
Equations over sets of natural numbers with addition only

Artur Jeża,1, Alexander Okhotinb

aInstitute of Computer Science, University of Wroc law, Poland
b Department of Mathematics, University of Turku, Finland; Academy of Finland

Abstract

Systems of equations of the form X = Y +Z and X = C are considered, in which the unknowns are sets of
integers, “+” denotes pairwise sum of sets S+T = {m+n |m ∈ S, n ∈ T}, and C is an ultimately periodic
constant. When restricted to sets of natural numbers, such equations can be equally seen as language
equations over a one-letter alphabet with concatenation and regular constants, and it is shown that such
systems are computationally universal, in the sense that for every recursive (r.e., co-r.e.) set S ⊆ N there
exists a system with a unique (least, greatest) solution containing a component T with S = {n|16n+13 ∈ T}.
This implies undecidability of basic properties of these equations: solution existence is Π0

1-complete, solution
uniqueness is Π0

2-complete, and finiteness of the set of solutions is Σ0
3-complete. For systems over sets of

all integers, both positive and negative, there is a similar construction of a system with a unique solution
S = {n | 16n ∈ T} representing any hyper-arithmetical set S ⊆ N. Testing solution existence for such
systems is Σ1

1-complete.

Keywords: Language equations, unary languages, concatenation, computability

1. Introduction

Language equations are equations of the form ϕ(X1, . . . , Xn) = ψ(X1, . . . , Xn), in which the unknowns
Xi are formal languages, while the expressions ϕ,ψ use language-theoretic operations, such as concatenation,
Kleene star and Boolean operations, as well as constant languages. It is well-known that systems of the
resolved form

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

with union, concatenation and singleton constants define the semantics of the context-free grammars [2]. If
intersection is also allowed, such equations characterize an extension of the context-free grammars known
as conjunctive grammars [13], which have an increased expressive power and are at the same time notable
for preserving efficient parsing algorithms [14, 18].

The expressive power of language equations of the general form
ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)

...
ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)

(**)

was determined by Okhotin [17, 16], who proved that a language is representable by a unique solution of
a system with concatenation, Boolean operations and singleton constants if and only if this language is

IThis work has been presented at the STACS 2009 conference held in Freiburg, Germany on February 26–28, 2009. Research
supported by MNiSW grant number N N206 49/2638, 2010–2012, and by the Academy of Finland under grants 118540 and
134860.

Preprint submitted to Elsevier December 1, 2010

recursive. Further characterisation of recursively enumerable (r.e.) and co-r.e. sets was given in terms of
least and greatest (with respect to component-wise inclusion) solutions of such systems [17]. The same ex-
pressive power is attained using concatenation with constants and union [16]. It was subsequently discovered
that language equations can be computationally universal even without any Boolean operations: Kunc [9]
constructed a finite language L ⊆ {a, b}∗, for which the greatest solution of a language equation LX = XL
is Π0

1-hard (that is, hard for co-r.e. sets). This paper establishes a similar result in the seemingly trivial case
of a one-letter alphabet.

Unary languages, defined over an alphabet {a}, form an important special class of formal languages. It
is well-known that context-free grammars over this alphabet generate only regular languages [2]. The first
example of a language equation over a unary alphabet with a non-regular unique solution was constructed by
Leiss [11]: this was an equation X = ϕ(X) with ϕ containing concatenation, complementation and constant
{a}. The question of whether conjunctive grammars (in other words, systems of language equations with
union, intersection and concatenation) can generate any non-regular languages had been a long-standing
open problem [13], until Jeż [3] constructed a conjunctive grammar generating {a4n |n > 0}. The ideas of this
example were used by Jeż and Okhotin [4] to establish some general results on the expressive power of these
equations, as well as the EXPTIME-completeness of their solutions [5]. For systems of the general form (**)
using concatenation and union, it has recently been shown by the authors [6] that they are computationally
complete; on the higher level, this result can be considered a remake of the proof of the computational
completeness of language equations [17], but encoding that proof using only sets of numbers required much
more difficult constructions.

As unary languages can be regarded as sets of natural numbers, unary language equations are naturally
viewed as equations over sets of numbers. Concatenation of languages accordingly turns into addition of
sets

S + T = {m+ n |m ∈ S, n ∈ T},
an operation that has been a subject of much study in number theory and combinatorics [23]. Computational
complexity of expressions and circuits over sets of natural numbers with addition and different sets of
Boolean operations has first been investigated by Stockmeyer and Meyer [22] and then extensively studied
by McKenzie and Wagner [12]. A similar study for expressions and circuits over sets of both positive and
negative integers was done by Travers [24].

As compared to these circuits, equations over sets of numbers are a more general formalism, which
can express circular dependencies. The expressive power of equations over sets of natural numbers with
addition and Boolean operations was determined in the aforementioned work on language equations over
a unary alphabet [3, 4, 5, 6]: they are computationally complete. Equations over sets of integers were
recently investigated by the authors [8], and proved to define exactly the hyper-arithmetical sets, which is
a class situated at the bottom of the analytical hierarchy and properly containing the sets representable in
first-order Peano arithmetic.

This paper is concerned with equations over sets of numbers that use only addition and no Boolean
operations, both in the case of sets of natural numbers and sets of integers as unknowns. The first to be
considered is the case of natural numbers and systems of equations of the form

Xi1 + . . .+Xik + C = Xj1 + . . .+Xj` +D

in variables (X1, . . . , Xn), where C,D ⊆ N are ultimately periodic constants. In terms of language equations
over {a}, these are equations

Xi1 . . . XikK = Xj1 . . . Xj`L,

with regular constants K,L ⊆ a∗. This is the ultimately simplest case of language equations, and at the
first glance it seems out of question that such equations could have any non-trivial unique solutions (and
considering least or greatest solutions makes little difference). Probably for that reason no one has ever
proclaimed their expressive power to be an open problem. However, as proved in this paper, these equations
can have not only non-periodic unique solutions, but in fact are computationally universal. Furthermore,
their main decision problems are as hard as similar problems for language equations over multiple-letter
alphabets and using all Boolean operations [17, 16].

2

The new results are directly based on the authors’ recent proof of the computational completeness of
equations over sets of numbers with addition and union [6], though it is established using completely different
methods. The idea is to take an arbitrary system using addition and union and encode it in another system
using addition only. The solutions of the two systems will not be identical, but there will be a bijection
between solutions based upon an encoding of sets of numbers.

This encoding of sets, defined in Section 3, is an injection σ : 2N → 2N, which represents every number n
of the encoded set as the number 16n+13 in the encoding. The given encoding has two key properties. First
of all, its form can be checked by an equation, which is satisfied exactly by those sets of natural numbers
that are valid encodings of some sets; such an equation is constructed in Section 3. Second, the sum of any
two valid encodings σ(S) and σ(T) encodes both the sum and the union of the encoded sets of numbers S
and T , and furthermore, adding a certain constant to such a sum of encodings produces a set that encodes
only the sum S + T of the original sets, while adding another constant allows representing only their union
S ∪ T . In overall, as shown in Section 4, the sum and the union of any two sets is represented by their
encodings.

Finally, on the basis of this encoding, in Section 5 it is demonstrated how an arbitrary system of equations
over sets of natural numbers with union and addition can be simulated using addition only. Each variable
Xi of the original system will be represented in the new system by a variable X ′i, and the solutions of the
new system will be of the form X ′i = σ(Si) for all variables X ′i, where Xi = Si is a solution of the original
system.

The paper continues with a similar investigation of equations over sets of integers in Section 6. The
method described above is applied to encode every system with union and addition into a system with
addition only. The encoding σ is redefined as σ : Z → Z, with the same property that a number n ∈ Z is
in S if and only if 16n + 13 ∈ σ(S). This leads to representing a set S ⊆ Z by the set σ(S). The general
structure of the encoding and the associated equations are preserved and its correctness is established by a
similar argument.

All constants in both constructions are ultimately periodic; some of them are finite and some are infi-
nite. The last question is whether infinite constants are necessary to specify any non-periodic sets, and an
affirmative answer is given in Section 7.

2. Equations over sets of natural numbers

Throughout this paper, the set of natural numbers N = {0, 1, 2, . . .} is assumed to contain zero. A set of
numbers S ⊆ N is ultimately periodic if there exist numbers d > 0 and p > 1, such that n ∈ S if and only
if n+ p ∈ S for every n > d. Otherwise, S is non-periodic. Note that S is ultimately periodic if and only if
the corresponding language L = {an | n ∈ S} ⊆ a∗ is regular.

For every two subsets of natural numbers S, T ⊆ N, their sum is the set {m+ n |m ∈ S, n ∈ T}. Other
typical operations on sets are the Boolean operations, such as union, intersection and complementation.
Using complementation and addition, the first example of an equation with a non-periodic unique solution
was constructed:

Example 1 (Leiss [11]). For every expression ϕ, denote 2ϕ = ϕ + ϕ. Then the unique solution of the
equation

X = 2
(

2
(
2X
))

+ {1}

is {n | ∃i > 0 : 23i 6 n < 23i+2} = {n | base-8 notation of n begins with 1, 2 or 3}.

Expressive power of this family of equations is still quite limited [19, 20], with some simple languages
being non-representable.

The second example of a non-periodic solution of equations over sets of natural numbers was constructed
by Jeż [3] as a conjunctive grammar [13] generating the language {a4n | n > 0}. In terms of equations it is
stated as follows:

3

Example 2 (Jeż [3]). The least solution of the system
X1 =

(
(X1+X3) ∩ (X2+X2)

)
∪ {1}

X2 =
(
(X1+X1) ∩ (X2+X6)

)
∪ {2}

X3 =
(
(X1+X2) ∩ (X6+X6)

)
∪ {3}

X6 = (X1+X2) ∩ (X3+X3)

is X1 = {4n | n > 0}, X2 = {2 · 4n | n > 0}, X3 = {3 · 4n | n > 0}, X6 = {6 · 4n | n > 0}. The system has
other solutions as well, but the given one is the least with respect to component-wise inclusion.

The idea behind this example is to manipulate positional notations of natural numbers, and this idea was
subsequently used to establish the following general result on the expressive power of such equations. The
statement refers to the family of linear conjunctive languages [13], which is known to be equivalent to one-
way real-time cellular automata [15], and which properly contains the Boolean closure of linear context-free
languages.

Proposition 1 (Jeż, Okhotin [4]). For every k > 2 and for every linear conjunctive language L ⊆
{0, 1, . . . , k − 1}+ there exists a resolved system of equations

X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn),

with ϕi using singleton constants and the operations of union, intersection and addition, which has a unique
solution with X1 = {n | the base-k notation of n is in L}.

On the basis of this result, it was shown that systems of equations of the general form ϕ = ψ with
the same operations are computationally complete, and it is sufficient to use only one of the two Boolean
operations to attain computational completeness. Recursive sets are represented by unique solutions, while
using least and greatest solutions (with respect to component-wise inclusion) allows representing recursively
enumerable (r.e.) and co-recursively enumerable (co-r.e.) sets as their components.

Theorem 1 (Jeż, Okhotin [6]). For every recursive (r.e., co-r.e.) set S ⊆ N there exists an unresolved
system

ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn),

with ϕj , ψj using singleton constant {1} and the operations of union and addition, which has a unique (least,
greatest, respectively) solution with X1 = S.

Exactly the same results hold for unresolved systems with intersection, addition and singleton constants
[6], though they will not be used in this paper. A matching upper bound on the complexity of solutions is
known from the more general case of language equations [17].

The goal is now to take any system of equations with union and addition, such as those constructed in
Theorem 1, and to simulate it by another system using addition only. The solutions of the new system will
encode the solutions of the original system as described in the next section.

4

Figure 1: The addition of σ(T) + {0, 4, 11}. The following rows represent σ(T), σ(T) + {4}, σ(T) + {11} and finally σ(T) +
{0, 4, 11}. It can be seen that the last sum has only black and white cells.

3. Encoding of sets

The constructed system with addition operates with sets of a specific form. These sets have a certain
fixed periodic structure, which yields predictable results when adding sets to each other. Inscribed within
this structure is a single set of natural numbers, and sums of such encoded sets effectively produce both
union and sums of the encoded sets. Let σ : 2N → 2N be a function mapping a set S ⊆ N to its encoding
σ(S).

An arbitrary set of numbers T ⊆ N will be represented by another set S ⊆ N, which contains a number
16n+ 13 if and only if n is in T . The membership of numbers i with i 6= 13 (mod 16) in S does not depend
on T and will be defined below. Since many constructions in the following will be done modulo 16, the
following notation shall be adopted:

Definition 1. Let S ⊆ N. For each i ∈ {0, 1, . . . , 15}, tracki(S) = {n | 16n+ i ∈ S} is the set on the i-th
track of S. Moreover, for each set T ⊆ N, let τi(T) = {16n + i | n ∈ T} denote the set with T on the i-th
track and the rest of the tracks empty.

A set S is said to have an empty track i if tracki(S) = ∅, and a full track i if tracki(S) = N.

In these terms, it can be said that a set T shall be encoded in the 13-th track of a set S. The rest of
the tracks of S contain technical information needed for the below constructions to work: track 0 contains
a singleton {0}, tracks 6, 8, 9 and 12 are full and the rest of the tracks are empty.

Definition 2. For every set T ⊆ N, its encoding is the set

S = σ(T) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(T).

The first property of the encoding announced in the introduction is that there exists an equation with
the set of all valid encodings as its set of solutions. Such an equation will now be constructed.

Lemma 1. A set S ⊆ N satisfies an equation

S + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}

if and only if S = σ(T) for some T ⊆ N.

Proof. ⇒© Let S be any set that satisfies the equation. Then the sum S + {0, 4, 11} has empty tracks 2, 5,
14 and 15:

track2(S+{0, 4, 11}) = track5(S+{0, 4, 11}) = track14(S+{0, 4, 11}) = track15(S+{0, 4, 11}) = ∅

5

For this condition to hold, S must have many empty tracks as well. To be precise, each track t with any
of t, t + 4 or t + 11 (mod 16) being in {2, 5, 14, 15} must be an empty track in S. Calculating such set
of tracks, {2, 5, 14, 15} − {0, 4, 11} (mod 16) = {1, 2, 3, 4, 5, 7, 10, 11, 14, 15} are the numbers of tracks that
must be empty in S.

Similar considerations apply to track 11, as track11(S+{0, 4, 11}) = {0}. For every track t with t = 11,
t+ 4 = 11 or t+ 11 = 11 (mod 16), the t-th track of S must either be an empty track or contain singleton
zero: trackt(S) = {0}. The latter must hold for at least one such t. Let us calculate all such tracks t:
these are tracks with numbers {11} − {0, 4, 11} (mod 16) = {0, 7, 11}. Since tracks number 7 and 11 are
already known to be empty, it follows that track0(S) = {0}.

In order to prove that S is a valid encoding of some set, it remains to show that tracks number 6, 8, 9, 12
in S are full. Consider first that track3(S + {0, 4, 11}) = N + 1. Let us calculate the track numbers t, for
which there exists t′ ∈ {0, 4, 11} with (t+ t′) (mod 16) = 3: these are {3}−{0, 4, 11} (mod 16) = {3, 8, 15}.
Since tracks 3, 15 are known to be empty

N + 1 = track3(S + {0, 4, 11}) = track3(S) ∪ (track15(S) + 1) ∪ (track8(S) + 1) =

= ∅ ∪∅ ∪ (track8(S) + 1) = track8(S) + 1,

and thus track 8 of S is full. The analogous argument is used to prove that tracks 12, 9, 6 are full. Consider
track7(S+ {0, 4, 11}) = N+ 1. Then {7}−{0, 4, 11} (mod 16) = {7, 3, 12}. Since it is already known that
tracks 3 and 7 are empty, the track 12 is full:

N + 1 = track7(S + {0, 4, 11}) = track7(S) ∪ track3(S) ∪ (track12(S) + 1) =

= ∅ ∪∅ ∪ (track12(S) + 1) = track12(S) + 1.

In the same way consider track9(S + {0, 4, 11}) = N. Then {9} − {0, 4, 11} (mod 16) = {9, 5, 14} and
tracks 5, 14 are empty, thus track 9 is full:

N = track9(S + {0, 4, 11}) = track9(S) ∪ track5(S) ∪ (track14(S) + 1) =

= track9(S) ∪∅ ∪∅ = track9(S).

Now let us inspect track10(S + {0, 4, 11}). Then {10}− {0, 4, 11} (mod 16) = {10, 6, 15}. Since the tracks
10, 15 are empty, the 6-th track is full:

N = track10(S + {0, 4, 11}) = track10(S) ∪ track6(S) ∪ (track15(S) + 1) =

= ∅ ∪ track6(S) ∪∅ = track6(S).

Thus it has been proved that S = σ(T) for T = track13(S).
⇐© It remains to show the converse, that is, that if S = σ(T) for some T ⊆ N, then

S + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}.

Consider the sum σ(T) + {0, 4, 11} = (σ(T) + {0}) ∪ (σ(T) + {4}) ∪ (σ(T) + {11}), where each term in the

union is split into tracks, as illustrated in Table 1. Since S =
⋃15

i=0 τi(tracki(S)),

σT + {0, 4, 11} =
(⋃

i

τi(tracki(σT)) + 0
)
∪
(⋃

i

τi(tracki(σT)) + 4
)
∪
(⋃

i

τi(tracki(σT)) + 11
)
,

and Table 1 presents the form of each term in this union. Each column represents the tracks of a particular
set, that is σ(T), σ(T) + 0, σ(T) + 4, σ(T) + 11 and finally σ(T) + {0, 4, 11}. The i-th row gives the set
encoded on the i-th track of the set represented in this column. Whenever a given track is empty, the
respective cell in the table is empty as well.

6

tracks σ(T) σ(T) + {0} σ(T) + {4} σ(T) + {11} σ(T) + {0, 4, 11}
0 {0} {0} N
1 T + 1 N + 1 N + 1
2
3 N + 1 N
4 {0} N + 1 N
5
6 N N N
7 N + 1 N + 1
8 N N T + 1 N
9 N N N
10 N N
11 {0} {0}
12 N N N N
13 T T N N
14
15

Table 1: Tracks in the sum σ(T) + {0, 4, 11}. Empty cells represent empty tracks.

According to the table, the values of the set T are reflected in three tracks of the sum σ(T) + {0, 4, 11}:
in tracks 13, 1 and 8 (in the last two cases, with offset 1). However, at the same time the sum contains full
tracks 8 and 13, as well as N + 1 in track 1, and the contributions of T to the sum are subsumed by these
numbers, as τ13(T) ⊆ τ13(N), τ1(T + 1) ⊆ τ1(N + 1) and τ8(T + 1) ⊆ τ8(N). Therefore, the value of the
expression does not depend on T . Taking the union of all entries of Table 1 proves that σ(T) + {0, 4, 11}
equals ⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11},

as stated in the lemma.

4. Simulating operations

The goal of this section is to establish the second property of the encoding σ, that is, that a sum of
encodings of two sets and a fixed constant set effectively encodes the union of these two sets, while the
addition of a different fixed constant set allows encoding the sum of the two original sets. This property is
formally stated in the following lemma, along with the actual constant sets:

Lemma 2. For all sets X,Y, Z ⊆ N,

σ(Y) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X

and
σ(Y) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X.

Proof. The goal is to show that for all Y,Z ⊆ N, the sum

σ(Y) + σ(Z) + {0, 1}

encodes the set Y +Z + 1 on one of its tracks, while the contents of all other tracks do not depend on Y or
on Z. Similarly, the sum

σ(Y) + σ(Z) + {0, 2}

7

Figure 2: The sum and union tracks in σ(Y) + σ(Z). Isolating them by adding {0, 1} and {0, 2}.

has a track that encodes Y ∪ Z, while the rest of its tracks also do not depend on Y and Z.
The common part of both of the above sums is σ(Y) + σ(Z), so let us calculate it first. Since

σ(Y) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Y) and

σ(Z) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Z),

by the distributivity of union over addition, the sum σ(Y)+σ(Z) is a union of 36 nonempty terms, each being
a sum of two individual tracks. Every such sum is contained in a single track as well, and Table 2 gives a
case inspection of the form of all these terms. Each of its six rows corresponds to one of the nonempty tracks
of σ(Y), while its six columns refer to the nonempty tracks in σ(Z). Then the cell gives the sum of these
tracks, in the form of the track number and track contents: that is, for a row representing tracki(σ(Y)) and
for a column representing trackj(σ(Z)), the cell (i, j) represents the set tracki(σ(Y)) + trackj(σ(Z)),
which is bound to be on the track i+ j (mod 16). For example, the sum of track 8 of σ(Y) and track 9 of
σ(Z) falls onto track 1 = 8 + 9 (mod 16) and equals

τ8(N) + τ9(N) = {8 + 9 + 16(m+ n) |m,n > 0} = {1 + 16n | n > 1} = τ1(N + 1),

while adding track 13 of σ(Y) to track 13 of σ(Z) results in

τ13(Y) + τ13(Z) = {26 + 16(m+ n) |m ∈ Y, n ∈ Z} = τ10(Y + Z + 1),

which is reflected in the table. Each question mark denotes a track with unspecified contents. Though
these contents can be calculated, they are actually irrelevant, because they do not influence the value of the
subsequent sums σ(Y) + σ(Z) + {0, 1} and σ(Y) + σ(Z) + {0, 2}. What is important is that none of these
tracks contains 0.

The value of each i-th track of σ(Y) + σ(Z) is obtained as the union of all sums in Table 2 that belong
to the i-th track. The final values of these tracks are presented in the corresponding column of Table 3.

8

0: {0} 6: N 8: N 9: N 12: N 13: Z

0: {0} 0: {0} 6: N 8: N 9: N 12: N 13: Z
6: N 6: N 12: N 14: N 15: N 2: N + 1 3: ?
8: N 8: N 14: N 0: N + 1 1: N + 1 4: N + 1 5: ?
9: N 9: N 15: N 1: N + 1 2: N + 1 5: N + 1 6: ?
12: N 12: N 2: N + 1 4: N + 1 5: N + 1 8: N + 1 9: ?
13: Y 13: Y 3: ? 5: ? 6 : ? 9 : ? 10: Y +Z+1

Table 2: Tracks in the sum σ(Y) + σ(Z). Question marks denote subsets of N + 1 that depend on Y or Z and whose actual
values are unimportant.

σ(Y) σ(Z) σ(Y)+σ(Z) σ(Y)+σ(Z)+{0, 1} σ(Y)+σ(Z)+{0, 2}
0 {0} {0} N N N
1 N + 1 N N + 1
2 N + 1 N + 1 N
3 ? N + 1 N + 1
4 N + 1 N + 1 N + 1
5 N + 1 N + 1 N + 1
6 N N N N N
7 N N + 1
8 N N N N N
9 N N N N N
10 Y + Z + 1 N N
11 Y + Z + 1 N
12 N N N N N
13 Y Z Y ∪ Z N Y ∪ Z
14 N N N
15 N N N

Table 3: Tracks in the sums of σ(Y) + σ(Z) with constants. Empty cells represent empty tracks.

9

Now the contents of the tracks in σ(Y) + σ(Z) + {0, 1} can be completely described. The calculations
are given in Table 3, and the result is that, for all Y and Z,

track11(σ(Y) + σ(Z) + {0, 1}) = Y + Z + 1,

tracki(σ(Y) + σ(Z) + {0, 1}) = N + 1, for i ∈ {2, 3, 4, 5},
tracki(σ(Y) + σ(Z) + {0, 1}) = N, for all other i.

It easily follows that
X = Y + Z

if and only if
σ(X) + σ({0}) + {0, 1} = σ(Y) + σ(Z) + {0, 1},

as X = X + {0}.
For the set σ(Y) + σ(Z) + {0, 2}, in the same way, for all Y and Z,

track13(σ(Y) + σ(Z) + {0, 2}) = Y ∪ Z,
trackj(σ(Y) + σ(Z) + {0, 2}) = N + 1, for j ∈ {1, 3, 4, 5, 7},
trackj(σ(Y) + σ(Z) + {0, 2}) = N, for all other j,

and therefore, for all X,Y, Z,
X = Y ∪ Z

if and only if
σ(X) + σ(X) + {0, 2} = σ(Y) + σ(Z) + {0, 2},

since X = X ∪X.
Both claims of the lemma follow.

5. Simulating a system over sets of natural numbers

Using the encoding defined above, it is now possible to represent a system with union and addition by
a system with addition only. Since Lemma 2 on the simulation of individual operations is applicable only
to equations of a simple form, the first task is to convert a given system to such a form:

Lemma 3. For every system of equations over sets of natural numbers in variables (X1, . . . , Xn) using union,
addition and constants from a class C there exists a system in variables (X1, . . . , Xn, Xn+1, . . . , Xn+m) with
all equations of the form Xi = Xj +Xk, Xi = Xj ∪Xk or Xi = C with C ∈ C, such that the set of solutions
of this system is{

(S1, . . . , Sn, f1(S1, . . . , Sn), . . . , fm(S1, . . . , Sn))
∣∣ (S1, . . . , Sn) is a solution of the original system

}
,

for some monotone functions f1, . . . , fm.

The construction is by a straightforward decomposition of equations, with new variables representing
subexpressions of the sides of the original equations. Once the equations are thus transformed, the system
can be encoded as follows.

Lemma 4. For every system of equations over sets of natural numbers in variables (X1, . . . , Xn) and with
all equations of the form X = Y +Z, X = Y ∪Z or X = C, there exists a system in variables (X ′1, . . . , X

′
n),

using only addition and constants {0, 1}, {0, 2}, {0, 4, 11}, σ({0}) and σ(C) with C used in the original
system and the ultimately periodic constant from Lemma 1, such that X ′i = S′i is a solution of the latter
system if and only if the former system has a solution Xi = Si with S′i = σ(Si).

10

Proof. The proof is by transforming this system according to Lemmata 1 and 2. First, the new system
contains the following equation for each variable X ′:

X ′ + {0, 4, 11} =
⋃

i∈{0,4,6,8,9,
10,12,13}

τi(N) ∪
⋃

i∈{1,3,7}

τi(N + 1) ∪ {11}. (1)

Next, for each equation X = Y + Z in the original system, there is a corresponding equation

X ′ + σ({0}) + {0, 1} = Y ′ + Z ′ + {0, 1} (2)

in the new system. Similarly, for each equation of the form X = Y ∪Z, the new system contains an equation

X ′ +X ′ + {0, 2} = Y ′ + Z ′ + {0, 2}. (3)

Finally, every equation X = C in the original system is represented in the new system by the following
equation:

X ′ = σ(C). (4)

By Lemma 1, (1) ensures that each solution (S′1, . . . , S
′
n) of the constructed system satisfies S′i = σ(Si)

for some sets Si ⊆ N. It is claimed that (S′1, . . . , S
′
n) satisfies each equation of the original system if and

only if (S1, . . . , Sn) satisfies the corresponding equation (2)–(4) of the constructed system. Consider each
pair of corresponding equations:

• Consider an equation X = Y + Z from the original system. Then there is a corresponding equation
(2), and, by Lemma 2, (S1, . . . , Sn) satisfies the original equation if and only if (S′1, . . . , S

′
n) satisfies

the corresponding equation (2).

• Similarly, by Lemma 2, an equation of the form X = Y ∪ Z is satisfied by (S1, . . . , Sn) if and only if
(S′1, . . . , S

′
n) satisfies (3).

• For each equation of the form Xi = C it is claimed that a set Si satisfies it if and only if σ(S′i) satisfies
the corresponding equation (4). Indeed, σ(Si) = σ(C) if and only if track13(σ(Si)) = track13(σ(C)),
and since track13(σ(Si)) = S′i and track13(σ(C)) = C, this is equivalent to Si = C.

This shows that (S1, . . . , Sn) satisfies the original system if and only if (S′1, . . . , S
′
n) satisfies the constructed

system, which proves the correctness of the construction.

Note that σ is a bijection between the sets of solutions of the two systems. Then, in particular, if the
original system has a unique solution, then the constructed system has a unique solution as well, which
encodes the solution of the original system.

Furthermore, it is important that the encoding σ respects inclusion, that is, if X ⊆ Y , then σ(X) ⊆ σ(Y).
Consider the partial order on solutions of a system, defined as (S1, . . . , Sn) 4 (S′1, . . . , S

′
n) if Si ⊆ S′i for all

i. Now if one solution of the original system is less than another, then the corresponding solutions of the
constructed system maintain this relation. Therefore, if the original system has a least (greatest) solution
with respect to this partial order, then so does the new one, and its least (greatest) solution is the image of
the least (greatest) solution of the original system.

These observations allow applying Lemmata 3 and 4 to encode each system in Theorem 1 within a system
using addition only.

Theorem 2. For every recursive (r.e., co-r.e.) set T ⊆ N there exists a system of equations
ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)

...
ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

with ϕj , ψj using the operation of addition and ultimately periodic constants, which has a unique (least,
greatest, respectively) solution with X1 = S, where T = {n | 16n+ 13 ∈ S}.

11

To be precise, the construction requires finite constants {0, 1}, {0, 2}, {0, 4, 11}, an infinite constant
σ({1}) encoding the set used in Theorem 1, another infinite constant σ({0}) required by Lemma 2, and one
more infinite constant from Lemma 1.

Note that T is computationally reducible to S via the “16n + 13” transduction, hence the following
statements:

Corollary 1. For every recursive set T ⊆ N there exists a system of equations over sets of natural numbers
using addition and ultimately periodic constants that has a unique solution, which is computationally as hard
as T .

Corollary 2. There exists a system of equations over sets of natural numbers using addition and ultimately
periodic constants which has a least (greatest) solution with its first component being r.e.-complete (co-r.e.-
complete, respectively).

Finally, the decision problems for these systems of equations turn out to be as hard as in the case of
union and addition:

Theorem 3. The problem of testing whether a system of equations over sets of natural numbers using
addition and ultimately periodic constants has a solution is Π0

1-complete. The problem of whether it has a
unique, least or greatest solution is Π0

2-complete. The problem of whether it has finitely many solutions is
Σ3-complete.

The above results equally apply to language equations over a one-letter alphabet with concatenation as
the only allowed operation and with regular constants.

Corollary 3. For every recursive (r.e., co-r.e.) language L ⊆ a∗ there exists a system of language equations
ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)

...
ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

with ϕj , ψj using the operation of concatenation and regular constants over a one-letter alphabet, which has
a unique (least, greatest, respectively) solution with X1 = L′, where L = {an | a16n+13 ∈ L′}.

Testing whether a system of language equations of this form has a solution is Π0
1-complete; testing whether

it has a unique, least or greatest solution is Π0
2-complete; testing for finitely many solutions is Σ0

3-complete.

6. Equations over sets of integers

The purpose of this section is to obtain a similar result for equations over sets of integers: namely, that
equations with union and addition can be simulated by equations with addition only, using a certain simple
encoding.

Turning to the expressive power of equations over sets of integers with union and addition, the sets
representable by their unique solutions are exactly the hyper-arithmetical sets [21]. These sets can be
defined in terms of the analytical hierarchy as follows. Let Σ1

1 denote the class of sets definable by existential
second-order arithmetical formulae, that is, sets of the form

{n ∈ Z | ∃X ⊆ Z : ϕ(X,n)},

where ϕ is a first-order formula containing subexpressions x ∈ X. The sets in Π1
1 are defined similarly, with

only universal second-order quantification. The intersection of these classes, ∆1
1 = Σ1

1 ∩ Π1
1, is the class of

hyper-arithmetical sets. It has the following representation by equations over sets of integers, similar to the
representation of recursive sets by equations over sets of natural numbers given in Theorem 1:

12

Theorem 4 (Jeż, Okhotin [8]). For every hyper-arithmetical set S ⊆ Z there is a system of equations over
sets of integers using union, addition, and the constants {1}, N and −N, which has a unique solution (S, . . .).

And conversely, if a set is given by a unique solution of a system of equations over sets of integers using
any operations representable in first-order Peano arithmetic, then this set is hyper-arithmetical.

Systems produced by Theorem 4 shall now be encoded into systems using addition only along the same
lines as in Sections 3–5. Sets of integers are subjected to generally the same transformation as in the case
of natural numbers: for every set T ⊆ Z, its encoding as the set

S = σ(T) = {0} ∪ τ6(Z) ∪ τ8(Z) ∪ τ9(Z) ∪ τ12(Z) ∪ τ13(T),

where the τ -notation for tracks is obviously extended from the natural numbers to integers and the period
16 is maintained.

The first result on this encoding is that the condition of a set X being an encoding of any set can be
specified by an equation of the form X + C = D.

Lemma 5 (cf. Lemma 1). A set S ⊆ Z satisfies an equation

S + {0, 4, 11} =
⋃

i∈{0,1,3,4,6,7,
8,9,10,12,13}

τi(Z) ∪ {11}

if and only if S = σ(T) for some T ⊆ Z.

Sketch of the proof. ⇒© Let S be any set satisfying the equation. Similarly as in Lemma 1, first the
empty tracks of S can be identified, using the property that S + {0, 4, 11} has empty tracks 2, 5, 14
and 15. By the same argument as in Lemma 1, S has empty tracks {2, 5, 14, 15} − {0, 4, 11} (mod 16) =
{1, 2, 3, 4, 5, 7, 10, 11, 14, 15}.

Then a similar analysis is applied to track 11 of S + {0, 4, 11}: every track t of S with t + t′ = 11 for
some t′ ∈ {0, 4, 11} has to be either empty or encode {0}, and the latter should hold for at least one such t.
This yields that track 0 of S encodes {0}.

As the last step, it is shown that S has the appropriate full tracks. To this end, full tracks {3, 7, 9, 10} of
S + {0, 4, 11} are investigated. Each such track t is the union of the tracks t− {0, 4, 11} of S. It turns out
that in each case two of these tracks are already known to be empty, and it is thus concluded that tracks
{6, 8, 9, 12} of S are full.
⇐© To show that S = σ(T) for some T ⊆ Z satisfies the equation

S + {0, 4, 11} =
⋃

i∈{0,1,3,4,6,7,
8,9,10,12,13}

τi(Z) ∪ {11},

the set σ(T) is represented as the union σ(T) =
⋃15

i=0 τi(tracki(σ(T))), and this representation is transferred
to σ(T) + {0, 4, 11}:

σ(T)+{0, 4, 11} =
(⋃

i

τi(tracki(σ(T)))+0
)
∪
(⋃

i

τi(tracki(σ(T)))+4
)
∪
(⋃

i

τi(tracki(σ(T)))+11
)
.

Calculations as in Lemma 1 are made, with the result given in Table 4. The last column of this table contains
the result of this whole calculation, and it can be seen that each copy of T in the union is overwritten by
some full track.

Now, assuming that the given system of equations with union and addition is decomposed to have all
equations of the form X = U + V , X = U ∪ V or X = const, these equations can be simulated in a new
system as follows:

13

tracks σ(T) σ(T) + {0} σ(T) + {4} σ(T) + {11} σ(T) + {0, 4, 11}
0 {0} {0} Z
1 T + 1 Z + 1 Z + 1
2
3 Z + 1 Z
4 {0} Z + 1 Z
5
6 Z Z Z
7 Z + 1 Z + 1
8 Z Z T + 1 Z
9 Z Z Z
10 Z Z
11 {0} {0}
12 Z Z Z Z
13 T T Z Z
14
15

Table 4: Tracks in the sum σ(T) + {0, 4, 11}. Empty cells represent empty tracks.

0 : {0} 6 : Z 8 : Z 9 : Z 12 : Z 13 : V

0 : {0} 0 : {0} 6 : Z 8 : Z 9 : Z 12 : Z 13 : V
6 : Z 6 : Z 12 : Z 14 : Z 15 : Z 2 : Z 3 :?
8 : Z 8 : Z 14 : Z 0 : Z 1 : Z 4 : Z 5 :?
9 : Z 9 : Z 15 : Z 1 : Z 2 : Z 5 : Z 6 :?
12 : Z 12 : Z 2 : Z 4 : Z 5 : Z 8 : Z 9 :?
13 : U 13 : U 3 :? 5 :? 6 :? 9 :? 10 : (U+V)+1

Table 5: Tracks in the sum σ(U) + σ(V). Question marks denote sets that depend on U or V and whose actual values are
unimportant.

Lemma 6 (cf. Lemma 2). For all sets X,U, V ⊆ Z,

σ(U) + σ(V) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if U + V = X

σ(U) + σ(V) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if U ∪ V = X.

Sketch of the proof. As in Lemma 2, it is shown that for all U, V ⊆ Z, the sum σ(U)+σ(V) encodes the sets
U + V + 1 and U ∪ V on some of its tracks. Both of those encodings can be uniquely recovered by adding
constants {0, 1} and {0, 2}, respectively.

First, σ(U) + σ(V) is calculated. Using

σ(U) = {0} ∪ τ6(Z) ∪ τ8(Z) ∪ τ9(Z) ∪ τ12(Z) ∪ τ13(U) and

σ(V) = {0} ∪ τ6(Z) ∪ τ8(Z) ∪ τ9(Z) ∪ τ12(Z) ∪ τ13(V),

this sum can be represented as a union of 36 non-empty terms, given in Table 5. Question marks denote
tracks with unspecified contents. The value of each track in σ(U) + σ(V) is given in the corresponding
column of Table 6.

Knowing the sets encoded on the tracks of σ(U) + σ(V) allows calculating the sets encoded on tracks of
σ(U) + σ(V) + {0, 1}, which is done in Table 6 as well. The result is that for all U and V ,

track11(σ(U) + σ(V) + {0, 1}) = U + V + 1,

tracki(σ(U) + σ(V) + {0, 1}) = Z, for i 6= 11.

14

σ(U) σ(V) σ(U)+σ(V) σ(U)+σ(V)+{0, 1} σ(U)+σ(V)+{0, 2}
0 {0} {0} Z Z Z
1 Z Z Z
2 Z Z Z
3 ? Z Z
4 Z Z Z
5 Z Z Z
6 Z Z Z Z Z
7 Z Z
8 Z Z Z Z Z
9 Z Z Z Z Z
10 U + V + 1 Z Z
11 U + V + 1 Z
12 Z Z Z Z Z
13 U V U ∪ V Z U ∪ V
14 Z Z Z
15 Z Z Z

Table 6: Tracks in the sums of σ(U) + σ(V) with constants.

Thus
X = U + V

holds if and only if
σ(X) + σ({0}) + {0, 1} = σ(U) + σ(V) + {0, 1}.

For the set σ(U) + σ(V) + {0, 2}, similarly,

track13(σ(U) + σ(V) + {0, 2}) = U ∪ V,
trackj(σ(U) + σ(V) + {0, 2}) = Z, for j 6= 13

and therefore for all X,U, V ,
X = U ∪ V

if and only if
σ(X) + σ(X) + {0, 2} = σ(U) + σ(V) + {0, 2}.

Using these two lemmata, one can simulate any system with addition and union by a system with addition
only. Taking systems representing different hyper-arithmetical sets, the following result on the expressive
power of systems with addition can be established:

Theorem 5. For every hyper-arithmetical set S ⊆ Z there exists a system of equations over sets of integers
using the operation of addition and ultimately periodic constants, which has a unique solution with X1 = T ,
where S = {n | 16n ∈ T}.

The constants used in the construction are {0, 1}, {0, 2}, σ({0}), σ({1}), σ(N), σ(−N) and the constant
in Lemma 5.

Sketch of a proof. A system of equations with union and addition representing S exists by Theorem 4. This
system is first decomposed to have all equations of the form X = U + V , X = U ∪ V or X = C. For
every variable X of this system, the new system has a variable X ′ with an equation as in Lemma 5. Next,
according to Lemma 6, the equations U + V = X, U ∪ V = X or X = C are transformed to equations

15

U ′ + V ′ + {0, 1} = X ′ + σ({0}) + {0, 1}, U ′ + V ′ + {0, 2} = X ′ +X ′ + {0, 2} and X ′ = σ(C), respectively,
and the resulting system should have a unique solution with X ′ = σ(X). Thus the constructed system
represents the set σ(S), and adding an extra equation X1 = X + {−13} yields the set T = σ(S)− 13 with
the desired properties.

7. Systems with finite constants

Both constructions above essentially use infinite ultimately periodic constants. It will now be shown
that the use of such constants is necessary, and systems using only addition and finite constants cannot
specify any non-trivial infinite sets, neither in the case of sets of natural of numbers, nor in the case of sets
of integers.

This is done by demonstrating that every solution (. . . , S, . . .) of such a system can be pruned in the
sense that each of its infinite components can be replaced by an empty set and the resulting vector remains
a solution.

Lemma 7. Consider a system of equations over sets of natural numbers or over sets of integers, in
variables (. . . , Xj , . . . , Yi, . . .), using addition and only finite constants. If the system has a solution
(. . . , Fj , . . . , Si, . . .), where each Fj is finite and each Si infinite, then (. . . , Fj , . . . ,∅, . . .) is a solution
as well.

Proof. Let (. . . , Fj , . . . , Si, . . .) be a solution and consider its substitution into each equation:

ϕ(. . . , Xj , . . . , Yi, . . .) = ψ(. . . , Xj , . . . , Yi, . . .).

If both sides equal ∅ under this substitution, then another substitution Xj = Fj , Yi = ∅ produces ∅ on
both sides as well.

If both sides produce a finite set, this means that neither ϕ nor ψ refer to any variables Yi. Therefore,
the substitution of Xj = Fj , Yi = ∅ produces the same value of both sides.

Finally, assume that the substitution yields an infinite set. As there are no infinite constants and all
Xj have finite values, this means that each side contains some Y -variable. Hence, under the substitution
Xj = Fj , Yi = ∅, both sides evaluate to ∅.

In a similar way, infinite components of a solution can be augmented to co-finite sets. This time the
result differs for sets of natural numbers and for sets of integers.

Consider first the case of natural numbers. For every nonempty set S ⊆ N, its upward closure S + N is
always co-finite.

Lemma 8. Consider a system of equations over sets of natural numbers in variables (. . . , Xj , . . . , Yi, . . .)
using addition and only finite constants. If it has a solution (. . . , Fj , . . . , Si, . . .), where each Fj is finite and
each Si infinite, then (. . . , Fj , . . . , Si + N, . . .) is a solution as well.

Proof. As in the previous lemma, let (. . . , Xj , . . . , Yi, . . .) be a solution, which is substituted into each
equation

ϕ(. . . , Xj , . . . , Yi, . . .) = ψ(. . . , Xj , . . . , Yi, . . .).

If both sides evaluate to ∅ or to any finite nonempty set, these cases are handled as in Lemma 7.
Assume that the value of both sides under the substitution Xj = Fj , Yi = Si is an infinite set S. Then

both sides must contain occurrences of some Y -variables. Then the substitution Xj = Fj , Yi = Si + N
produces S + N on both sides. This completes the proof that (. . . , Fj , . . . , Si + N, . . .) is a solution.

The same argument yields the following similar result for the case of integers.

Lemma 9. If a system of equations with unknown sets of integers (. . . , Xj , . . . , Yi, . . .) using addition and
only finite constants has a solution (. . . , Fj , . . . , Si, . . .), where each Fj is finite and each Si infinite, then
(. . . , Fj , . . . ,Z, . . .) is a solution as well.

16

Theorem 6. If a system of equations over sets of natural numbers using addition and finite constants has
a least (greatest, unique) solution (. . . , Si, . . .), then each Si is finite (finite or co-finite, finite, respectively).

For a system of equations over sets of integers using addition and finite constants, if it has a least
(greatest, unique) solution (. . . , Si, . . .), then each Si is finite (finite or Z, finite, respectively).

Since equations with finite constants have so trivial solutions, it is natural to expect their decision
problems to be much easier than in Theorem 3. Establishing the exact complexity of these problems is left
for future work.

8. The origin of the encoding

The encoding σ of sets of natural numbers, as well as its variant for sets of integers, has been constructed
and proved correct, but no comments have yet been given on how it was obtained.

The first to be invented was the general idea of an encoding σ : 2N → 2N with a period p and a single data
track d, satisfying pn+ d ∈ σ(S) if and only if n ∈ S, and with the rest of the tracks in σ(S) independent of
S. It was further assumed that each of the rest of the tracks must be either a singleton, or empty, or full,
and the general form of the statements of Lemmata 1 and 2 were postulated. These properties were first
expressed in the form that an equation X + C = D should check the correctness of the encoding, the sum
σ(S) + σ(T) should contain tracks for the union and for the sum of S and T , and that adding constants
{0, e} and {0, e′} with e, e′ > 1 to this sum should isolate the union track and the sum track, respectively.
The constants C and D were also assumed to have a track structure modulo p.

What remained was to find the precise encoding σ, given by the numbers p and d and by the composition
of its singleton, empty and full tracks, as well as the tracks structure of C and D and the numbers e and e′

for the future Lemmata 1 and 2. This was achieved by an exhaustive search over all possibilities, done by
a computer program for increasing p. Such encodings and the constants for the associated equations were
successfully found, and the period p = 16 used in this paper was simply the smallest number for which the
above requirements all held at the same time.

Although the encoding provided in this paper is the smallest one, it is probably not the simplest one, as
it compresses all the necessary checks as tightly as possibly. A man-made encoding with more tracks could
allow more intuitive arguments. Finding such an encoding and producing better readable arguments is left
as an open problem.

9. Conclusion

The study of language equations, surveyed in a recent paper by Kunc [10], has progressed by showing
the computational universality of simpler and simpler models [17, 9, 6]. The equations proved universal
in this paper are the simplest considered so far: the constructions use systems of equations X = Y Z and
X = C over an alphabet Σ = {a}, with ultimately periodic constants C ⊆ a∗. Little room is left for further
improvement, as infinite constants were proved to be essential.

This result, in particular, has implications on the recent research on language equations, in which concate-
nation is replaced by other operations [1], ranging between the shuffle product used to model concurrency,
and some new operations motivated by bio-informatics. Over a one-letter alphabet, most of such operations
coincide with concatenation, and thus this paper has shown computational completeness of many previously
considered classes of language equations.

An apparent omission in this paper is the lack of any simple example of a system of equations over sets of
numbers with addition and ultimately periodic constants, which would represent any non-periodic set. The
reason is that the given method of constructing such systems depends on first constructing a system with
union and addition, while already for the latter, the smallest known example of representing a non-periodic
set requires hundreds of variables [6], and if such an example is further subjected to an encoding into 16
tracks, the result would hardly be intuitive. Constructing a small example of such a system of equations
with a non-periodic unique (or least, or greatest) solution would perhaps lead to a better understanding of
what makes these simplest of language equations computationally universal.

17

[1] M. Domaratzki, K. Salomaa, “Decidability of trajectory-based equations”, Theoretical Computer Science, 345:2–3 (2005),
304–330.

[2] S. Ginsburg, H. G. Rice, “Two families of languages related to ALGOL”, Journal of the ACM, 9 (1962), 350–371.
[3] A. Jeż, “Conjunctive grammars can generate non-regular unary languages”, International Journal of Foundations of

Computer Science, 19:3 (2008), 597–615.
[4] A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet: undecidability and unbounded growth”, Theory of

Computing Systems, 46:1 (2010), 27–58.
[5] A. Jeż, A. Okhotin, “Complexity of solutions of equations over sets of natural numbers”, 25th Annual Symposium on

Theoretical Aspects of Computer Science (STACS 2008, Bordeaux, France, 21–23 February, 2008), 373–383.
[6] A. Jeż, A. Okhotin, “On the computational completeness of equations over sets of natural numbers”, Automata, Languages

and Programming (ICALP 2008, Reykjav́ık, Iceland, July 6–13, 2008), part II, LNCS 5126, 63–74.
[7] A. Jeż, A. Okhotin, “One-nonterminal conjunctive grammars over a unary alphabet”, Computer Science in Russia (CSR

2009, Novosibirsk, Russia, 18–23 August, 2009), LNCS 5675, 191–202.
[8] A. Jeż, A. Okhotin, “On equations over sets of integers”, STACS 2010 (Nancy, France, 4–6 March, 2010), 477–488.
[9] M. Kunc, “The power of commuting with finite sets of words”, Theory of Computing Systems, 40:4 (2007), 521–551.

[10] M. Kunc, “What do we know about language equations?”, Developments in Language Theory (DLT 2007, Turku, Finland,
July 3–6, 2007), LNCS 4588, 23–27.

[11] E. L. Leiss, “Unrestricted complementation in language equations over a one-letter alphabet”, Theoretical Computer
Science, 132 (1994), 71–93.

[12] P. McKenzie, K. Wagner, “The complexity of membership problems for circuits over sets of natural numbers”, Computa-
tional Complexity, 16:3 (2007), 211–244.

[13] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Combinatorics, 6:4 (2001), 519–535.
[14] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004), 19–48.
[15] A. Okhotin, “On the equivalence of linear conjunctive grammars to trellis automata”, Informatique Théorique et Appli-

cations, 38:1 (2004), 69–88.
[16] A. Okhotin, “Unresolved systems of language equations: expressive power and decision problems”, Theoretical Computer

Science, 349:3 (2005), 283–308.
[17] A. Okhotin, “Decision problems for language equations”, Journal of Computer and System Sciences, 76:3–4 (2010),

251–266.
[18] A. Okhotin, “Fast parsing for Boolean grammars: a generalization of Valiant’s algorithm”, Developments in Language

Theory (DLT 2010, London, Ontario, Canada, August 17–20, 2010), LNCS 6224, 340–351.
[19] A. Okhotin, O. Yakimova, “On language equations with complementation”, Developments in Language Theory (DLT

2006, Santa Barbara, USA, June 26–29, 2006), LNCS 4036, 420–432.
[20] A. Okhotin, O. Yakimova, “Language equations with complementation: Decision problems”, Theoretical Computer Sci-

ence, 376:1–2 (2007), 112–126.
[21] H. Rogers, Jr., Theory of Recursive Functions and Effective Computability, McGraw-Hill, 1967.
[22] L. J. Stockmeyer, A. R. Meyer, “Word problems requiring exponential time”, STOC 1973, 1–9.
[23] T. Tao, V. Vu, Additive Combinatorics, Cambridge University Press, 2006.
[24] S. D. Travers, “The complexity of membership problems for circuits over sets of integers”, Theoretical Computer Science,

369:1–3 (2006), 211–229.

18

http://dx.doi.org/10.1016/j.tcs.2005.07.013
http://dx.doi.org/10.1145/321127.321132
http://dx.doi.org/10.1142/S012905410800584X
http://dx.doi.org/10.1007/s00224-008-9139-5
http://drops.dagstuhl.de/opus/volltexte/2008/1319/
http://dx.doi.org/10.1007/978-3-540-70583-3_6
http://dx.doi.org/10.1007/978-3-642-03351-3_19
http://hal.inria.fr/docs/00/45/70/25/PDF/JezArtur.pdf
http://dx.doi.org/10.1007/s00224-006-1321-z
http://dx.doi.org/10.1007/978-3-540-73208-2_3
http://dx.doi.org/10.1016/0304-3975(94)90227-5
http://dx.doi.org/10.1007/s00037-007-0229-6
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1051/ita:2004004
http://dx.doi.org/10.1016/j.tcs.2005.07.037
http://dx.doi.org/10.1016/j.jcss.2009.08.002
http://dx.doi.org/10.1007/978-3-642-14455-4_31
http://dx.doi.org/10.1007/11779148_38
http://dx.doi.org/10.1016/j.tcs.2007.01.016
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1016/j.tcs.2006.08.017

	Introduction
	Equations over sets of natural numbers
	Encoding of sets
	Simulating operations
	Simulating a system over sets of natural numbers
	Equations over sets of integers
	Systems with finite constants
	The origin of the encoding
	Conclusion

