
A Fresh Look at the Design of Low Jitter Hard
Limiters

Attila Kinali
Algorithms and Complexity

Max Planck Institute for Informatics
Saarland Informatics Campus,

Saarbrücken, Germany
adogan@mpi-inf.mpg.de

Abstract—Hard limiters or zero-crossing detectors have re-
ceived very little attention in the last two decades. Yet our un-
derstanding of how noise propagates through non-linear circuits
has improved quite considerably. We have here a fresh look at
hard limiters and their analysis using the tool of the Impulse
Sensitivity Function as introduced by Hajimiri and Lee.

Index Terms—hard limiter, zero crossing detector, noise, flicker
noise

I. INTRODUCTION

Accurate and stable zero-crossing detection is one of
the corner stones of the Dual Mixer Time Difference
(DMTD) method of precisely measuring phase and frequency
differences[2]. The simplest way to build a zero-crossing
detector is by use of limiting amplifiers, i.e. by transforming
the (most often sinusoidal) signal into a square wave signal.
Collins described in [3] how to design the slope-gain in
multi-stage limiting amplifiers such that the jitter due to
the amplification and squaring-up is minimal. Even though,
DMTD is not the only application for zero-crossing detectors,
their noise properties have received very little attention over
the years since Collins’ paper.

In the meantime, noise in sustaining amplifiers of oscillators
have received a great deal of attention and new models to
describe the noise generation and amplification have been
formulated. Most notably are the models by Hajimiri and
Lee[1] and Demir et al.[4]. Especially the approach of Hajimiri
and Lee using an Impulse Sensitivity Function (ISF) can be
easily adapted to settings outside of oscillators, given they are
driven by periodic signals.

In this paper, we will have a fresh look at the noise
transfer function and optimal gain settings of multi-stage
liming amplifiers. In particular, we will review the transform
and aliasing in the amplifier stages and the effect of bandwidth
limiting on both the slope gain and noise gain. Using the
ISF formalism, the noise analysis of Collins can be extended
from a jitter-only description as in [3] to one that distinguishes
between white and flicker noise. The difference in the transfer
functions of white and flicker noise is especially important
with low frequency input signals as are common with DMTD
systems.

II. SQUARING UP

Zero-crossing detection is usually performed by amplifying
and limiting the input signal. The amplification enhances the
slope at the zero-crossing, while the limiting ensures that
the signal amplitude stays within reasonable limits such that
the electronics does not require any high-voltage components
(where high-voltage can start as low as 5 V, depending on the
components and technology used). Stability and noise consid-
erations generally limit the maximum achievable amplification
in a single stage. Thus, to achieve the high gain required
in zero-crossing detectors (thousands to millions) the use of
multiple stages is almost a given for practical implementations,
unless the overall system level design allows to take short-cuts.
This of course raises the question, how the gain should be split
between the different stages in order to get the lowest possible
noise and jitter at the output.

III. RELATED WORK

To the best knowledge of the author, the first mention of
multi-stage zero-crossing detectors and their associated noise
was by Dick et al. in [5]. Unfortunately, Dick et al. did not
do an analysis of the noise propagation and amplification
within the zero-crossing detector. One of the first analysis
of noise in zero-crossing detectors has been done by Collins
[3]. Collins analyzed the jitter of multi-stage detectors due
to white noise with respect to the input slew-rate and noise
bandwidth using a first order filter.. The analysis has been
done in the time domain which simplified some of the aspects
quite considerably. Unfortunately, it is quite difficult to extend
Collins work to filters of higher order. In [6] Calosso and
Rubiola measured the noise in an Field-Programmable Gate
Array (FPGA) used as a sine-to-square converter. Even though
they gave scaling laws for various types of noise, these were
not rigorously analyzed and thus could not be related to noise
parameters of the circuit directly. In [7] the author has given
an in-depth analysis of noise propagation in zero-crossing
detectors using no filters between the stages, for both white
noise and flicker noise. This paper is an extension of this work.

As in [7], this paper relies on an adaption of the the
Impulse Sensitivity Function (ISF) formalism introduced by
Hajimiri and Lee in [1] for analysis of noise of oscillators.
The ISF formalism is based on the insight that the noise
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Fig. 1. The circuit model, adapted from [3] of a single stage zero-crossing
detector is simplified to a noiseless amplifier input stage, with all input referred
noise being lumped together into the noise voltage v2n . After the amplifier there
is a (noise-less) limiter and a first order filter.

transfer through the circuit is modulated by the signal and thus
has to be regarded as a linear time-variant function. Several
authors later provided ways to efficiently calculate the ISF for
a given circuit. The approaches can be grouped into circuit
analysis in state space (e.g. [8]), SPICE based simulation and
ISF extraction (e.g. [9]) or on analysis of the circuit in the
frequency domain (e.g. [10]).

IV. CIRCUIT MODEL

The circuit model used in this paper is a slightly adapted
version of what Collins used in [3]. A single stage consists of a
noiseless amplifier, where all its noise is lumped together into
a single noise source at its input v2n . For brevity of notation, we
also include the signal’s noise in v2n and assume an otherwise
noiseless signal at each stage. Please note, that we assume
here that the amplifier has no offset voltage and the noise
voltage v2n has zero mean. This slightly artificial assumption
is justified by the need to precisely control the duty cycle to
50 % and, by extension, the offset voltage in order to eliminate
amplifying flicker noise due to the otherwise present even
order harmonics. See [7] for an in-depth analysis of flicker
noise amplification in multi-stage sine-to-square converters.
For sake of brevity, it is further assumed the circuit does not
contain any variable time delay term (e.g. due to power supply
noise). The effects of any such delay noise can be analyzed
in a similar manner as the input referred noise effects. See [6]
and [7] for details.

The switch in Collins circuit model has been replaced by
the more natural clamping diodes. One can still assume these
diodes to be noise free in a very good approximation of the real
circuit performance. On one hand, only the clamping diodes of
the last stage will contribute to the output noise. On the other
hand, the noise contribution of the diodes can be neglected
compared to the input referred noise that has been amplified
through even a single amplifier stage, even if said input noise
would be as low as the noise of a single diode.

The filter is here modeled by a (noiseless) RC-filter as a
stand in of any, more general low pass filter that could be
used.

V. CIRCUIT ANALYSIS

The assumption that there is no offset voltage and thus
no even harmonic components in the signal and ISF together
with the assumption that there is no variable (noise dependent)
delay result in the flicker noise being dominated by the input
referred noise (c.f. [6] and [7]). I.e. the output flicker noise
is dominated by the flicker noise of the first stage (c.f. Friis
formula [11]) and the up-conversion of the flicker noise is due
to the fundamental of the ISF at each stage. This leaves us the
analysis of the white noise propagation through the circuit.

Following Collins, we want to optimize the variance of the
jitter J2 = N2

out/ρ
2
out with N2

out being the output noise power
density and ρout being the output slew rate.

A. Slew Rate

The output slew rate is obviously the slew rate of the
output signal Vout(t) at the zero crossing. Assuming a purely
sinusoidal input signal of frequency ν0 with amplitude 1, total
gain Gn =

∏n
i=1 gi, with gi being the individual stage gains1

and clamping back to 1 again, the output signal becomes
Vout(t) = min {max {Gn cos(2πν0t),−1} , 1}. This is a pe-
riodic function with the Fourier series coefficients (frequency
ν0 normalized to 1) being

V̂out[k] =
1

π

((
2

k
− 2k

k2 − 1

)
sin(kτ) +

2Gn
k2 − 1

sin(τ) cos(kτ)

)
(1)

with τ = arccos(1/Gn) being half of the rise/fall time of the
output signal. The slew rate can then easily calculated as

ρout =

∞∑
k=1

kV̂out[k] (2)

Following Collins we can approximate Vout by a trapezoidal
function for large Gn, which leads to V̂out[k] decaying with
1/k up to the frequency 1/(πτ) and with 1/k2 from then
onward. It is important to note that for small Gn this approx-
imation does not hold and the exact Fourier coefficients have
to be used.

B. Noise

The input referred white noise is being sampled by the ISF,
down-converting broadband noise from higher frequencies
down to the signal band (c.f. [7]). Assuming the ISF is
solely due to the non-linearity of the clamping circuit (i.e. the
amplifier is perfectly linear), the input noise becomes amplified
by the stage gain gi and then (additional) noise power is down-
converted from higher frequencies. As the exact calculation of
the ISF is not possible without knowing the exact circuit we
approximate the ISF by a pulse train of rectangular pulses with
width τw. This results in the ISF’s Fourier coefficients Γ̂[k]
being constant up to a frequency of 1/(πτw) after which they
decay with 1/k. To ensure convergence, we further assume
there is an upper frequency νmax of after which the ISF decays

1While we use here a similar notation as Collins did, please be aware that
gi and Gn are slightly but subtly different. While Collins uses the slope gain
of his circuits, we use here the gain of the amplifier.
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Fig. 2. Comparison of the Fourier transform of the output signal V̂out and the
Fourier transform of the ISF Γ̂. While V̂out first decays with 1/f up to the
frequency of 1/(πτ) and then decays with 1/f2, the ISF is constant up to the
frequency of 1/(πτw) and decays with 1/f afterwards. Generally, τ > τw
can be assumed.

faster than 1/k. This is a safe assumption for real circuits, as
invariably all components will have a finite switching time,
thus limiting the steepness of the ISF and guaranteeing finite
and non-zero rise and fall times. Thus the output noise power
becomes:

N2
out = v2ngi

∞∑
k=1

Γ̂[k] (3)

For most practical circuits τw will be smaller than τ , i.e. the
corner frequency for the ISF will be larger than the corner
frequency for the output signal.

C. Jitter and the Effect of the Filter

Comparing the Fourier transforms of both the output signal
Vout and the ISF reveals that the frequency range between
2πν0 and 1/(πτ) contributes the most to increasing the slew
rate ρ. At frequencies higher than 1/(πτ), the contribution
of each harmonic is still not negligible2, but the decay of
the harmonics with 1/k2 and thus the contribution to the
slew rate with 1/k quickly becomes much lower than the
contribution of the ISF harmonics, which remain constant
up to the frequency of 1/(πτw). From this can be easily
concluded, that an optimal filter should cut off the output
signal harmonics and ISF at 1/(πτ) for optimal jitter J2.
This is the frequency domain equivalent to Collins’ result
that the optimum half-level crossing time k is equal to 1.
Thus, the same result for optimal distribution of gain between
stages, namely gn−1 =

√
2gn holds true for this frequency

domain analysis as well. It also becomes evident that a higher
order filter will immediately give benefits in terms of jitter
performance, as it will reduce down-sampling of broadband
noise much more than it will reduce the slew rate of the output
signal.

2∑∞
k=1 k · 1/k2 =

∑∞
k=1 1/k =∞

There are two things to note, though. First, this last, graph-
ical analysis used the trapezoid signal approximation for Vout.
While this holds true for circuits where the cumulative, total
gain Gn is large, it does not for longer chains. E.g. Collins
calculated for a 6 stage chain with a total gain of 106 the gains
for the first three stages to be 2.3, 2.7, and 3.7 respectively.
This results in a total gain at each stage of 2.3, 6.2, and 23.0
respectively. These gains are low enough that the trapezoid
approximation produces significant errors.

Second, it becomes evident, that for optimal performance
the harmonic components of the ISF have to be limited. Using
the circuit model from above, where the ISF is generated
due to the non-linearity of the clamping circuit, it can be
easily achieved by placing the filter before the clamping circuit
instead of after, thus limiting the harmonic contents of the
signal reaching the clamping circuit, which in turn reduces
the harmonics of the ISF generated. Obviously, if there is
no explicit clamping circuit, but the clamping is part of the
amplifier itself (e.g. by using a differential pair driven into
saturation), then the filter has to become a part of the amplifier
in order to be able to modify the ISF.

As mentioned earlier, in a practical design the offset voltage
of each amplifier stage should be closely controlled. While
once a high Gn has been reached, all remaining stages will
have the same duty cycle and thus can be controlled using
an earlier stage, the first few stages have to be individually
controlled in order to limit even order harmonics generation
and thus flicker noise amplification in these stages.

VI. CONCLUSION

While Collins [3] already gives a good handle on how to
design the gains of a multi-stage limiting amplifier, it does
not easily allow to design the same circuit with higher order
filters, as the time domain analysis cannot be easily adapted
to this case.

We showed how to transform the analysis into the frequency
domain using the ISF formalism introduced by Hajimir and
Lee. This analysis nicely reproduces the earlier results by
Collins.

Equivalently to Collins, we find that the optimal filter cut-off
frequency should be chosen as 1/(πτ) with τ = arccos(1/Gn)
for the n-th stage. Filters with higher order and thus steeper
roll-offs will benefit jitter performance.

For low cumulative gains Gn the trapezoid signal ap-
proximation does lead to errors and exact formulas for the
harmonics of the output signal should be used instead.

REFERENCES

[1] A. Hajimiri and T. H. Lee, “A general theory of phase
noise in electrical oscillators,” IEEE Journal of Solid-
State Circuits, vol. 33, no. 2, pp. 179–194, Feb 1998.

[2] D. W. Allan and H. Daams, “Picosecond time difference
measurement system,” in 29th Annual Symposium on
Frequency Control, May 1975, pp. 404–411.



[3] O. Collins, “The design of low jitter hard limiters,” IEEE
Transactions on Communications, vol. 44, no. 5, pp. 601–
608, May 1996.

[4] A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase
noise in oscillators: a unifying theory and numerical
methods for characterization,” IEEE Transactions on
Circuits and Systems I: Fundamental Theory and Ap-
plications, vol. 47, no. 5, pp. 655–674, May 2000.

[5] G. J. Dick, P. F. Kuhnle, and R. L. Sydnor, “Zero-crossing
detector with sub-microsecond jitter and crosstalk,” in
22nd Annual Precise Time and Time Interval (PTTI)
Applications and Planning Meeting, R. L. Sydnor, Ed.,
May 1990.

[6] C. E. Calosso and E. Rubiola, “Phase noise and jitter
in digital electronics,” in 2014 European Frequency and
Time Forum (EFTF), June 2014, pp. 374–376.

[7] A. Kinali, “A physical sine-to-square converter noise
model,” in 2018 IEEE International Frequency Control
Symposium (IFCS), May 2018, pp. 1–6.

[8] T. Falk and W. Schwarz, “Impulse sensitivity functions
of oscillators,” in 2000 IEEE International Symposium
on Circuits and Systems. Emerging Technologies for the
21st Century. Proceedings (IEEE Cat No.00CH36353),
vol. 1, May 2000, pp. 647–650 vol.1.

[9] J. Kim, B. S. Leibowitz, and M. Jeeradit, “Impulse
sensitivity function analysis of periodic circuits,” in 2008
IEEE/ACM International Conference on Computer-Aided
Design, Nov 2008, pp. 386–391.

[10] S. Levantino, P. Maffezzoni, F. Pepe, A. Bonfanti,
C. Samori, and A. L. Lacaita, “Efficient calculation of
the impulse sensitivity function in oscillators,” IEEE
Transactions on Circuits and Systems II: Express Briefs,
vol. 59, no. 10, pp. 628–632, Oct 2012.

[11] H. T. Friis, “Noise figures of radio receivers,” Proceed-
ings of the IRE, vol. 32, no. 7, pp. 419–422, July 1944.


