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Abstract It has recently been proved (Jeż, DLT 2007) that conjunctive grammars

(that is, context-free grammars augmented by conjunction) generate some non-regular

languages over a one-letter alphabet. The present paper improves this result by con-

structing conjunctive grammars for a larger class of unary languages. The results imply

undecidability of a number of decision problems of unary conjunctive grammars, as

well as non-existence of a recursive function bounding the growth rate of the generated

languages. An essential step of the argument is a simulation of a cellular automaton

recognizing positional notation of numbers using language equations.

Keywords: Conjunctive grammars, unary languages, language equations, trellis

automata, cellular automata.

1 Introduction

Formal languages over an alphabet consisting of a single letter, known as unary lan-

guages, can be regarded as sets of natural numbers, and the questions of representation

of such sets by the standard devices of formal language theory form a special topic of

study. Regular unary languages are just ultimately periodic sets, though there remain

nontrivial questions, such as their descriptional complexity studied by Chrobak [2].

Context-free unary languages are well-known to be regular, though, as shown by Do-

maratzki et al. [5], context-free grammars give very succinct descriptions of ultimately

periodic sets. Simple types of cellular automata, such as trellis automata studied by

Culik et al. [3,4], Ibarra and Kim [8] and others, are also limited to regular languages

when considered over {a}.
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All the above families of languages are characterized by systems of language equa-

tions of the general form 



X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

with different operations allowed in their right-hand sides. As established by Ginsburg

and Rice [6], context-free languages are obtained by using concatenation and union

in (*). If concatenation is restricted to one-sided linear (that is, every concatenation

appearing in some right-hand side is of the form w · ϕ for some constant string w)

then the solutions represent exactly the regular languages. Finally, trellis automata,

as shown by Okhotin [13], can be simulated by equations with union, intersection and

two-sided linear concatenation.

The first example of a non-regular solution of a language equation over

a unary alphabet was given by Leiss [10], who constructed a single equation

X = ϕ(X) using concatenation and complementation, with a unique solution

{an | the octal notation of n starts with 1, 2 or 3}. The general case of such language

equations was recently studied by Okhotin and Yakimova [15].

While equations with complementation as the only Boolean operation are of a

purely theoretical interest, some classes of language equations (*) constitute natural

extensions of the context-free grammars. One of these classes are conjunctive grammars

introduced by Okhotin [11], which are represented by language equations with union,

intersection and concatenation. These grammars have good practical properties (in

particular, efficient parsing algorithms) and are surveyed in a recent article [14].

The expressive power of conjunctive grammars over a unary alphabet was early

identified by Wotschke [17] as one of the main open problems in the area. Initially,

in the absence of any examples of non-regularity, it was conjectured that only regu-

lar languages can be generated [11,14]. Several unsuccessful attempts of proving this

conjecture had been made by different researchers, until recently it has been disproved

by Jeż [9], who constructed a grammar for the language {a4
n

| n ∈ N}. Note that

this is the language of all strings a` with the base-4 positional notation of ` given

by a digit 1 followed by zeroes. This example was developed into a general theorem

stating that for every regular language L over the alphabet {0, 1, . . . , k − 1} of digits

in base-k positional system, there is a conjunctive grammar generating the language

{an | k-ary notation of n is in L} [9]. All these languages have at most exponential

growth.

This result leaves us with some natural questions to ponder. How far does the ex-

pressive power of unary conjunctive languages extend? Are these languages restricted

to exponential growth? Can their standard decision problems, such as emptiness, equiv-

alence, etc., be effectively decided? These questions are answered in the present paper

by showing that the emptiness problem and other related decision problems are unde-

cidable, while the growth is not bounded by any fixed recursive function, which by far

exceeds earlier expectations on the power of conjunctive grammars over {a}.

All these results are derived from the following general theorem established in

Section 4. Suppose a set of positional notations of numbers is recognized by a trel-

lis automaton [3,4,8], which is the simplest type of cellular automata known to be

equivalent to linear conjunctive grammars [13]. Then the operation of this automaton

on positional notations can be simulated by a conjunctive grammar generating unary

notations of the same numbers. Since trellis automata are powerful enough to recognize
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the language of computation histories of a Turing machine, the undecidability results

given in Section 5 and the construction of a fast growing language in Section 6 follow

by the standard methods of formal language theory.

Let us begin with the definitions of models used in this paper.

2 Conjunctive grammars and trellis automata

Disjunction is the only Boolean connective expressible in the formalism of context-free

grammars: it is represented by multiple rules for a single nonterminal. Conjunctive

grammars are a direct generalization of the context-free grammars, in which the body

of every rule may contain an explicit conjunction:

Definition 1 (Okhotin [11]) A conjunctive grammar is a quadruple G =

(Σ,N,P, S), in which Σ and N are disjoint finite nonempty sets of terminal and non-

terminal symbols respectively; P is a finite set of grammar rules, each of the form

A→ α1& . . .&αn (with A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗) (1)

and S ∈ N is a nonterminal designated as the start symbol.

Informally, a rule (1) states that if a string is generated by each αi, then it is gen-

erated by A. This semantics can be formalized using term rewriting, which generalizes

Chomsky’s string rewriting.

Definition 2 ([11]) Given a grammar G, consider terms over concatenation and con-

junction with symbols from Σ ∪ N as atomic terms. The relation =⇒ of immediate

derivability on the set of terms is defined as follows:

– Using a rule A→ α1& . . .&αn, a subterm A ∈ N of any term ϕ(A) can be rewritten

as ϕ(A) =⇒ ϕ(α1& . . .&αn).

– A conjunction of several identical strings can be rewritten by one such string:

ϕ(w& . . .&w) =⇒ ϕ(w), for every w ∈ Σ∗.

The language generated by a term ϕ is LG(ϕ) = {w |w ∈ Σ∗, ϕ =⇒∗ w}. The language

generated by the grammar is L(G) = LG(S) = {w | w ∈ Σ∗, S =⇒∗ w}.

An equivalent definition can be given using language equations. This definition

generalizes the well-known characterization of the context-free grammars by equations,

due to Ginsburg and Rice [6].

Definition 3 ([12]) For every conjunctive grammar G = (Σ,N,P, S), the associated

system of language equations [12] is a system of equations in variables N , in which

each variable assumes the value of a language over Σ, and which contains the following

equation for every variable A:

A =
⋃

A→α1&...&αm∈P

m⋂

i=1

αi (for all A ∈ N) . (2)

Each occurrence of a symbol a ∈ Σ in such a system defines a constant language {a},

while each empty string denotes a constant language {ε}. A solution of a system is a

vector of languages (. . . , LC , . . .)C∈N , such that the substitution of LC for C, for all

C ∈ N , turns each equation (2) into an equality.
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It is known that every such system has at least one solution, and among them the

least solution with respect to componentwise inclusion, and this solution consists of ex-

actly the languages generated by the nonterminals of the original conjunctive grammar:

(. . . , LG(C), . . .)C∈N [12]. Thus the representation by language equations constitutes

an equivalent semantics of conjunctive grammars, and it is this semantics, and not the

rather technical derivation, that accounts for the intuitive clarity of conjunctive and

context-free grammars.

Let us give a conjunctive grammar for a standard example of a non-context-free

language:

Example 1 (Okhotin [11]) The following conjunctive grammar generates the language

{wcw | w ∈ {a, b}∗}:

S → C&D

C → aCa | aCb | bCa | bCb | c

D → aA&aD | bB&bD | cE

A → aAa | aAb | bAa | bAb | cEa

B → aBa | aBb | bBa | bBb | cEb

E → aE | bE | ε

The nonterminal D generates the language {uczu | u, z ∈ {a, b}∗}. This is done as

follows: the rules for D match a single symbol in the left part to the corresponding

symbol in the right part usingA or B, and the recursive reference to aD or bD makes the

remaining symbols be compared in the same way. The intersection with the language

{ucv | u, v ∈ {a, b}∗, |u| = |v|} generated by C completes the grammar.

Grammars for some other standard examples of non-context-free languages, such

as {anbncn | n > 0}, can be obtained by a straightforward use of conjunction [11]. Let

us now give an important example of a conjunctive grammar over a unary alphabet

for a non-regular language, which introduces an entirely different idea:

Example 2 (Jeż [9]) The following conjunctive grammar with the start symbol A1

generates the language {a4
n

| n > 0}:

A1 → A2A2&A1A3 | a

A2 → A12A2&A1A1 | aa

A3 → A12A12&A1A2 | aaa

A12 → A3A3&A1A2

Each nonterminal Ai generates the language of all strings a`, with the base-4 notation

of ` given by the digit(s) i followed by zeroes.

An explanation of this grammar in terms of positional notation of numbers will

be given later in Example 3. This paper actually presents a far-going generalization of

this construction to a large class of unary languages.

Let us now define an important subclass of conjunctive grammars analogous to

linear context-free grammars.

Definition 4 A conjunctive grammar is called linear conjunctive, if every rule it con-

tains is either of the form A → u1B1v1& . . .&unBnvn with n > 1, ui, vi ∈ Σ∗ and

Bi ∈ N , or of the form A→ w with w ∈ Σ∗.
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Note that the grammar in Example 1 is linear, while the grammar in Example 2 is not.

The family of languages defined by linear conjunctive grammars [11] has actually

been known for almost thirty years before these grammars were introduced: this is the

family recognized by one of the simplest types of cellular automata. These are trellis

automata, also known as one-way real-time cellular automata, which were studied by

Culik, Gruska and Salomaa [3,4], Ibarra and Kim [8], and others. Let us explain this

concept generally following Culik et al. [3].

A trellis automaton (TA) processes an input string of length n > 1 using a uniform

triangular array of
n(n+1)

2 processor nodes, as presented in the figure below. Each node

computes a value from a fixed finite set Q. The nodes in the bottom row obtain their

values directly from the input symbols using a function I : Σ → Q. The rest of the

nodes compute the function δ : Q × Q → Q of the values in their predecessors. The

string is accepted if and only if the value computed by the topmost node belongs to

the set of accepting states F ⊆ Q. This is formalized in the below definition.

Definition 5 A trellis automaton is a quintuple M = (Σ,Q, I, δ, F ), in which:

– Σ is the input alphabet,

– Q is a finite non-empty set of states,

– I : Σ → Q is a function that sets the initial states,

– δ : Q×Q→ Q is the transition function, and

– F ⊆ Q is the set of final states.

Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)),

while I is extended to a homomorphism I : Σ∗ → Q∗.

a1 a2 a3 a4

Let LM (q) = {w | δ(I(w)) = q} and define L(M) =
⋃

q∈F LM (q).

The computation equivalence of linear conjunctive grammars and trellis automata

is stated as follows:

Theorem 1 (Okhotin [13]) A language L ⊆ Σ+ is defined by a linear conjunctive

grammar if and only if L is recognized by a trellis automaton. These representations

can be effectively transformed into each other.

The family of linear conjunctive languages is known to be closed under all Boolean

operations. On the other hand, it is not closed under concatenation and Kleene star [13].

This family is not closed under homomorphisms in general, but it is closed under

block codes [4]. It is also not closed under quotient with regular languages; however,

it is closed under quotient with singletons, that is, whenever a language L ∈ Σ∗ is

recognized by a trellis automaton M , then for every u, v ∈ Σ∗, the languages u−1L =

{w | uw ∈ L} and Lv−1 = {w | wv ∈ L} are also recognized by some trellis automata.

These trellis automata can be effectively computed from M and u, v.

Trellis automata over a unary alphabet recognize only regular languages [13]. To-

gether with the above closure property, this implies the following simple result, which

will be used later on:

Lemma 1 Let L be a linear conjunctive language over an alphabet Σ, let u, v ∈ Σ∗

and a ∈ Σ. Then the language L ∩ ua∗v is regular.
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Proof Let K = L ∩ ua∗v. Then the language

K̃ = u−1 ·K · v−1 = {w | uwv ∈ K}

is linear conjunctive by the closure of this family under quotient with singletons. Since

K̃ is a unary linear conjunctive language, it is regular. Then K = uK̃v is regular as

well. ut

3 Representing numbers in positional notation

Strings over a unary alphabet {a} can be regarded as natural numbers, and, accord-

ingly, languages over {a} represent sets of numbers. Regular unary languages corre-

spond to ultimately periodic sets. Concatenation of unary strings constitutes sum of

numbers, and concatenation of languages is represented by the following pairwise ad-

dition of sets of numbers:

S + T = {m+ n |m ∈ S, n ∈ T}.

Language equations over a unary alphabet can be regarded as equations over sets of

numbers using addition of sets instead of concatenation. In particular, conjunctive

grammars over {a} can be rephrased as resolved systems of equations over sets of

numbers using union, intersection and addition, as well as singleton constants. The

constructions and arguments in this section will be done in terms of such systems of

equations.

This paper deals with sets of numbers of a particular form, which are naturally

defined and described using positional notation. Fix a base k > 2 and define the

alphabet Σk = {0, 1, 2, . . . , k − 1} of k-ary digits. Every string w = dn−1 . . . d1d0 with

di ∈ Σk represents the following number:

(w)k = (dn−1 . . . d1d0)k =

n−1∑

i=0

di · k
i

In particular, the empty string ε denotes the number 0. Accordingly, every language

L ⊆ Σ∗
k defines a certain set of numbers:

(L)k =
{
(w)k

∣∣ w ∈ L
}
.

Note that every number has infinitely many notations with different number of leading

zeroes. In some cases it will be required that no notations have leading zeroes, that is,

L ⊆ Σ∗
k \ 0Σ∗

k . There is a bijection between such strings (languages) and nonnegative

integers (sets thereof).

For example, the set {4n | n > 0} can be written down as (10∗)4, where 10
∗ ⊆

{0, 1, 2, 3}∗ is a regular language of base-4 representations of numbers in this set. This

set is represented by the following system of equations over sets of numbers, which

transcribes the conjunctive grammar from Example 2 using a different notation:

Example 3 The least solution of the system




X1 = (X2+X2 ∩ X1+X3) ∪ {1}

X2 = (X12+X2 ∩ X1+X1) ∪ {2}

X3 = (X12+X12 ∩ X1+X2) ∪ {3}

X12 = X3+X3 ∩ X1+X2
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is X1 = {4n |n > 0}, X2 = {2 ·4n |n > 0}, X3 = {3 ·4n |n > 0}, X12 = {6 ·4n |n > 0},

or ((10∗)4, (20
∗)4, (30

∗)4, (120
∗)4) in base-4 notation. This is the unique solution of

this system in sets of positive integers.

Here, as well as everywhere in the following, addition is assumed to have a higher

precedence than the Boolean operations.

To see that this vector is indeed a solution, let us substitute the values Xi = (i0∗)4
into the equation for X1. Then the first sum can be transformed as follows:

X2 +X2 = (20∗)4 + (20∗)4 = (10+)4 ∪ (20∗20∗)4,

and similarly the second sum equals

X1 +X3 = (10∗)4 + (30∗)4 = (10+)4 ∪ (10∗30∗)4 ∪ (30∗10∗)4.

Then their intersection is

(X2 +X2) ∩ (X1 +X3) = (10+)4,

and after taking union with {1}, exactly (10∗)4 = X1 is obtained.

Each of the three remaining equations is checked similarly. It remains to show that

the given solution is the unique solution of this system in sets of positive numbers.

This follows from the general form of the right-hand sides of this system, in which all

occurrences of variables are in sums of two variables, and no constant set contains 0.

Since systems of this form will appear in the following, it is useful to state a general

solution uniqueness lemma.

Definition 6 Consider expressions with union, intersection and addition. Such an

expression is called positive if it is of the following inductively defined form:

1. a constant set not containing 0 is a positive expression;

2. a sum ϕ+ψ of any two expressions, in which no constant set contains 0, is a positive

expression;

3. a union or intersection of two positive expressions is a positive expression.

Lemma 2 Let Xi = ϕi(X1, . . . , Xn) be a system of equations over natural numbers,

in which every ϕi is a positive expression. Then it has a unique solution in sets of

positive integers.

This class of systems is a variant of the notion of a proper system of language

equations defined by Autebert et al. [1]. Lemma 2 is proved by a straightforward use

of the same methods.

This concludes the explanation of Example 3, which has a least solution with a

regular base-4 notation of all components. It is already known that every set with a

regular set of positional notations can be specified in a similar way:

Theorem 2 (Jeż [9]) For every k > 2 and for every nondeterministic finite au-

tomaton (NFA) M = (Σk, Q, q0, δ, F ) with δ : Q × Σk → 2Q, there exists a sys-

tem of equations over sets of natural numbers in variables X, Yi,j,q and Zi,j with

1 6 i < k, 0 6 j < k and q ∈ Q, which has the least solution X = (L(M)R)k,

Yi,j,q = (ij(LM (q))R)k, Zi,j = (ij0∗)k.
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This system, which basically simulates the NFA reading base-k notation of a num-

ber from the right to the left, has been given in the cited paper, and is included here

in the new notation for completeness. The construction is first done assuming k > 9,

and the case of 2 6 k 6 8 is dealt with later.

X =
⋃

i,j,q:
δ(q,ij)∩F 6=∅

Yi,j,q ∪ (L(M) ∩Σk)k

Yi,j,q =
⋃

`,q′:
q∈δ(q′,`)

( 3⋂

n=0

Yj−n,`,q′+Zi,n

)
∪ {(ij)k | if q = q0} (j > 4, 0 6 i 6 k − 1)

Yi,j,q =
⋃

`,q′:
q∈δ(q′,`)

( 4⋂

n=1

Yk−n,`,q′+Zi−1,j+n

)
∪ {(ij)k | if q = q0} (j 6 3, i 6= 1)

Y1,j,q =
⋃

`,q′:q∈δ(q′,`)

( 4⋂

n=1

Yj+n,`,q′+Zk−n,0

)
∪ {(ij)k | if q = q0} (j 6 3)

Z1,j =

2⋂

n=1

Zk−n,0+Zj+n,0 ∪ {1 | if j = 0} (j 6 2)

Zi,j =

2⋂

n=1

Zi−1,k−n+Zj+n,0 ∪ {i | if j = 0} (j 6 2, i > 2)

Zi,j = Zi,0+Zj,0 ∩

2⋂

n=1

Zi,j−n+Zn,0 (j > 3)

To prove the theorem, it is sufficient to substitute the given solution into the system

and verify that each equation holds true. Then, since the equations for Yi,j,q and Zi,j

are of the form required by Lemma 2, the given solution for these variables is unique

in sets of positive integers, and hence the least in sets of non-negative integers. Since

the equation for X refers only to other components of this solution, the whole vector

is the least solution of the system.

The given construction is applicable only for k > 9. It can be extended to base-k

notation with k ∈ {2, . . . , 8} using the following lemma:

Lemma 3 Let S ⊆ N be a set of numbers, let k and km (with k > 2 and m > 2) be two

bases of positional notation. Then the language L ⊆ Σ∗
k \ 0Σ∗

k of base-k notations of

numbers in S is regular (linear conjunctive) if and only if the language L′ ⊆ Σ∗
km\0Σ∗

km

of their base-km notations is regular (linear conjunctive, respectively).

Proof Define a block code h : Σ∗
km → Σ∗

k as follows: for any k-ary digits d0, . . . , dm−1 ∈

Σk, let

h
(m−1∑

i=0

di · k
i
)
= dm−1 . . . d1d0,

where
∑m−1

i=0 di · k
i is a single digit in base-km notation. Then, clearly, (w)km =

(h(w))k for every w ∈ Σkm , and (L)km = (h(L))k for every L ⊆ Σkm .
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If S = (L′)km , consider the language L̂ = h(L′) ⊆ Σ∗
k . Since regular languages are

closed under homomorphisms, L̂ is regular provided that L′ is regular. In the case of

linear conjunctive L′, the language L̂ is linear conjunctive due to a theorem by Culik

et al. [4], because h is a block code. It is known that S = (L̂)k; however, some strings

in L̂ may have leading zeroes, if the image of the leading digit in the source string in

L′ has leading zeroes. The number of such leading zeroes is at most m− 1. Let

L =
(
{ε, 0, 02, . . . , 0m−1}−1 · L̂

)
\ 0Σ∗

k

Every string in L̂ has a representative in L with all leading zeroes removed. There-

fore, S = (L)k , and this language remains regular (linear conjunctive) by the closure

properties of both families.

Conversely, let S = (L)k and construct a modified version of L by appending a

limited number of leading zeroes:

L̃ =
(
{ε, 0, 02, . . . , 0m−1} · L

)
∩
(
(Σk)

m
)∗

Obviously, it is possible to append some number of zeroes to every string in L, so

that the number of digits in the result is divisible by m. Hence every string in L has

a representative in L̃ with the same numerical value, and S = (L̃)k . As long as L is

regular (linear conjunctive), the language L̃ is regular (linear conjunctive) as well.

Consider the language L′ = h−1(L̃) ⊆ Σ∗
km , which is regular (linear conjunctive)

by the closure of these families under inverse homomorphisms [4,8]. Every element of

L̃ is represented by an element of L′ with the same numerical value, and therefore

S = (L′)km . ut

The basic new result of this paper is a construction of systems of equations for a

large class of sets of numbers with non-regular notation. A simple example of such a set

is {(1`0`)2 | ` > 1}, where the underlying set of binary notations is linear context-free

but not regular. For convenience, the given construction will use sets with a regular

notation as constant languages; according to Theorem 2, every such “constant set” can

be expressed using additional equations with singleton constants only.

Different operations on formal languages of positional notations will be used to

define these sets and to reason about their properties. Concatenation and Kleene star

of positional notations have already been used in the explanation of Example 3. Other

operations will be the Boolean operations, as well as the following operations of sym-

bolic addition or subtraction of one. For every w ∈ Σ∗
k \ (k−1)∗, the string w′ = w�1

is defined as the unique string with |w| = |w′| and (w)k + 1 = (w′)k. Similarly, for

every w ∈ Σ∗
k \ 0

∗, define w′ = w � 1 as the unique string with |w| = |w′| and

(w)k − 1 = (w′)k.

For example, in decimal notation, 0099 � 1 = 0100 and 0100 � 1 = 0099. This

notation shall never be used for strings on which it is undefined, such as 999 � 1 and

000� 1. Symbolic addition and subtraction of one is extended to languages as

L� 1 = {w � 1 | w ∈ L \ (k − 1)∗},

L� 1 = {w � 1 | w ∈ L \ 0∗}.

This operation obviously preserves regularity, hence it can be used inside regular ex-

pressions for sets of positional notations, and the sets thus defined will remain regular,

and hence subject to Theorem 2.
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Equations constructed below will often use expressions of a particular form, which

are distributive over infinite union, in the sense that the value of an expression for

a set S can be evaluated by substituting all singletons {n} with n ∈ S into the ex-

pression, and then taking the union of all results. The following sufficient condition of

distributivity will cover all such cases in the constructions below.

Lemma 4 Let ϕ(X) be an expression defined as a composition of the following opera-

tions: (i) the variable X; (ii) constant sets; (iii) union; (iv) intersection with a constant

set; (v) addition of a constant set. Then ϕ is distributive over infinite union, that is,

ϕ(X) =
⋃

n∈X ϕ({n}).

Proof Induction on the structure of ϕ.

Basis. If ϕ(X) = X or ϕ(X) = C ⊆ N, the statement trivially holds.

Induction step I. Let ϕ(X) = ψ(X) ∪ ξ(X). By the induction hypothesis, ψ(X) =⋃
n∈X ψ({n}) and ξ(X) =

⋃
n∈X ξ({n}). Therefore,

ϕ(X) = ψ(X)∪ξ(X) =
⋃

n∈X

ψ({n})∪
⋃

n∈X

ξ({n}) =
⋃

n∈X

(
ψ({n})∪ξ({n})

)
=

⋃

n∈X

ϕ({n}).

Induction step II. If ϕ(X) = ψ(X) ∩ C for some C ⊆ N, then, by the induction

hypothesis, ψ(X) =
⋃

n∈X ψ({n}). Since union and intersection are distributive,

ϕ(X) = ψ(X) ∩ C =
( ⋃

n∈X

ψ({n})
)
∩ C =

⋃

n∈X

(
ψ({n}) ∩ C

)
=

⋃

n∈X

ϕ({n}).

Induction step III. The case of ϕ(X) = ψ(X) + C is handled similarly to the

previous case, using the distributivity of union and concatenation. ut

4 A representation of trellis automata

Theorem 2 dealt with positional notations of numbers recognized by finite automata,

and it asserted that every such set of numbers can be represented by a system of

equations. This result will now be extended from regular to linear conjunctive languages

of positional notations as follows.

Theorem 3 For every k > 2 and for every trellis automaton M over Σk =

{0, . . . , k − 1}, such that L(M) ∩ 0Σ∗
k = ∅, there exists and can be effectively con-

structed a resolved system of equations over sets of numbers using the operations ∪,

∩ and + and singleton constants, such that its least solution contains a component

(L(M))k = {n | k-ary notation of n is in L(M)}.

The proof of the theorem is given in the rest of this section. The basis of the

argument is the following simulation of the computation of a trellis automaton by a

system of equations over sets of numbers.

Lemma 5 For every k > 4 and for every trellis automaton M over Σk, there exists

and can be effectively constructed a system using constant sets with regular base-k

notation, such that one of the components of the least solution of this system is

(1(L(M)� 1)10∗)k = {(1w10`)k | ` > 0, w /∈ (k − 1)∗, w � 1 ∈ L(M)}.
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In this way every string recognized by M is represented by a set of numbers

{(1w1)k , (1w10)k, (1w100)k, . . .}, in which the digits forming w are placed between

two 1s, and there may be any number of zeroes after the last 1. The reason to have

multiple representatives is that trellis automata require appending symbols at each side

of the string, and there is no apparent uniform way to obtain a number (wi)k , with

w ∈ Σ∗
k and i ∈ Σk, from a number (w)k using addition. On the other hand, a number

(1wi10`)k may be obtained from (1w10`+1)k by adding a number of a simple form

((i − 1)10`)k. Such an addition consumes one zero in the lower digits of the number,

and hence the below construction requires an unbounded supply of these zeroes.

Proof For a given trellis automaton M = (Σk, Q, I, δ, F ), define a system of equations

over sets of numbers with the set of variables Xq for q ∈ Q, and with an additional

variable Y . It will be proved that the least solution of that system is Xq = Lq , Y = L,

where

Lq = (1((LM (q) \ 0∗)� 1)10∗)k = {(1w10`)k | ` > 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)},

L = (1((L(M) \ 0∗)� 1)10∗)k = {(1w10`)k | ` > 0, w /∈ (k − 1)∗, w � 1 ∈ L(M)}.

The equations are rather complex and will be constructed and explained in stages.

Define expressions λi and ρj , for i, j ∈ Σk, which depend on the variables Xq , and

which will be used as building blocks for constructing equations forXq . For convenience,

the inner subexpressions of λi are denoted by κi′ and the inner subexpressions of ρj
are πj′ .

κi′ (X) =
(
X ∩ (1i′Σ∗

k10
∗)k

)
+(10∗)k ∩ (2i′Σ∗

k)k, for all i′ ∈ Σk

λi(X) =
⋃

i′∈Σk

(
κi′ (X)+((k + i− 2)0∗)k ∩ (1iΣ∗

k)k
)
, for i = 0, 1

λi(X) =
⋃

i′∈Σk

(
κi′ (X)+(1(i− 2)0∗)k ∩ (1iΣ∗

k)k
)
, for i > 2

πj′ (X) =
(
X ∩ (1Σ∗

kj
′
10

∗)k
)
+(10∗)k ∩ (1Σ∗

kj
′
20

∗)k, for all j′ ∈ Σk

ρj(X) =
⋃

j′∈Σk

(
πj′(X)+((k + j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
, for j = 0, 1

ρj(X) =
⋃

j′∈Σk

(
πj′(X)+(1(j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
, for 2 6 j 6 k − 2

ρk−1(X) =
⋃

j′∈Σk

(
πj′(X)+((k − 3)10∗)k ∩ (1Σ∗

k(k − 1)10∗)k
)

As elsewhere, addition has a higher precedence than intersection.

Also define the following constant sets Rq ⊆ N for every q ∈ Q:

Rq = {(1(w � 1)10∗)k | w ∈ 0
∗(Σk \ 0) ∪ (Σk \ 0)0∗, w ∈ LM (q)}

By Lemma 1, the language of positional notations of these numbers is regular, so those

are allowed constants.

Using the functions λi and ρj , as well as the constant sets Rq , the system of

equations over N can be succinctly represented in the following form:




Xq = Rq ∪
⋃

q′,q′′ : δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′ ) ∩ ρj(Xq′) (for all q ∈ Q)

Y =
⋃

q∈F Xq
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As already mentioned, every string w ∈ Σ+ \ 0∗ is represented by numbers of the

form (1(w � 1)10`)k with ` > 0. The main idea of the construction is to represent

numbers corresponding to a string iwj ∈ LM (q), with i, j ∈ Σk and w ∈ Σ∗
k , through

numbers corresponding to the strings iw and wj. Consider that iwj belongs to LM (q) if

and only if there are states q′, q′′ with δ(q′, q′′) = q, iw ∈ LM (q′) and wj ∈ LM (q′′). In

terms of the encodings, the number (1(iwj�1)10`)k should belong to Xq if and only if

there are states q′, q′′ with δ(q′, q′′) = q, (1(iw�1)10`+1)k ∈ Xq′ and (1(wj�1)10`)k ∈

Xq′′ . The above system of equations represents exactly this dependence.

The purpose of the expression λi is to take a number of the form (1(wj�1)10`)k and

append the digit i to the left of the encoded string obtaining a number (1(iwj�1)10`)k .

Similarly, ρj starts with a number (1(iw � 1)10`+1)k and appends j to the right of

the string, also obtaining (1(iwj � 1)10`)k; note that one of the zeroes in the tail has

to be consumed. This is implemented by adding digits at some specific positions, so

that selected digits in the original number (at the left and at the right of the encoding,

respectively, whence the letters λ and ρ come from) could be modified in the resulting

number, while the rest of the digits remain the same. This is to be done by adding

a number of the form ((j − i)0`)k, where ` is the position in which digit i is to be

replaced by digit j > i.

However, since the equations deal with sets of numbers, in which different numbers

have to be modified at different positions `, this requires adding a set ((j − i)0∗)k .

Then these digits are added to each number at all possible positions, of which only

one position is intended, while the rest produce some corrupted numbers. In order

to force the addition of digits at the appropriate positions, these corrupted numbers

must be eliminated. This is done by adding sets in two phases, checking the form of the

intermediate and final results. In each phase, a digit is added and the sum is intersected

with another constant set of numbers. The intersection filters out malformed sums, thus

ensuring that the addition took place at the appropriate position.

Once these elementary operations on encoded strings are available, the high-level

construction given in the equations for Xq works rather straightforwardly. The sets

Rq contain the starting part of Lq representing elements of LM (q) of a very simple

form: either a nonzero digit followed by zeroes, or a sequence of zeroes ending with

one nonzero digit. The union over states q′, q′′ and digits i, j in the equation for Xq

represents one step of computation of M exactly according to the definition of a trellis

automaton.

The overall goal is to prove the following statement:

Main Claim The unique solution of the system in sets of non-negative integers is

Xq = Lq (for all q ∈ Q), Y = L.

Consider the system for the variables Xq , for all q. By Lemma 2, the form of this

system ensures the uniqueness of its solution in non-negative integers. The equation

for Y is just a union of some of these variables and it cannot yield any extra solutions.

It remains to substitute the vector (. . . , Lq , . . . , L) into the system and verify that all

equations hold true.

The first to be calculated is the value of each λi on each Lq , beginning with its

subexpression κi′ .

Claim 1 For each q ∈ Q and i′ ∈ Σk,

κi′(Lq) = {(2i′w10m)k |m > 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)}.
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Proof The inner subexpression X ∩ (1i′Σ∗
k10

∗)k clearly has value

Lq ∩ (1i′Σ∗
k10

∗)k = {(1i′w10m)k |m > 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)}. (3)

The evaluation of entire expression κi′ is first done for singletonsX = {n}, and then

Lemma 4 is applied to obtain its value on X = Lq . In view of the above intersection

(3), it is sufficient to consider numbers of the form

n = (1i′w10m)k .

with w′ ∈ Σ∗
k , j

′ ∈ Σk and m > 0. Then any number n′ = (10`)k = k` with ` > 0 can

be added, and it is required that the base-k notation of the sum n + n′ has 2i′ as its

first two digits.

– If the number of digits in n and n′ is the same, that is, if |i′w10m| = `, then

the leading 1s in n and n′ are in the same position, and the sum is n + n′ =

(2i′w10m)k ∈ (2i′Σ∗
k)k.

– If n′ has more digits than n, then n+n′ begins with 1, and hence n+n′ /∈ (2i′Σ∗
k)k .

– If n′ has fewer digits than n, then the form of the sum depends on whether there is

a carry into the first position. If there is no carry, then the sum of these numbers

does not begin with 2. Otherwise, if it begins with 20 due to a carry, then i′ = k−1,

but at the same time the second digit of n+ n′ is 0 and hence not i′.

These wrong combinations are filtered out by an intersection with (2i′Σ∗
k)k. Altogether

the substitution of X = {n} yields

(
{(1i′w10m)k}+ (10∗)k

)
∩ (2i′Σ∗

k)k = {(2i′w10m)k}.

Since this expression is a superposition of intersection with a constant set and addition

of a constant set, by Lemma 4, it is distributive: that is, for any T ⊆ (1i′Σ∗
k10

∗)k ,

T + (10∗)k ∩ (2i′Σ∗
k)k =

⋃

n∈T

(
{n}+ (10∗)k ∩ (2i′Σ∗

k)k
)
= {2i′w10m | 1i′w10m ∈ T}.

It remains to substitute the value (3) of the inner subexpression for T , obtaining

κi′(Lq) =
(
Lq ∩ (1i′Σ∗

k10
∗)k

)
+ (10∗)k ∩ (2i′Σ∗

k)k =

= {(1i′w10m)k |m > 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)}+ (10∗)k ∩ (2i′Σ∗
k)k =

= {(2i′w10m)k |m > 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)}, (4)

which completes the proof of Claim 1. ut

Now, knowing the value of κi′(Lq), one can evaluate λi on Lq .

Claim 2 For each i ∈ Σk and q ∈ Q,

λi(Lq) = {(1(iw � 1)10m)k | w ∈ LM (q) \ 0∗, m > 0}.
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Proof The proof is again by evaluating each subexpression, which is first done for

singletons X = {n}. Addition followed by intersection used in λi follows the same

principle as in κi′ . The set being added has a different form depending on i, and,

according to the definition of λi, there are two cases.

Consider first the case of i ∈ {0, 1}. By Claim 1, every number in κi′(Lq) is of the

form

n = (2i′w′
10

m)k.

Then a number n′ = ((k + i− 2)0`)k is added to n, and it is required that the result

begins with digits 1i. Since n has 2 as the leading digit, this digit should be modified

to obtain a result of such a form.

– If the number of digits in n and n′ is the same, that is, |i′w′10m| = `, then the

digits 2 and (k+i−2) are in the same position, and so the result n+n′ = 1ii′w′10m

is as intended.

– If n′ has more digits than n, then the sum n+ n′ has the leading digit k + i− 2 ∈

{k − 2, k − 1}, which is not 1, because k > 4. Hence, n+ n′ /∈ (1iΣ∗
k)k.

– If n′ has fewer digits than n, then the leading digit of their sum is 2 or 3, and again

the sum is not in (1iΣ∗
k)k.

After an intersection, again, only one number remains:

(
{(2i′w′

10
m)k}+ ((k + i− 2)0∗)k

)
∩ (1iΣ∗

k)k = {(1ii′w′
10

m)k}.

As in the previous case, this subexpression is distributive by Lemma 4, that is, its value

on any set T ⊆ (2i′Σ∗
k10

∗)k is obtained from its value on singletons as follows:

T + ((k + i− 2)0∗)k ∩ (1iΣ∗
k)k =

⋃

n∈T

(
{n}+ ((k + i− 2)0∗)k ∩ (1iΣ∗

k)k
)
=

= {(1ii′w′
10

m)k | 2i′w′
10

m ∈ T}.

The value (4) of the nested subexpression κi′ (Lq) is known from Claim 1. Substituting

this value for T , one obtains

κi′(Lq)+((k + i− 2)0∗)k ∩ (1iΣ∗
k)k =

= {(2i′w′
10

m)k|m > 0, i′w′ /∈ (k−1)∗, i′w′
�1 ∈ LM (q)}+((k+i−2)0∗)k ∩ (1iΣ∗

k)k =

= {(1ii′w′
10

m)k |m > 0, i′w′ /∈ (k − 1)∗, i′w′
� 1 ∈ LM (q)}. (5)

Now consider the case of i > 2, where a number n′ ∈ (1(i− 2)0∗)k is added to n.

– If n′ has exactly one digit more than n, that is, the digits 2 and i − 2 are in the

same position, then the sum equals n+ n′ = (1iw10m)k , as intended.

– If n′ has exactly as many digits as n, then there are three subcases:

– if i′ + i− 2 < k, then the result is n+ n′ = (3(i′ + i− 2)w10m)k /∈ (1iΣ∗
k)k;

– if i′+i−2 > k and k > 5, the sum is n+n′ = (4(i′+i−2−k)w10m)k /∈ (1iΣ∗
k)k ;

– and if i′ + i− 2 > k and k = 4, then n+n′ = (10(i′ + i− 2− k)w10m)k , which

is again not in (1iΣ∗
k)k since i 6= 0.

– If the number of digits in n′ is greater than the number of digits in n plus one,

then the result is n + n′ = (1(i − 2)0t2i′w′
10

m)k for some t > 0, and hence

n+ n′ /∈ (1iΣ∗
k)k.

– Finally, if there are fewer digits in n′ than in n, then the leading digit in n+ n′ is

2 or 3.
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Thus, all unintended results are filtered by intersection with (1iΣ∗
k)k, and the result

is the same as in the previous case:

(
{(2i′w′

10
m)k}+ (1(i− 2)0∗)k

)
∩ (1iΣ∗

k)k = {(1ii′w′
10

m)k}.

Then, using Lemma 4 and the value (4) of the nested subexpression κi′ (Lq), the fol-

lowing is obtained for each i > 2:

κi′(Lq)+(1(i− 2)0∗)k ∩ (1iΣ∗
k)k =

= {(2i′w′
10

m)k |m > 0, i′w′ /∈ (k−1)∗, i′w′
�1 ∈ LM (q)}+(1(i−2)0∗)k∩(1iΣ∗

k)k =

= {(1ii′w′
10

m)k |m > 0, i′w′ /∈ (k − 1)∗, i′w′
� 1 ∈ LM (q)}, (6)

and the result is the same as in the case of i ∈ {0, 1}.

As the whole expression λi is defined as the union of subexpressions evaluated

above, the set λi(Lq) equals the union of the values (5,6) for all i′ ∈ Σk. Taking a

union over i′, one obtains:

λi(Lq) =
⋃

i′

{(1ii′w10m)k |m > 0, i′w /∈ (k − 1)∗, i′w � 1 ∈ LM (q)} =

= {(1iw10m)k |m > 0, w /∈ (k − 1)∗, w � 1 ∈ LM (q)} =

= {(1iw10m)k |m > 0, w ∈ (LM (q) \ 0∗)� 1} =

= (1(i(LM (q) \ 0∗)� 1)10∗)k , (7)

and the claim is proved. ut

The expressions ρj operate in a way similar to λi. While λi modifies the first, most

significant digits of numbers (1w10`)k, ρ should modify the digits around the last non-

zero digit. This is also done by addition in two stages, but instead of intersecting the

result with sets of the form (xΣ∗
k10

∗)k, where x ∈ Σ+
k

are the intended digits, this time

one has to use intersection with (1Σ∗x0∗)k. The corresponding correctness statement

for ρj is established using generally the same argument as the previous Claim 2. First

its inner subexpression πj′ is evaluated on Lq .

Claim 3 For all q ∈ Q and j′ ∈ Σk,

πj′ (Lq) = {(1w′j′20m)k |m > 0, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)}.

Proof As in the proof of Claim 1, every subexpression of πj′(X) will be evaluated on

X = Lq . The inner subexpression of πj′ (Lq) is

Lq ∩ (1Σ∗
kj

′
10

∗)k = {(1w′j′10m)k |m > 0, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)}. (8)

Consider the next subexpression in πj′ , which is
(
X ∩ (1Σ∗

kj
′
10

∗)k
)
+ (10∗)k ∩

(1Σ∗
kj

′
20

∗)k . The first task is to evaluate it for a singleton X = {n}, where the

number is of the form

n = (1w′j′10m)k.

In this subexpression, any number n′ = (10`)k with ` > 0 can be added to n, and the

results are restricted to be in (1Σ∗
kj

′
20

∗)k, that is, n + n′ must have j′2 as its last

non-zero digits.
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– If m = `, that is, the last digit 1 in n is in the same position as the leading digit 1

in n′, then n+ n′ = (1iw′j′20m)k.

– If these digits are not aligned, then the last non-zero digit in n+n′ is 1, and hence

n+ n′ /∈ (1Σ∗
kj

′
20

∗)k.

Thus it has been shown that

{(1w′j′10m)k}+10
∗ ∩ (1Σ∗

kj
′
20

∗)k = {(1w′j′20m)k}.

As in the previous proofs, the subexpression is distributive by Lemma 4, that is,

for any T ⊆ (1Σ∗
kj

′
10

∗)k,

T + (10∗)k ∩ (1Σ∗
kj

′
20

∗)k =
⋃

n∈T

(
{n}+ (10∗)k ∩ (1Σ∗

kj
′
20

∗)k
)
=

= {1w′j′20m | 1w′j′10m ∈ T}.

Now let T be the value (8) of the inner subexpression, which gives

πj′(Lq) =
(
Lq ∩ (1Σ∗

kj
′
10

∗)k
)
+(10∗)k ∩ (1Σ∗

kj
′
20

∗)k =

= {(1w′j′20m)k |m > 0, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)}, (9)

and thus proves Claim 3. ut

Claim 4 For each j ∈ Σk and q ∈ Q,

ρj(Lq) = {(1(w(j + 1 mod k)� 1)10m)k | w ∈ LM (q) \ 0∗, m > 0}.

Proof The evaluation of subexpressions of ρj(X) on X = Lq splits into three cases

according to the digit j. In each case the innermost subexpression is πj′ (X), and its

value πj′ (Lq) contains only numbers of the form

n = (1w′j′20m)k,

with w′j′ /∈ (k − 1)∗.

The first case is j ∈ {0, 1}, where ρj has a subexpression πj′(X)+((k+j−2)10∗)k ∩

(1Σ∗
kj10

∗)k. Here any number n′ = ((k + j − 2)10`)k with ` > 0 is added to n, and

it is required that the sum n + n′ has j1 as its last non-zero digits. There are several

subcases depending on the number of ending zeroes in n and in n′, which is m and `,

respectively:

– If ` = m − 1, that is, the last non-zero digit 2 in n is aligned with the leading

digit (k + j − 2) of n′, and they sum up to j, with a carry to the next digit, j′.

Accordingly, the sum of two numbers is n + n′ = (1(w′j′ � 1)j10m−1)k, as it is

intended to be. Note that since w′j′ /∈ (k − 1)∗, the string w′j′ � 1 is well-defined.

– If ` < m − 1, then the last two digits of n + n′ are (k + j − 2)1. As k > 4 and

k+ j− 2 6= j, the last non-zero digits of n+ n′ are different from j1, and therefore

n+ n′ /∈ (1Σ∗
kj10

∗)k.

– If ` = m, then the last non-zero digit of n+n′ is 3 and not 1, and the sum is again

not in (1Σ∗
kj10

∗)k.

– In case of ` > m, the last digit is 2 inherited from n, and again the sum is not of

the required form.
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It follows that all unintended sums are filtered out by intersection, and the result is

(1w′j′20m)k+((k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k = {(1(w′j′ � 1)j10m−1)k},

which, by Lemma 4, extends to any set T ⊆ (1Σ∗
kj

′
20

∗)k \ (1(k− 1)∗20∗)k as follows:

T+((k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k = {(1(w′j′ � 1)j10m−1)k | 1w′j′20m ∈ T}.

Hence, after the addition and intersection in the subexpression for j ∈ {0, 1}, the

intermediate result is

πj′(Lq)+((k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k =

= {(1(w′j′ � 1)j10m−1)k |m > 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)}. (10)

Next, consider the case of j ∈ {2, . . . , k − 2}, when ρj has inner subexpression

πj′(X) + (1(j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k. Here a number n′ = (1(j − 2)10`)k is added

to n, and the subsequent intersection requires that n + n′ has j1 as its last non-zero

digits.

– Again, for t = m − 1 the sum is (1(w′j′ � 1)j10m−1)k , which is of the required

form.

– If ` < m−1, then the last two non-zero digits of n+n′ are (j−2)1. Since j−2 6= j,

the sum is not in (1Σ∗
kj10

∗)k.

– If ` = m, then the last non-zero digit of n+ n′ is 3.

– If ` > m, then the last non-zero digit is 2 (coming from n).

Therefore, as in the previous case, the only result that passes through the intersection

is (1(w′j′ � 1)j10m−1)k, and this subexpression evaluates to

(1w′j′20m)k+(1(j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k = {(1(w′j′ � 1)j10m−1)k}.

Hence the value of the inner subexpression for 2 6 j 6 k − 2 is

πj′(Lq)+((j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k =

= {(1(w′j′ � 1)j10m−1)k |m > 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)}, (11)

which is the same as for j ∈ {0, 1}.

To conclude this case, as well as the previous one, it has been proved that for all j 6=

k−1, regardless of the value of j′, ρj transforms (1w′j′10m)k into (1(w′j′�1)j0m−1)k ,

or equivalently, (1w′j′j10m)k is obtained from (1(w′j′ � 1)10m+1)k.

Finally, consider the case of j = k − 1. Here any number n′ = ((k − 3)10`)k with

` > 0 can be added to n = (1w′j′20m)k, and their sum n + n′ is required to have

(k − 1)1 as its last non-zero digits.

– If ` = m − 1, then the sum is (1w(k − 1)10m−1)k , which passes the intersection

with (1Σ∗
k(k − 1)10∗)k.

– If ` < m− 1, then the last two digits of n+n′ are (k− 3)1, and since k− 3 6= k− 1,

this number is not of the required form.

– If ` = m, then the last digit of n+ n′ is 3.

– If ` > m, then the last digit is 2 from n.



18 Artur Jeż, Alexander Okhotin

As all wrong values have been filtered out, the value of the expression is again a

singleton:

(1w′j′20m)k+((k − 3)10∗)k ∩ (1Σ∗
k(k − 1)10∗)k = {(1w′j′(k − 1)10m−1)k}.

Thus the subexpression corresponding to j = k − 1 has the following value:

πj′(Lq)+((k − 3)10∗)k ∩ (1Σ∗
k(k − 1)10∗)k =

= {(1w′j′(k − 1)10m−1)k |m > 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)}. (12)

Now the value of ρk−1 on Lq is obtained as the union of (12) over j′:

ρk−1(Lq) =
⋃

j′

{(1w′j′(k− 1)10m−1)k |m > 1, w′j′ /∈ (k− 1)∗, w′j′�1 ∈ LM (q)} =

= {(1w(k − 1)10m−1)k |m > 1, w /∈ (k − 1)∗, w � 1 ∈ LM (q)} =

= {(1(w � 1)(k − 1)10m)k |m > 0, w /∈ 0
∗, w ∈ LM (q)}.

Note that (w � 1)(k − 1) = w0� 1, and so the latter set can be rewritten as

ρk−1(Lq) = {(1(w0� 1)10m)k |m > 0, w ∈ LM (q) \ 0∗},

which is of the form stated in the claim.

Similarly, for each j 6= k − 1, the union of (10,11) over j′ gives the value of ρj :

ρj(Lq) =
⋃

j′

{(1(w′j′ � 1)j10m−1)k |m > 1, w′j′ /∈ (k − 1)∗, w′j′ � 1 ∈ LM (q)} =

= {(1(w � 1)j10m−1)k |m > 1, w /∈ (k − 1)∗, w � 1 ∈ LM (q)} =

= {(1wj10m)k |m > 0, w /∈ 0
∗, w ∈ LM (q)}.

Here, since j 6= k−1, the string wj is equal to w(j+1)�1, and hence the result equals

{(1(w(j + 1)� 1)10m)k |m > 0, w ∈ LM (q) \ 0∗},

which completes the proof of Claim 4. ut

Now the intended solution can be substituted into the system.

Proof (Proof of the Main Claim) For every i, j ∈ Σk and q′, q′′ ∈ Q, consider the

expression λi(Lq′′ )∩ρ(Xq′ ). The values of λi(Lq′′ ) and ρ(Lq′) are known from Claim 2

and Claim 4, and the form of the expressions can be unified as follows (all sums j + 1

are modulo k):

λi(Lq′′ ) = {(1(iw(j + 1)� 1)10m)k | w(j + 1) ∈ LM (q′′) \ 0∗, m > 0}

ρj(Lq′) = {(1(iw(j + 1)� 1)10m)k | iw ∈ LM (q′) \ 0∗, m > 0}.

The intersection of these sets therefore is

λi(Lq′′ ) ∩ ρj(Lq′) =
{
(1(iw(j + 1)� 1)10m)k

∣∣

iw ∈ LM (q′), w(j + 1) ∈ LM (q′′), iw /∈ 0
∗, w(j + 1) /∈ 0

∗, m > 0
}
.
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Fix q ∈ Q. According to the definition of a trellis automaton, iw(j +1) ∈ LM (q) if

and only if iw ∈ LM (q′) and w(j+1) ∈ LM (q′′) for some q′ and q′′ with δ(q′, q′′) = q.

Then the union of λi(Lq′′ ) ∩ ρj(Lq′ ) over all such states q′ and q′′ equals

⋃

q′,q′′:δ(q′,q′′)=q

λi(Lq′′ ) ∩ ρj(Lq′) =

= {(1(iw(j + 1)� 1)10m)k | iw(j + 1) ∈ LM (q), iw /∈ 0
∗, w(j + 1) /∈ 0

∗, m > 0}.

Taking another union over all digits i and j, the following expression is obtained:

⋃

i,j∈Σk

⋃

q′,q′′:δ(q′,q′′)=q

λi(Lq′′) ∩ ρj(Lq′) =

= {(1(w � 1)10m)k | w ∈ LM (q), w /∈ Σk0
∗ ∪ 0

∗Σk, m > 0}

The cases of w ∈ Σk0
∗∪0

∗Σk are not reflected in the above expression. However, they

are included in Rq , and therefore

Rq ∪
⋃

i,j∈Σk

⋃

q′,q′′:δ(q′,q′′)=q

λi(Lq′′ ) ∩ ρj(Lq′) =

= {(1(w � 1)10m)k | w ∈ LM (q), w /∈ 0
∗, m > 0} =

= {(1w10m)k | w � 1 ∈ LM (q), w /∈ (k − 1)∗, m > 0} = Lq ,

that is, the equation for Xq turns into on equality.

This concludes the proof of the Main Claim and hence of the entire Lemma 5. ut

The system constructed in Lemma 5 represents the set (1(L(M) � 1)10∗)k for

every trellis automaton M . Every number in this set represents an encoding of a string

w ∈ L(M) modified by decrementing w as well as by introducing a pair of sentinel

digits 1 and a tail of zeroes. This next step towards representing the set (L(M))k for

every M with L(M) ∩ 0Σ∗
k = ∅ is the following lemma, in which a string w ∈ Σk is

encoded as a number (1w)k , that is, using only one sentinel digit, no zeroes and no

decrementation.

Lemma 6 For every k > 4 and for every trellis automaton M over Σk there exists and

can be effectively constructed a system using constants with a regular base-k notation,

such that one of the components of its least solution is (1 · L(M))k.

Proof For every j ∈ Σk and q ∈ Q, consider the language Lj,q = LM (q) · j−1 \ 0
∗.

By the closure properties of trellis automata, this language is generated by a trellis

automaton Mj,q. Then, by Lemma 5, there exists a system of language equations, such

that one of its variables, Yj,q, has value

Yj,q = {(1w10`)k | ` > 0, w /∈ (k − 1)∗, w � 1 ∈ Lj,q}.

in the least solution.

Let us combine these equations for all j into a single system, adding a new equation

Zq = (1LM (q) ∩ 10
∗Σk)k ∪

k−1⋃

j=0

(Yj,q ∩ (1Σ∗
k1)k) + (1j � 1)k.
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The constant set (1LM (q)∩ 10
∗Σk)k has a regular base-k notation by Lemma 1. The

value of Zq in the least solution can be calculated by substituting the values of Yj,q
into the equation for Zq .

First, the inner intersection with (1Σ∗
k1)k filters out the elements of Yj,q with one

or more zeroes in the end:

(
{(1w10`)k | ` > 0, w /∈ (k − 1)∗, w � 1 ∈ Lj,q} ∩ (1Σ∗

k1)k
)
=

=
(
{(1w1)k | w /∈ (k − 1)∗, w � 1 ∈ Lj,q}. (13)

The subsequent addition of a number (1j � 1)k = k + j − 1 to each number (1w1)k
changes the lowest digit from 1 to j and produces a carry to the second digit, thus

changing w to w � 1. Hence this subexpression has the following value:

{(1w1)k | w /∈ (k − 1)∗, w � 1 ∈ Lj,q}+ (1j � 1)k =

= {(1w1)k + (1j � 1)k | w /∈ (k − 1)∗, w � 1 ∈ Lj,q} =

= {(1(w � 1)j)k | w /∈ (k − 1)∗, w � 1 ∈ Lj,q} = (1(Lj,q \ 0∗)j)k =

= (1(LM (q) · j−1 \ 0∗)j)k = (1(LM (q) · j−1)j)k \ (10∗Σk)k =

= (1(LM (q) ∩Σ∗
kj))k \ (10∗Σk)k, (14)

It remains to substitute these values of subexpressions into the full expression for

Z, obtaining

(1LM (q) ∩ 10
∗Σk)k ∪

k−1⋃

j=0

(
(1(LM (q) ∩Σ∗

kj))k \ (10∗Σk)k

)
=

= (1LM (q) ∩ 10
∗Σk)k ∪

(
(1LM (q))k \ (10∗Σk)k

)
= (1LM (q))k, (15)

which is accordingly the value of Zq in the least solution.

Now the equation

Z =
⋃

q∈F

Zq ,

clearly has the least solution (1L(M))k. ut

The last major step of the argument is eliminating the leading digit 1 in the rep-

resentation given by Lemma 6.

Lemma 7 For every k > 4 and for every trellis automaton M over Σk with L(M) ∩

0Σ∗
k = ∅ there exists and can be effectively constructed a system over sets of natural

numbers using constants with a regular base-k notation, such that one of the components

of its least solution is (L(M))k.

Proof For every i ∈ Σk \{0} and for every q ∈ Q, the language i−1LM (q) is recognized

by a certain trellis automaton. Then, by Lemma 6, there is a system of equations over

sets of numbers, such that one of its variables, Zi,q , represents the set (1(i
−1LM (q)))k.

These systems are combined into one, and a new variable Tq is added, along with

the equation

Tq = (LM (q) ∩ (Σk \ {0}))k ∪ Z1,q ∪
⋃

i∈Σk\{0,1}

τi(Zi,q), where

τi(X) =
⋃

i′∈Σk

(
(X ∩ (1i′Σ∗

k)k)+((i− 1)0∗)k ∩ (ii′Σ∗
k)k

)
(for i 6= 0, 1)
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The purpose of the subexpression τi is to convert a number (1w)k with w ∈ Σ+
k

to

a number (iw)k. Then the right-hand side of the equation for Tq should evaluate to

Tq = (LM (q) \ 0Σ∗
k)k under the substitution Zi,q = (1(i−1LM (q)))k.

The proof starts with evaluating τi on each Zi,q :

Claim 5 For every i ∈ Σk \ {0, 1} and q ∈ Q,

τi(Zi,q) = (LM (q) ∩ iΣ+
k )k.

Proof For every i′ ∈ Σk, consider the component of the union for i′ in τi. Clearly, the

innermost subexpression has the following value:

Zi,q ∩ (1i′Σ∗
k)k = {(1w)k | iw ∈ LM (q)} ∩ (1i′Σ∗

k)k =

= {(1i′w)k | ii′w ∈ LM (q)} (16)

The next subexpression involves an addition of ((i − 1)0∗)k followed by intersec-

tion with (ii′Σk)k. As in Claims 1–4 in the proof of Lemma 5, this subexpression is

first evaluated on a singleton {n}. The nested intersection with (1i′Σ∗
k)k leaves only

numbers of the form

n = (1i′w)k,

with w ∈ Σ∗
k . Afterwards, any number n′ = ((i − 1)0`)k with ` > 0 can be added to

n, and it is required that the sum n+ n′ starts with two digits ii′.

– If the number of digits in n and n′ is the same, that is, if |i′w| = `, then the sum

is n+ n′ = (ii′w)k, as intended.

– If n′ has more digits than n, then the sum n + n′ has the leading digit i − 1, and

hence it is not in (ii′Σ∗
k)k .

– Suppose n′ has exactly one digit fewer than n, that is, |w| = `. Then the second

digit i′ in n is aligned with the leading digit i− 1 of n′, and the second digit of the

sum n + n′ equals i′ + (i − 1) modulo k. Since i′ < i′ + i − 1 < i′ + k, it follows

that this second digit cannot be i′, and therefore n+ n′ is not in (ii′Σ∗
k)k.

– If the number of digits in n′ is less by more than one than the number of digits in

n, there are two subcases:

– If the addition of n′ to n results in a carry to the second digit, then the second

digit of the result is i′ + 1 (mod k), hence it is different from i′.

– If there is no carry, then the leading digit of the sum is 1 6= i. In both cases

n+ n′ /∈ (ii′Σ∗
k)k.

This concludes the case study: all wrong combinations are excluded by an intersec-

tion, and therefore

{(1i′w)k}+((i− 1)0∗)k ∩ (ii′Σ∗
k)k = {(ii′w)k}.

Hence,

(
Zi,q ∩ (1i′Σ∗

k)k
)
+ ((i− 1)0∗)k ∩ (ii′Σ∗

k)k = {(ii′w)k | (1i′w)k ∈ Zi,q} =

= {(ii′w)k | ii′w ∈ LM (q)} = (LM (q) ∩ ii′Σ∗)k. (17)

Taking the union over i′, one obtains

τi(Zi,q) = (LM (q) ∩ iΣ+)k. (18)

which completes the proof of the claim. ut
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Getting back to the proof of Lemma 7, now the right-hand side of the equation for

each Tq can be evaluated on Zi,q = (1(i−1LM (q)))k. This is a union of k expressions,

the first of them representing a finite set, the second being the variable Z1,q, and

the rest are the subexpressions τi(Zi,q) with i ∈ Σk \ {0, 1}, evaluated in Claim 5.

Altogether, the value of Tq in the least solution of the constructed system is the union

of the following sets:

(LM (q) ∩ (Σk \ {0}))k ∪ (1(1−1LM (q)))k︸ ︷︷ ︸
(LM(q)∩1Σ+

k
)k

∪

k−1⋃

i=2

(LM (q) ∩ iΣ+
k )k =

= (LM (q) \ 0Σ∗
k)k. (19)

Since L(M) ∩ 0Σ∗
k = ∅ by assumption, the least solution of the equation

T =
⋃

q∈F

Tq

is (L(M))k . ut

Now the proof of the theorem can be easily inferred from Lemma 7.

Proof (Proof of Theorem 3) First assume k > 4. Then Lemma 7 gives a system of equa-

tions over sets of numbers with the desired least solution. This system uses constants

with a regular notation. By Theorem 2, each of these constants can be expressed by a

separate system of equations using singleton constants. The resulting system satisfies

the statement of Theorem 3.

It remains to consider the cases of k = 2, 3. Define the language L′ of base-k2

notations of numbers whose base-k notation is in L(M). Then, by Lemma 3, L′ is

generated by another trellis automaton M ′. Applying the above argument to M ′, a

system of equations specifying the given set of numbers is obtained. This completes

the proof for this remaining case. ut

Finally, the system of equations constructed in Theorem 3 can be represented as a

conjunctive grammar over a unary alphabet, which yields the following general result

on the expressive power of these grammars:

Corollary 1 Let k > 2. For every trellis automaton M over Σk, with L(M) ∩ 0Σ∗
k =

∅, there exists and can be effectively constructed a conjunctive grammar over the al-

phabet {a} that generates the language {an | k-ary notation of n is in L(M)}.

This result will now be used to establish some quite unexpected properties of unary

conjunctive grammars.

5 Decision problems for unary conjunctive grammars

One of the main techniques of proving undecidability results in formal language theory

is by representing one or another form of the language of computations of a Turing

machine. Given a TM T over an input alphabet Ω, its computations are represented
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as strings over an auxiliary alphabet Γ . For every w ∈ L(T ), let CT (w) ∈ Γ ∗ denote

some representation of the accepting computation of T on w. The language

VALC(T ) = {w\CT (w) | w ∈ Ω∗ and CT (w) is an accepting computation}

over the alphabet Ω∪Γ∪{\} is the language of valid accepting computations of T . It was

shown by Hartmanis [7] that for a certain simple encoding CT : Ω∗ → Γ ∗ the language

VALC(T ) is an intersection of two context-free languages, while the complement of

VALC(T ), denoted INVALC(T ), is context-free. Being able to represent these languages

is one of the crucial properties of trellis automata.

Proposition 1 ([13]) For every Turing machine T there exists an encoding CT :

Ω∗ → Γ ∗ of its computations, such that VALC(T ) is recognized by a trellis automaton.

This leads to a number of undecidability results for TA, which are inherited by linear

conjunctive grammars [13] and hence by conjunctive grammars of the general form [11].

However, it appears hard to replicate these results for the case of a unary alphabet: a

straightforward approach fails due to the apparent lack of structure in strings, on which

all known encodings of VALC(T ) rely. Contrary to this intuition, Theorem 3 asserts

that if the computation histories in VALC(T ) are regarded as notations of numbers,

then, as a linear conjunctive language, VALC(T ) can be specified in unary encoding

by a unary conjunctive grammar.

Let us make some further technical assumptions on the encoding of these languages.

Assume that VALC(T ) is defined over an alphabet of digits Σk = {0, . . . , k − 1}, for

a suitable k, and that 0 /∈ Ω, so that no string in VALC(T ) has a leading zero. Define

the language INVALC(T ) as (Σ∗
k \ 0Σ∗

k) \VALC(T ). These elaborations do not affect

Proposition 1, so that Theorem 3 can be used to obtain the following result:

Lemma 8 For every Turing machine T there exist and can be effectively constructed

conjunctive grammars G and G′ over the alphabet {a}, such that L(G) = {an | n ∈

(VALC(T ))k} and L(G′) = {an | n ∈ (INVALC(T ))k}, where k is the size of the

alphabet used for encoding the computations.

The undecidability of basic decision problems for unary conjunctive grammars, such

as whether a given grammar generates ∅ or whether a given grammar generates a∗,

can be easily inferred from this. Let us, however, establish a more general result:

Theorem 4 For every fixed unary conjunctive language L0 ⊆ a∗, the problem of

whether a given conjunctive grammar over {a} generates the language L0 is co-RE-

complete.

Proof The containment of the problem in co-RE is evident, since the equivalence prob-

lem for two given recursive languages is in co-RE. It is the co-RE-hardness that has to

be established.

Let G0 = (Σ,N0, P0, S0) be a fixed conjunctive grammar generating L0. Suppose

there is an algorithm to check whether L(G) = L0 for any given conjunctive grammar G

over {a}. Let us use this algorithm to solve the emptiness problem for Turing machines,

which is known to be co-RE complete. Depending on the form of L0, let us consider

two cases.

Case I: L0 contains no subset of the form a`(ap)∗, where ` > 0 and p > 1. Given

a Turing machine T , construct a conjunctive grammar GT = ({a}, NT , PT , ST ) for
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{an | n ∈ (VALC(T ))k}. On the basis of GT and G0, construct a new conjunctive

grammar G = ({a}, NT ∪N0 ∪ {S,A}, PT ∪P0 ∪P, S), where P contains the following

new rules:

S → S0 | STA

A→ aA | ε

ST → . . . (rules generating {an | n ∈ (VALC(T ))k})

S0 → . . . (rules generating L0)

Now, if L(T ) = ∅, then L(GT ) = ∅, the rule S → STA in G generates nothing,

and therefore L(G) = L(G0) = L0.

Suppose L(T ) 6= ∅. Then there is a string w\CT (w) ∈ VALC(T ), and accordingly

there exists an ∈ L(GT ). Hence the rule S → STA in G can be used to generate all

strings in ana∗, and therefore L(G) contains the subset a`(ap)∗ for ` = n and p = 1.

As L0 contains no such subset by assumption, L(G) 6= L0.

It has been proved that L(G) = L0 if and only if L(T ) = ∅, and therefore the

supposed algorithm solves the Turing machine emptiness problem, which yields a con-

tradiction. This proves the theorem for this form of L0.

Case II: L0 contains a subset a`(ap)∗, where ` > 0 and p > 1. Assume that p is

larger than the cardinality of the alphabet used for INVALC(T ) (if p is too small, any

of its multiples can be taken). Define INVALC(T ) over a p-letter alphabet, consider

the set of numbers (INVALC(T ) · 0)p, and construct a conjunctive grammar G′
T =

({a}, N ′
T , P

′
T , S

′
T ) generating {an |n ∈ (INVALC(T )·0)p}. Using G0 and G′

T , construct

a new grammar G = ({a}, N ′
T ∪N0 ∪ {S,B,C}, PT ∪ P0 ∪ P, S), where the new rules

in P are as follows:

S → S0&B | a`S′
T

B → ai (for all 0 6 i < `)

B → a`+iC (for all 1 6 i < p)

C → apC | ε

S′
T → . . . (rules generating (INVALC(T ))p)

S0 → . . . (rules generating L0)

Note that LG(B) = a∗ \ a`(ap)∗.

If L(T ) = ∅, then INVALC(T ) = Σ∗
p \ 0Σ∗

p , and hence {an | n ∈ (INVALC(T ) ·

0)p} = (ap)∗. Then the rule S → a`S′
T generates the language a`(ap)∗ ⊆ L0, while

the rule S → S0&B generates L0 \ a`(ap)∗. Therefore, L(G) = L0.

Otherwise, if L(T ) 6= ∅, then there exists w /∈ INVALC(T ), which implies a(w0)p /∈

L(G′
T ). Let (w0)p = ip, for i > 0. Then the string aip+` ∈ L0 is not generated by the

rule S → a`S′
T , and it is also not generated by S → S0&B, because it is not in LG(B).

Therefore, aip+` /∈ L(G) and L(G) 6= L0.

In this case, again, L(G) = L0 if and only if L(T ) = ∅, which proves the undecid-

ability of the problem. ut

If L0 is not generated by a conjunctive grammar, then the problem of testing

whether a given conjunctive grammar generates L0 becomes trivial. Hence, the follow-

ing characterization is obtained:
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Corollary 2 For every fixed language L0 ⊆ a∗, the problem of testing whether a given

conjunctive grammar over {a} generates L0 is either co-RE-complete or trivial.

The same method can be used to establish undecidability of some further decision

problems.

Theorem 5 For conjunctive grammars over a unary alphabet there exist no algorithm

to decide whether a given grammar generates a finite language (a regular language).

Proof The proof is by reduction from the Turing machine emptiness problem.

For any given Turing machine T , construct another TM T ′ that works as follows.

Given an input string w ∈ Σ∗, the machine T ′ first ensures that w = ε, rejecting oth-

erwise. Then it begins simulating T in parallel on all possible strings from Σ∗, starting

one more computation after every simulated step, so that after n simulated steps of

the first computation it has a total of n computations simultaneously running. This

continues until any of the simulated computations accepts, in which case T ′ accepts as

well. If none of the simulated computations ever accepts, then accordingly T ′ does not

halt. By this construction, L(T ′) = {ε} if L(T ) 6= ∅, and L(T ′) = ∅ otherwise.

Next, construct a conjunctive grammar G for the language

{a` | ` ∈ (VALC(T ′))k} · {a
kn

| n > 0},

which can be done according to Lemma 8 and to Theorem 2.

If L(T ) 6= ∅, then VALC(T ′) is a singleton. Let (VALC(T ′))k = `0. Then L(G) =

{ak
n+`0 | n > 0}, which is a non-regular language.

Otherwise, let L(T ) = ∅. Then the language VALC(T ′) of computation histories

is empty as well, and L(G) = ∅, that is, L(G) is finite.

This shows that an algorithm for testing finiteness or regularity of conjunctive

grammars over a unary alphabet would solve the emptiness problem for Turing ma-

chines, which completes the proof of the theorem. ut

Having seen the above results, it is natural to ask whether unary conjunctive lan-

guages have any nontrivial decidable properties. It is known that the membership of

a string can be decided in cubic time [11], but nothing besides this problem and its

Boolean combinations is known to be decidable. Finding such an example (or perhaps

proving its nonexistence) is left as a problem for future study.

6 Growth of unary conjunctive languages

Every infinite unary language L = {ai1 , ai2 , . . . , ain , . . .}, where 0 6 i1 < i2 < . . . <

in < . . ., can be regarded as an increasing integer sequence, and it is natural to consider

the growth rate of such sequences, represented by an increasing function g(n) = in.

Obviously, the growth of every regular language is bounded by a linear function. The

example of a conjunctive grammar for the language {a4
n

| n > 0} [9], see Example 2,

shows that the growth of unary conjunctive languages can be exponential, which raises

two questions. First, can this growth be superexponential, and is there any upper

bound for the growth rate of unary conjunctive languages? Second, can this growth be

superlinear but subexponential, such as polynomial?

The following theorem gives the strongest possible answer to the first question:
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Theorem 6 For every recursively enumerable set of natural numbers S there exists a

conjunctive grammar G over an alphabet {a}, such that the growth function of L(G) is

greater than that of S at any point. Given a Turing machine recognizing S, the grammar

G can be effectively constructed.

Proof Let f be the growth function of S, that is, 0 6 f(1) < f(2) < . . . < f(n) < . . .

and S = {f(1), f(2), . . . , f(n), . . .}. Let T be a Turing machine that recognizes S and

the numbers are given to it in unary notation. Consider the language VALC(T ), which

contains strings wn = 1
f(n)\CT (f(n)), and assume it is defined over the alphabet

Σk = {0, 1, . . . , k−1} for some k > 2. By Lemma 8, there exists a conjunctive grammar

G over an alphabet {a} that generates L = {an | n ∈ (VALC(T ))k}.

Let g(n) be the growth function of L. It is sufficient to show that g(n) > f(n) for

each n > 1. To see this, consider the values g(1), g(2), . . . , g(n). Obviously, all of these

values cannot be in {(w1)k, . . . , (wn−1)k}, and hence one of them must be (wn′)k
for some n′ > n. Let g(`) = (wn′)k, with ` ∈ {1, 2, . . . , n}. Since g is an increasing

function, g(n) > g(`). At the same time, (wn′)k > f(n′), because a computation

history on n′ is longer than n′ itself. It has thus been shown that

g(n) > g(`) = (wn′)k > f(n′) > f(n),

which completes the proof. ut

Corollary 3 For every growing recursive function f : N → N there exists a conjunctive

language L ⊆ a∗ with the growth function greater than f at any point.

Note that this quick-growing language is bound to be computationally very easy,

as the upper bound on parsing complexity for conjunctive grammars is DTIME(n2)∩

DSPACE(n) [11,14].

The next example gives a unary conjunctive language of a polynomial growth.

Proposition 2 There exists a conjunctive grammar G over an alphabet {a}, such that

the growth function g of L(G) satisfies g(n) = Θ(n2).

Proof Consider the set of numbers

S = {(2m + 3i) · 2m |m > 0, 2m 6 2m + 3i < 2m+2}.

Let g(n) denote the nth largest element of S; this is the growth function of the corre-

sponding unary language L = {an |n ∈ S}. The set of binary notations of the numbers

in S is

{
1w0m

∣∣ w ∈ {0, 1}m; (w)2 is divisible by 3
}
∪

∪
{
10w0m

∣∣ w ∈ {0, 1}m; (1w)2 is divisible by 3
}
∪

∪
{
11w0m

∣∣ w ∈ {0, 1}m; (10w)2 is divisible by 3
}

This is clearly a linear context-free language, hence L is conjunctive by Theorem 3.

Let us derive an explicit expression for g. Consider the elements of S in the range

{22m, . . . , 22m+2 − 1}. These values are given by different i with 2m 6 (2m + 3i) <

2m+2, which implies 0 6 3i < 3 ·2m. Clearly, S contains exactly 2m elements from this

interval. It follows that the set S∩{0, 1, . . . , 22m−1} contains 1+2+4+ . . .+2m−1 =

2m − 1 elements. Therefore, g(2m) = 22m and g(2m + j) = (2m + 3j)2m.
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In order to prove that S has a quadratic growth rate, it is sufficient to establish

the following inequality:

n2 6 g(n) 6 4n2

The lower bound is obtained as follows:

g(2m + i) = (2m + 3i)2m = 22m + 3i · 2m > 22m + 2i · 2m + i2 = (2m + i)2,

where the inequality is due to i · 2m > i2. On the other hand,

g(2m + i) 6 g(2m+1) = 22m+2
6 4(2m + i)2,

which proves the upper bound g(n) 6 4n2 and completes the proof. ut

This construction can be generalized to obtain the following result:

Theorem 7 For every rational number p
q > 1 there exists a conjunctive grammar G

over the alphabet {a}, such that the growth function of L(G) is g(n) = Θ(n
p
q ).

Proof (Sketch of a proof.) The proof follows the same steps as in the case of p
q = 2

treated above. The set of numbers to be represented is

S =
{
2pk + bC · ic · 2(p−q)k

∣∣ i, k > 0, 2pk 6 2pk +C · i · 2(p−q)k < 2p(k+1) },

where C = (2p − 1)/(2q − 1). ut

7 Conclusion

Two years ago no conjunctive grammars generating non-regular unary languages were

known. Following the first examples of non-regularity [9], a large nontrivial class of

unary languages has been proved to be conjunctive. In particular, this has led to

unexpected undecidability results for unary conjunctive grammars. It has also been es-

tablished that the growth of unary conjunctive languages can be as fast as theoretically

possible.

However, there are still no means of proving that some particular unary languages

in DSPACE(n) cannot be represented by conjunctive grammars. Hence the class of

conjunctive languages still could not be separated from DSPACE(n). Inventing a

method for producing any non-representability results for unary conjunctive grammars

remains a task for future research, and solving this problem would make the next major

step in the study of this noteworthy family of languages.
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