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Abstract—While sinusoid signal sources are used whenever
low phase noise is required, conversion to a square wave-form
is necessary when interfacing with digital circuits. Although
have been analyzed a few times in various context, to the best
knowledge of the author, there is no complete treatment and
explanation of all noise sources within a sine-to-square converter.
We attempt to give a quantitative, predictive and physically
based noise model of sine-to-square converters without fitting
parameters other than those imposed by the circuit itself.

I. INTRODUCTION

In a lot of settings, a sinusoidal signal is given as an
input, be it from a precision frequency source or measurement
equipment like a dual mixer time difference system [1], but is
required to be used in a digital or quasi digital environment.
But for the use in digital electronics, the sinusoidal signal has
to be converted into a square wave signal, either explicitly
using a sine-to-square converter or implicitly, when the signal
enters the digital logic. Although such circuits have been
employed for a long time and been analyzed a few times, a
complete noise model is still missing. Especially, there are
very few attempts on a physically based noise model that
which can predict the output noise based on circuit parameters
and does not need fitting parameters.

II. RELATED WORK

One of the first analysis of noise in sine-to-square converters
was done by Collins [2]. Collins analyzed the jitter of multi-
stage converters due to white noise with respect to the input
slew-rate and noise bandwidth. Although giving insight on
how to design multi-stage converters, Collins did not give
any insight on the sources of noise and their behavior under
different conditions.

In [3] Sepke et al. analyzed the noise contribution of
comparators in analog-to-digital converters. While the circuit
model is, on a first glance, similar, the use of the comparator
after a sample-and-hold circuit changes the analysis consider-
ably and thus its applicability to sine-to-square converters is
limited.

In [4] Calosso and Rubiola measured the noise in an Field-
Programmable Gate Array (FPGA) used as a sine-to-square
converter. Even though they gave scaling laws for various
types of noise, these were not rigorously analyzed and thus
could not be related to noise parameters of the circuit directly.

III. CIRCUIT MODEL

A sine-to-square converter can be modeled by a comparator
(or a linear amplifier) followed by a number of amplifier
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Figure 1. The circuit model of a sine-to-square converter is simplified to
a noiseless comparator input stage with some hysteresis ±H and all input
related noise being lumped together into the offset voltage Vofs. Noise due to
power supply variation VDD,n is modeled using an amplification stage with a
delay of tamp that only depends on the supply voltage.

stages. For simplicity, we assume here, that the converter
consists of an ideal, noiseless and zero-delay comparator with
a hysteresis ±H followed by a single noiseless amplifier with
a delay tamp (see figure 1). We use this split also to separate
noise contributions due to different processes: Any noise that
is related directly or indirectly to the input signal is folded
into the comparator’s input noise which we further combine
with the input-offset voltage for simplicity. All noise related
to delays within the circuit are folded into the amplifier.

The input signal

Vi(t) = (V0 + Vi,AM(t)) sin(ω0t+ ϕi(t)) (1)

with the two noise parts, the amplitude noise Vi,AM(t) and
the phase noise ϕi(t) enters the comparator, which has a
hysteresis of ±H(t) and an input offset voltage of Vofs(t). The
output of the comparator gets further amplified and delayed by
time ∆tamp(t) by the following amplifier. We further assume
that fluctuations and noise on the power supply VDD,n do not
affect the comparator (e.g. it being an ideally symmetrical
differential pair) and model the effect of VDD,n as variations
in the amplifier delay tamp.

As we are only interested in the phase noise contribution of
the amplifier, we will ignore the input phase noise ϕi(t) for the
further analysis. The amplitude noise Vi,AM(t) is included to
determine its effect on the output phase noise, due to AM-PM
conversion through the hysteresis of the comparator.

Multi-stage converters can easily be modeled by series
connection of the elementary stage in figure 1. In longer chainsXXX-X-XXXX-XXXX-X/XX/$XX.00 c©2018 IEEE
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Figure 2. The zero crossing of the input signal gets delayed by the offset
voltage Vofs and the hysteresis ±H and the delay tamp through the amplifier
stage. The offset voltage and hysteresis related delays tofs and tH depend not
only on the values of Vofs and H respectively, but also on the slew-rate of
the input signal. The amplifier delay tamp only depends on the supply voltage
VDD.

or with sufficiently large input amplitude, there will be a slew-
rate saturation. This can be used to simplify all following
stages to single amplifier stages, without the comparator, and
fold the input noise into the variation of the amplifier delay
tamp. If filters are used between stage, like in the case of
Collins style sine-to-square converters [2] care has to be taken
to account for the change in noise properties in each stage.

IV. NOISE SOURCES

Assuming the hysteresis H of the comparator is symmetric
around the zero point with offset voltage Vofs, i.e., Vofs ±H ,
and both are small enough such that the small angle sine
approximation can be used around the zero-crossing point (see
figure 2), then the propagation delay through the comparator
is

tdelay(t) = tofs(t) + tH(t) + tamp(t) (2)

=
Vofs(t) +H(t)

ω0(V0 + Vi,AM(t))
+ tamp(t). (3)

As we are interested in the variation of the delay, we will be
looking at ∆tdelay. Assuming noise is small one can split the
contributions:

∆tdelay(t) = ∆tofs(t) + ∆tH(t) + ∆tAM(t) + ∆tamp(t) (4)

with:

∆tofs(t) =
∂∆tdelay

∂Vofs
∆Vofs(t) =

1

ω0V0
∆Vofs(t) (5)

∆tH(t) =
∂∆tdelay

∂H
∆H(t) =

1

ω0V0
∆H(t) (6)

∆tAM(t) =
∂∆tdelay

∂Vi,AM
∆Vi,AM(t) ≈ H

ω0V 2
0

∆Vi,AM(t) (7)

The delay through the amplifier depends on the supply
voltage VDD, thus any noise on the supply voltage will
modulate the delay. As the delay depends on many factors
like architecture, process, temperature etc., we simplify the
relationship to

∆tamp(t) =
∂∆tamp

∂VDD
VDD,n(t) +O(V 2

DD,n)

= cVDD,n(t) +O(V 2
DD,n)

≈ cVDD,n(t),

(8)

with the circuit dependent parameter c. This, of course, re-
moves time dependent delay variations due to e.g., aging or
temperature, which can be significant at long time scales. But
these contributions are easy to add later in the analysis and
are left out, at the moment, for simplicity.

V. NOISE TRANSLATION AND SCALING

The phase noise is defined by

Sϕ(f) = ϕ2
rms(f) (9)

with the phase fluctuation ϕ measured over a bandwidth of
1 Hz [5]. As the phase relates to delay with ϕ = ω0t we can
write

Sϕ(f) = ω2
0

〈
∆t2

〉
f

(10)

with 〈x〉f denoting, informally speaking, the average over all
x(t) with a measurement interval 1/f . Or more formally, the
absolute value of the Fourier coefficient at frequency f of the
signal x(t):

〈x〉f =

∣∣∣∣∫ ∞
−∞

x(t)e−2πjft dt

∣∣∣∣ (11)

For reasons of being concise, we ignore here the mathematical
details of integrating over time series of random signals,
which might potentially be non-continuous and assume all
random signals are of finite bandwidth and thus integrable.
We also assume all integrals go over finite time (measurement)
intervals in order for them to be defined in case of 1/fα noises,
which otherwise would lead to infinite signal power. For a
discussion of integration over random signals see e.g., [6] and
[7].

As all discussed noise sources are assumed to be indepen-
dent, we can write

Sϕ(f) = ω2
0

〈
∆t2delay

〉
f

=
1

V 2
0

〈
∆V 2

ofs

〉
f

+
1

V 2
0

〈
∆H2

〉
f

+
H2

V 4
0

〈
∆V 2

i,AM

〉
f

+ ω2
0c

2
〈
V 2

DD,n

〉
f

(12)



Different frequency scaling for different noise sources be-
comes already evident. The input related noise processes do
not scale with ω0 while the delay related noise does scale with
ω2
0 . These are the ϕ-type and x-type noises, respectively, as

discussed in [4].

A. Impulse Sensitivity Function (ISF)

In [8] Egan noted that white phase noise gets aliased due
to sampling. Formally, this can be described by using the ISF
as introduced by Hajimiri and Lee in [9]. We slightly modify
it to adapt it for the more general setting of sine-to-square
converters:

∆ϕ(t) =

∫ t

−∞
Γ(τ)n(τ) dτ (13)

with Γ(t) being the ISF and n(t) being the effecting noise.
Please note that Γ(t) is implicitly also a function of the circuit
and its parameters, which also include the input signal. In other
words, if the shape or amplitude of the input signal changes,
this will potentially result in a change of the shape of Γ(t).
The ISF for a sine-to-square converter can be approximated by
a comb of alternating positive and negative rectangular pulses:

Γ(t) =

∞∑
n=−∞

Π

(
t

τw
− nT0

)
−

∞∑
n=−∞

Π

(
t

τw
− nT0 − τd

)
(14)

with a period T0 = 2π/ω0 and a pulse width of τw. τd denotes
the phase shift between the positive and the negative pulses and
is related to the duty cycle of the output signal and depends,
in our circuit model, on the input signal amplitude V0 and
the offset voltage Vofs. In a first order approximation, For
a 50 % duty cycle τd = T0/2. For simplicity, we assume
that the positive and negative pulse, which relate to the
positive and negative zero crossing respectively, are of the
same magnitude and width, which is not necessarily the case.
It should be noted, that τw depends on the output slew-rate
of the converter, thus is proportional to T0. Hence, for slew-
rate limited converters, τw becomes independent of T0 (in first
order). The Fourier series of the function Γ(t) can be expressed
as

Γ(t) =
τw
T0

∞∑
n=−∞

sinc
(nω0τw

2

)
e−

1
2 jnω0τwe−jnω0t

+
τw
T0

∞∑
n=−∞

sinc
(nω0τw

2

)
e−

1
2 jnω0τwe−jnω0te−jnω0τd

(15)

Looking at the Fourier series directly explains two phenom-
ena reported in [4]: The 1/ω0 scaling of white noise and the
1/ω2

0 and 1/ω0 scaling of flicker noise:

B. Scaling of White Noise

Under the assumption that τd = T0/2 the Fourier transform
of Γ(t) in equation (15) becomes a Dirac comb like structure
with Dirac pulses at odd multiples of ω0 due to its periodic
nature and because the even harmonics cancel out. These
Dirac pulses δ(f − (2n+ 1)ω0) have approximately constant

amplitude anup to the frequency 1/(πτd) from which on they
decay with 1/f or 20 dB/dec. The multiplication with noise
in equation (13) results in a mixing process (c.f. [7]) that
converts all noise in distance ω0 to one of the Dirac pulses
anδ(f − (2n + 1)ω0) down into the signal passband around
ω0 with an amplitude that is proportional to the amplitude of
the Dirac pulse. Because the noise in each down-converted
frequency region is independent, the total down converted
noise becomes a geometric sum

Sϕ,white,total ∝
∑
n

a2n (16)

=
∑

n≤ 2
τdω0

a2n +
∑

n> 2
τdω0

a2n (17)

≈ 2

τdω0
a21 + a21

∞∑
k=1

1

k
(18)

= a21

(
2

τdω0
+

∞∑
k=1

1

k

)
(19)

There harmonic series in equation (19) grows slowly and can
be approximated by Hn =

∑n
k=1

1
k = lnn + γ + O(1/n),

with γ being the Euler-Mascheroni constant (c.f. [10, section
1.2.7]). Even though H∞ = ∞ and thus Sϕ,white,total = ∞,
the sum is in reality limited. One reason is that the ISF edges
have a finite steepness, which adds a second sinc term to Γ(t)
and thus a second corner frequency after which it decays with
40 dB/dec or 1/f2. Another is the limited bandwidth of the
circuit, which acts similarly by adding a cut off frequency,
after which the noise (and signal) decay with an additional
20 dB/dec. The sum H

(r)
∞ =

∑∞
k=1

1
kr , r > 1 is bounded by

a small constant (e.g., H(2)
∞ = π2/6) [10], thus we can express

the total white phase noise as:

Sϕ,white,total ∝ a21

(
2

τdω0
+
cBW

ω0

)
(20)

∝ a21
c′BW

ω0
(21)

with cBW and c′BW being (noise) bandwidth depending con-
stants of the circuit. We conclude that the total white noise of
the sine-to-square converter gets an additional scaling with a
factor of 1/ω0 due to aliasing induced by the periodicity of
the ISF. Thus we end up with:

Sϕ,white(f) ∝ 1

ω0V 2
0

〈
∆V 2

ofs

〉
f

+
1

ω0V 2
0

〈
∆H2

〉
f

+
H2

ω0V 4
0

〈
∆V 2

i,AM

〉
f

+ ω0c
2
〈
V 2

DD,n

〉
f

(22)

The proportionality factor of equation (22) depends on the
equivalent noise bandwidth, respectively how many harmonics
contribute to aliasing, and on the ratio τw/T0 from Γ(t).

In case τd 6= T0/2, then Γ(t) will also have even harmonics.
For white noise, the even harmonics will act the same way
as the odd harmonics and add to the proportionality factor
of equation (22). For most systems, one can safely assume
that the duty cycle will be close to 50 % and thus the even



harmonics will be small. Hence it is possible to ignore the
effects of even harmonics in a first order approximation.

C. Scaling of Flicker Noise

Flicker noise is, initially, only present around DC, thus the
first harmonic up converts the flicker noise into the signal
band. Hence, the flicker component derives from equation (12)
directly as:

Sϕ,flicker(f) ∝ 1

V 2
0

〈
∆V 2

ofs

〉
f

+
1

V 2
0

〈
∆H2

〉
f

+
H2

V 4
0

〈
∆V 2

i,AM

〉
f

+ ω2
0c

2
〈
V 2

DD,n

〉
f

(23)

D. Scaling in a Multi-Stage Sine-to-Square Converter

If multiple gain stages are used in a sine-to-square converter,
then each stage acts upon the noise and thus the harmonics of
the ISF of each stage alias noise noise into the signal band.
Even if all stages are the same, each stage will have a different
Γ(t) as τw will change with the slew rate of the input signal
of each stage. Thus a simple multiplication of Sϕ with the
number of stages will, in general, not lead to an accurate result.
Nevertheless one can derive scaling rules quite easily:

For white noise, the harmonics of the additional stages each
up convert noise, which is then down converted into the signal
band by the following stage. As the equivalent noise bandwidth
of each stage individually stays constant, the scaling rules in
section V-B remain unchanged and thus equation (22) is still
valid with only a larger proportionality factor.

For flicker noise, the up conversion and the following down
conversion of consecutive stages change the behavior slightly.
If the duty cycle is exactly 50 %, then only odd harmonics
will exist, and hence none of the present harmonics will see
any flicker noise in a distance of ω0. Thus only the first
harmonic of each stage will up convert flicker noise into the
signal band and, as with white noise, equation (23) is still
valid with a slightly larger proportionality factor. But, due to
the presence of Vofs, the duty cycle will deviate from 50 %
and give rise to even harmonics. Please note, that not only
the DC component of Vofs will lead to even harmonics, but
also its higher frequency noise component. Hence the scaling
of flicker noise will change its properties depending on the
frequency spectrum of Vofs.

Because now there are harmonics at a spacing of ω0, the
previously up converted flicker noise is seen by a harmonic
at a distance of ω0 and is thus down converted again into the
signal band. Unlike the aliasing of white noise, the aliased
flicker noise ultimately has the same origin, thus all down
converted flicker noise components are correlated. Thus for
Sϕ, this leads to a scaling proportional to ω2

0

From equation (14) we see that the power of the even
harmonics relates to the power of the odd harmonics with
|1 + exp (jω0τd)| = |sin (ωoτd)|. Assuming τd ≈ T0/2 we can
replace τd by it’s deviation (noise value) from T0/2:

τd,n = τd − T0/2

=
1

ω0V0
Vofs(t)

(24)

leading to

|sin (ωoτd)| = |sin (ωoτd,n)|

=

∣∣∣∣sin( 1

V0
Vofs(t)

)∣∣∣∣
≈
∣∣∣∣ 1

V0
Vofs(t)

∣∣∣∣
(25)

To evaluate the effects of equation (25) on the noise spectrum,
we have to take into account, that τd,n represents a jitter value
due to Vofs. As such, it is subject to same aliasing and thus
scaling laws as Sϕ. If the amplification of the first converter
stage is large, we can safely assume that τd,n is dominated
by the first stage. If we also assume that the noise equivalent
bandwidth is large and thus (the jitter) τd,n is dominated by
white noise. We then can ignore the contribution and scaling
due to flicker noise. Due to aliasing of white noise, we get
an additional scaling term of 1/ω0, as we have already seen
with equation (20). Thus the power of the even harmonics will
scale approximately with 1/(ω0V0) 〈Vofs〉f .

The scaling due to aliasing will act differently on different
types of noise. While all input related noise sources will see
the full effect of aliasing, the VDD related noise component will
not. As the VDD related noise acts as a delay in each stage of
the multi stage converter, it will only see part of the flicker
noise aliasing, depending on which stage was the source of the
noise. Thus VDD related noise will see an additional scaling
factor between 1 and ω0 depending on the exact structure of
the sine-to-square converter and which stages contribute how
much to the output noise.

Putting the arguments above together, we can conclude
that Sϕ,flicker of a multistage sine-to-square converter gets an
additional ω2

0 term due to aliasing of correlated noise and an
1/ω0 term due to the power scaling of the even harmonics:

Sϕ,flicker,multi(f) ∝ ω0Sϕ,flicker(f)

∝ ω0

V 2
0

〈
∆V 2

ofs

〉
f

+
ω0

V 2
0

〈
∆H2

〉
f

+
ω0H

2

V 4
0

〈
∆V 2

i,AM

〉
f

+ ωα0 c
2
〈
V 2

DD,n

〉
f

(26)

with α, the scaling factor of the VDD related noise, being
between 2 and 3.

VI. EXAMPLE ANALYSIS OF MEASUREMENTS

Calosso and Rubiola presented measurements of a Cy-
clone III FPGA in [4]. Using the analysis in the previous
sections, we will review the noise analysis of Calosso and
Rubiola.

For convenience, we have reproduced the plot of the noise
measurement in figure 4. For high offset frequencies, the 1/ω0

scaling of white ϕ-type noise is nicely visible. Similarly, for
low offset frequencies and high signal frequencies, the ω2

0

scaling of flicker x-type noise shows up.
But for small offset frequencies and small signal frequencies

the behavior changes. To fully understand the noise in this
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Figure 3. The circuit used in [4]. The FPGA acts as as a sine-to-square converter and buffer. The operation amplifier forms an integrator to stabilize the duty
cycle of the output and steer the input offset voltage to that effect. Courtesy of Claudio Calosso and Enrico Rubiola.

area we first have to look at the circuit that was used in [4],
which is shown in figure 3. The FPGA acts as a sine-to-square
converter with multiple stages. There are two output buffers
used, one for the output, which is fed to the noise measurement
equipment and one that is fed, through a low pass filter, into
an integrator. The integrator adjusts the offset voltage of the
input signal such that the duty cycle is kept at 50 %. Analysis
of the transfer characteristics of this stabilization circuit reveals
a 3 dB frequency at approximately 28 mHz.

Armed with this information understanding figure 4 be-
comes easy. For offset frequencies below 28 mHz the in-
tegrator in figure 3 compensates any deviation from 50 %
duty cycle, thus eliminating the second order harmonics and
aliasing of flicker noise. Hence only (unaliased) x-type noise
is visible.

In the range between approximately 28 mHz and
1–1000 kHz when white noise becomes dominant, we
see aliased ϕ-type noise, due to the multi-stage nature
of the FPGA for lower signal frequencies. For higher
signal frequencies, flicker noise scales with ω2

0 , thus α of
equation (26) must be close to 2, which in turn would suggest,
that most of the VDD related noise originates from the output
stage or the last few stages.

VII. CONCLUSION

Starting from a simple circuit model, we have analyzed
how input and power supply noise affect the sine-to-square

conversion. The scaling of the additive noise in dependence
of the input frequency is has been shown for different noise
contributors and under different settings. These scaling laws
then have been used to explain the noise measurements of [4].

REFERENCES

[1] D. W. Allan and H. Daams, “Picosecond time difference measurement
system,” in 29th Annual Symposium on Frequency Control, May 1975,
pp. 404–411.

[2] O. Collins, “The design of low jitter hard limiters,” IEEE Transactions
on Communications, vol. 44, no. 5, pp. 601–608, May 1996.

[3] T. Sepke, P. Holloway, C. G. Sodini, and H. S. Lee, “Noise analysis for
comparator-based circuits,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 56, no. 3, pp. 541–553, March 2009.

[4] C. E. Calosso and E. Rubiola, “Phase noise and jitter in digital
electronics,” in 2014 European Frequency and Time Forum (EFTF), June
2014, pp. 374–376.

[5] “IEEE standard definitions of physical quantities for fundamental fre-
quency and time metrology–random instabilities,” IEEE Std 1139-2008,
Feb 2009.

[6] B. Øksendal, Stochastic Differential Equations, 6th ed. Springer, 2013.
[7] A. Lapidoth, A Foundation in Digital Communication. New York:

Cambridge University Press, 2009.
[8] W. F. Egan, “Modeling phase noise in frequency dividers,” IEEE

Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 37, no. 4, pp. 307–315, July 1990.

[9] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical
oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp.
179–194, Feb 1998.

[10] D. E. Knuth, The Art of Computer Programming, Volume 1: Funda-
mental Algorithms, 3rd ed. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1997.



pe

M
ultistage

x-type

Figure 4. The noise measurement of [4], slightly adapted. The white noise region shows the 1/ω0 scaling of aliased ϕ-type noise. The flicker noise region
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