling the ensemble without the need of any
out-of-band information. In addition, this buys time for error
detection and handling; it suffices to guarantee that, at no point
in time, the number of faulty clocks exceeds the limit that can
be sustained. The range of faults that the system can encounter
is also defined much more broadly than is usually the case
with time scale algorithms. Usually, very few assumptions
are made about possible faults, allowing arbitrary faults (so-
called Byzantine faults). One example of these algorithms is
the Welch-Lynch algorithm [2]. This simple algorithm can
handle any number of faults that is smaller than one third
of the contributing clocks. Here, a fault can be any anomalous
behavior of a clock, its associated computational logic, the
communication links for incoming or outgoing signals, or
any combination thereof. As long as the fault threshold is
not reached, the output quality degrades only slightly. With

accurate clocks, the dominant source of error is the uncertainty
in the measurements of the relative phases between the clocks.

B. Our Contribution

We present an overview of how to implement a fault-tolerant
distributed clock synchronization algorithm. We show how the
fault-masking behavior can be used to build ensembles that
are immune to phase and frequency jumps of any (sufficiently
small) subset of the clocks, without the need for an explicit
detection circuit.

We also give an overview of the problems arising from
using these algorithms in the context of time scales, namely
the deterioration of the absolute noise performance compared
to traditional algorithms, and discuss possible solutions.

II. FAULT MODEL

A. Classical Fault Models

Most electronics are designed with simple fault models that
restrict the behavior of the faulty nodes. Quite a few of those
can be summarized in the fail-stop model, i.e. the device either
works correctly and it’s output is valid or the device is faulty
and its output invalid. In this model it is easy to detect faults
and thus also easy to deal with them in globally consistent
way.

The more interesting case is deterioration of the output,
like phase or frequency jumps. If these jumps are small, then
detecting them becomes hard. One big disadvantage of this
model is, that it only models one specific type of event (jump
in phase or frequency) for only one specific type of devices
(clocks). It is not possible to use results derived from these
models in a broader context.

B. Byzantine Fault Model

The fault model we use here, is a very broad and strong
one: In a network of n nodes, at most f faulty nodes are
allowed. Unlike in most electrical and electronic fault models,
these faulty nodes are allowed to show inconsistent behavior
to different non-faulty nodes. Additionally, the faulty nodes
are granted the power to know the states of all nodes and may
communicate with all other faulty nodes using a side channel
with infinite capacity. Informally speaking, faulty nodes are
omniscient beings that are allowed allowed to lie.

This fault model allows to capture a wide variety of faults,
even those induced by outside disturbance. Unlike in the fail-
stop model, it is not possible to reliably detect which nodes are
faulty in the Byzantine fault model, without incurring a huge



RETRACTED
cost in either communication or convergence time. I.e. they
can mimic a correctly working node to each non-faulty node
and the only way to detect them is to communicate between all
nodes and identify all faulty nodes at the same time. Mickens
gives in [3] an humorous view on the difficulty of dealing with
the Byzantine fault model.

Even though the fault model is very strong, it offers the
possibility to capture faults that are otherwise hard to model.
Any system that can deal with Byzantine faults is likely to
be able to deal with any kind of fault that it encounters in
reality. But one must be careful about this strength as well:
Algorithms that work perfectly fine in reality might fail under
these model assumptions. Hence it is important to show that
useful result can still been achieved with such a strong model.

III. FAULT TOLERANT ALGORITHMS UNDER BYZANTINE
FAULTS

We will now look at how to deal with Byzantine faults. For
this we first need to define the inputs, outputs and the required
behavior of the system. As we are interested in synchronizing
clocks, we are letting each node sending a pulse in regular
intervals. Each node receives the pulses from all other nodes
and corrects its own pulse timing such, that eventually all
(correctly working) nodes agree on a common timing and
pulse synchronously.

A. General Way of Dealing with Byzantine Faults

As it is not reliably possible to detect a faulty node, another
approach must be chosen to work under such strict fault
models. The general approach is not to try to detect them,
but instead mask potentially faulty nodes in a way, that the
faulty nodes that are not masked do not cause any trouble.
After masking, the remaining nodes should be used in some
way that will make all correctly working nodes either agree
eventually or correct themselves in a way that converges to a
common value.

This shifts the problem to which nodes and how many
of them should be masked. A classic result from distributed
computing is, that for Byzantine agreement requires that no
more than one third of the nodes are faulty (i.e. 3f < n). In
this case, one can mask the the f nodes at the top and bottom
extremes and work with the n − 2f remaining nodes. The
intuition here is, if any faulty nodes are left within the n−2f
nodes, then there is at least one correctly working node with
a more extreme value, thus the faulty node left will not cause
a degradation. Because, in the Byzantine fault model, faulty
nodes are allowed to lie, correctly working nodes might have
a different view and thus select a different group of n − 2f
nodes. It needs to be shown separately that these different
views still allow a convergence of the algorithm.

The general implementation of a single node in a fault-
tolerant clock synchronization system is depicted in Figure 1.
Each node collects the output signals from all nodes, including
its own. The timing of the signals are measured using either a
TDC or a phase comparison system. The measured timing is

then fed to the algorithm, which then controls the underlying
clock and shifts its phase or frequency accordingly.

B. The Welch-Lynch Algorithm

Welch and Lynch described a simple, yet effective, Byzan-
tine fault-tolerant clock synchronization algorithm in [2]. In-
formally, each node sends a pulse at regular intervals to every
other node, including itself. The nodes receive the pulses, sort
them by arrival time and drop the f earliest and f latest pulse
arrival-times. The time span of the remaining n − 2f pulse
arrival-times is used to calculate where the nodes own pulse
”should have been.” The time difference between center of
the time-span (i.e. the mean of the minimum and maximum
of the time-span) the nodes own pulse arrival-time is used
as correction value for the next round (see Figure 2). This
algorithm, despite its simplicity, is Byzantine fault-tolerant.
Intuitively, no matter what the faulty nodes do, the calculated
center point calculated by each node, will be within the time
span of the n − 2f nodes. Thus, in the absence of noise,
because the each correctly working node moves into the center
of the span it sees, it will, in best case, halve the distance
to the other correctly working nodes. Hence the nodes will
converge and pulse together. A formal proof can be found in
[4]. In a real implementation, the achievable synchronization is
limited by uncertainty in the measurement of the arrival of the
pulses (wire delay uncertainty and noise in the measurement)
and difference in frequencies of the clock oscillators. The
remaining skew between clocks is bounded by

max ∆t = 2δ +
∆f

f
τ

, where δ is the uncertainty in the pulse arrival time and ∆f
is the maximum difference in frequency, which is normalized
over the nominal frequency f0 and multiplied by the round
length τ . If there are no faulty nodes, the skew reduces to [4]

max ∆tfaultfree = δ +
∆f

f
τ

.

IV. THE WELCH-LYNCH ALGORITHM APPLIED TO
ATOMIC CLOCKS

A. Stability vs Synchroninity

The Welch-Lynch algorithm achieves a high level of syn-
chronization, only limited by the precision of the relative
phase measurement. Given that it is possible to compare local
clocks with sub-picosecond precision, this should not pose a
limitation in practice. But the Welch-Lynch algorithm applies
a correction at each step. This correction is derived from noisy
input, i.e. it is a random variable. Thus the correction itself is
a random variable and hence the Welch-Lynch algorithm acts
like an integrator of a random variable. Obviously, this will
lead to degradation of the stability and a conversion from white
phase noise to white frequency noise. To analyze this, we have
simulated a 4 node/clock ensemble with no faulty nodes. In
order to make the behavior of the algorithm under different
noise process more clear, we performed different simulations



RETRACTED
TDC Algo.

Figure 1. Design of a single node implementing a fault-tolerant clock synchronization algorithm. A TDC measures the timing difference between the different
nodes. These values are fed to the algorithm which then controls underlying clock and shifts its phase or frequency. The output of the clock is distributed to
all nodes.

1/2 1/2

∆

Figure 2. The Welch-Lynch clocksync algorithm. First receive all clock pulses
from all nodes, including own pulse (long black arrow). Drop first f = dn/3e
and last f received pulses (masking step). From the remaining pulses, calculate
the center of the spanning time frame (long red arrow) which denotes where
the pulse ”should have been”. Lastly, calculate the correction to be applied
before the next round starts.

with only one single noise process. All 4 clocks have the same
noise spectrum, but are otherwise independent. The algorithms
period was chosen to be 1 s and phase corrections were applied
instantaneously, i.e. before the next round starts. Measurement
noise and uncertainty was set to zero, in order not to make
analysis more complicated.

As can be seen in the modified Allan deviation plot Fig-
ure 4(a), the integration of the clock input noise leads to a
noise process that is white frequency modulation, in the long
term. Short term, below a τ of 3 s, the noise follows that of
white phase modulation, though. A similar observation can
be made for flicker phase modulation (Figure 4(b)), but the
slope increase is smaller than for white phase modulation.
This can be easily explained by the Welch-Lynch algorithm
removing the outliers which get more pronounced as the low
frequency components of the noise gets stronger. From white
frequency modulation onwards (Figures 4(c), 4(d) and 4(e))
the slope does not degrade any further and there is only a
slight degradation in stability.

Looking at the plots, one can see that there is a slight
increase in slope between τ ’s between 1 s and about 3 s. The
algorithm seems to be degraded by high frequency noise,
which then ends up being integrated through the continuous
corrections. Using this insight, we applied a first order IIR
low-pass filter with a corner frequency of 1/100 Hz corner
frequency, at every input of each node. I.e. the phase measure-
ments at each node are low pass filtered individually to dampen
the high frequency components (Figure 3). As can be seen in
Figure 4 (”LP100+WL” plots), the effect is quite tremendous
improvement in stability of the ensemble. For white phase

modulation, the low-pass filter brings the stability to what the
underlying clocks have. For τ ’s longer than the filter band-
width, the stability seems to even improve beyond what the
clocks have themselves, but not much. This effect gets more
pronounced for the higher exponent noise processes. While at
τ ’s beyond the filter bandwidth, the ensemble slope is the same
as the underlying clocks, at smaller τ the slope is much steeper
and thus the stability improves quite considerably. Please note,
that this behavior is different than a simple low pass filtered
clock, where the maximum improvement is at the smallest τ
(highest frequency), which the decreases until it reaches the
clocks performance at the filters corner frequency. While here
we have no stability improvement at lowest τ , but increasing
improvement until the corner frequency is reached.

REFERENCES

[1] J. Levine, “Invited review article: The statistical modeling of
atomic clocks and the design of time scales,” Review of Scientific
Instruments, vol. 83, no. 2, p. 021101, 2012. [Online]. Available:
http://dx.doi.org/10.1063/1.3681448

[2] J. L. Welch and N. A. Lynch, “A New Fault-Tolerant Algorithm for Clock
Synchronization,” Information and Computation, vol. 77, no. 1, pp. 1–36,
1988.

[3] J. Mickens, “The Saddest Moment,” login, May 2013.
[4] P. Khanchandani and C. Lenzen, “Self-stabilizing byzantine clock

synchronization with optimal precision,” CoRR, vol. abs/1609.09281,
2016. [Online]. Available: http://arxiv.org/abs/1609.09281

http://dx.doi.org/10.1063/1.3681448
http://arxiv.org/abs/1609.09281


RETRACTED
TDC Low Pass Algo.

Figure 3. Additional low-pass filters between the TDC and the algorithm improves the performance of the system.

100 101 102 103 104 105

10 14

10 13

10 12

10 11

10 10

10 9

10 8

10 7

10 6

MDEV WPM
Clock
WL
LP100+WL

(a) White phase modulation.

100 101 102 103 104 105

10 12

10 11

10 10

10 9

10 8

10 7

10 6

MDEV FPM
Clock
WL
LP100+WL

(b) Flicker phase modulation.

100 101 102 103 104 105
10 11

10 10

10 9

10 8

10 7

10 6

10 5
MDEV WFM

Clock
WL
LP100+WL

(c) White frequency modulation.

100 101 102 103 104 105

10 7

10 6

10 5

MDEV FFM

Clock
WL
LP100+WL

(d) Flicker frequency modulation.

100 101 102 103 104 105

10 5

10 4

10 3

MDEV RWF
Clock
WL
LP100+WL

(e) Random walk frequency.

Figure 4. Modified Allen deviation plots of a 4 node ensemble with different clock input noise spectra, but without any faulty clocks. The original clock
noise (”Clock”) gets slightly degraded by the Welch-Lynch algorithm. Applying a first order IIR filter with a corner frequency of 1/100Hz to each nodes
input (”LP100+WL) improves the stability of the time-scale of the ensemble quite considerably, especially for the higher exponent noise spectra.


	Introduction
	Background
	Our Contribution

	Fault Model
	Classical Fault Models
	Byzantine Fault Model

	Fault Tolerant Algorithms Under Byzantine Faults
	General Way of Dealing with Byzantine Faults
	The Welch-Lynch Algorithm

	The Welch-Lynch Algorithm Applied to Atomic Clocks
	Stability vs Synchroninity

	References

