DFA hyper-minimisation

Paweł Gawrychowski \(^1\) Artur Jeż \(^1\)

Institute of Computer Science, University of Wrocław

November 24, 2009
DFA minimisation

Definition
DFA: \(\langle Q, \Sigma, \delta, q_0, F \rangle \), where \(\delta : Q \times \Sigma \rightarrow Q \). DFA is minimal, if it has the minimal number of states among automata recognising \(L(M) \).
DFA minimisation

Definition

DFA: \(\langle Q, \Sigma, \delta, q_0, F \rangle\), where \(\delta : Q \times \Sigma \rightarrow Q\). DFA is **minimal**, if it has the minimal number of states among automata recognising \(L(M)\).

- unique with this property
- calculated using \(\equiv_L\):

 \[
 w \equiv w' \text{ if and only if } \forall w'' \ ww'' \in L \iff w'w'' \in L
 \]

- equivalence classes correspond to
 - states of the minimal automaton
 - partition of states of \(M\)
DFA minimisation

Definition

DFA: \(\langle Q, \Sigma, \delta, q_0, F \rangle \), where \(\delta : Q \times \Sigma \rightarrow Q \). DFA is minimal, if it has the minimal number of states among automata recognising \(L(M) \).

- unique with this property
- calculated using \(\equiv_L \):
 \[
 w \equiv w' \text{ if and only if } \forall w'' \quad ww'' \in L \iff w'w'' \in L
 \]
- equivalence classes correspond to
 - states of the minimal automaton
 - partition of states of \(M \)
- Hopcroft’s algorithm: \(\mathcal{O}(n \log n) \); refines the partition of states
f-equivalence and hyper-minimisation

Definition (f-equivalent)

$L \sim L' \iff$ they differ on finite amount of words.

Extend the definition to automata.
Definition (f-equivalent)

$L \sim L' \iff$ they differ on finite amount of words.

Extend the definition to automata.

Definition (A. Badr, V. Geffert, I. Shipman)

M is hyper-minimal, if it has the minimal number of states among the f-equivalent automata. (Not unique)
Definition (f-equivalent)

$L \sim L' \iff$ they differ on finite amount of words.

Extend the definition to automata.

Definition (A. Badr, V. Geffert, I. Shipman)

M is hyper-minimal, if it has the minimal number of states among the f-equivalent automata. (Not unique)

Remark

For fixed L we extend \sim to words: $w \sim w' \iff w^{-1}L \sim w'{-1}L$

For fixed automata M we extend \sim to states: $q \sim q' \iff L(q) \sim L(q')$

(where $L(q)$ is the language recognised starting from q).
Approach

Idea

We want a relation on words, such that equivalence classes are states of a hyper-minimal automaton, \sim is a natural candidate.
Approach

Idea

We want a relation on words, such that equivalence classes are states of a hyper-minimal automaton, \(\sim \) is a natural candidate.

- Classes of \(\sim \) are groups of classes of \(\equiv \).
- We cannot greedily merge those groups: \(w : \delta(q_0, w) = q_1 : wL(q_1) \) changes to \(wL(q_3) \neq wL(q_1) \). Infinitely many such \(w \) — problem!

- No problem occurs if there are only finitely many such \(w \).
Approach

Idea

We want a relation on words, such that equivalence classes are states of a hyper-minimal automaton, \sim is a natural candidate.

- Classes of \sim are groups of classes of \equiv.
- We cannot greedily merge those groups: $w : \delta(q_0, w) = q_1 : wL(q_1)$ changes to $wL(q_3) \neq wL(q_1)$. Infinitely many such w — problem!

No problem occurs if there are only finitely many such w.

Definition

State q is in preamble if $\{w : \delta(q_0, w) = q\}$ is finite. In kernel otherwise.
Heuristic

Definition (state merging)
Heuristic

Greedily merge q to p whenever
- \(q \equiv p \) or
- \(q \sim p \) and q is in the preamble
Heuristic

Definition (state merging)

Heuristic

Greedily merge q to p whenever

- $q \equiv p$ or
- $q \sim p$ and q is in the preamble and there is no path from p to q
Heuristic

Definition (state merging)

Heuristic

Greedily merge q to p whenever
- $q \equiv p$ or
- $q \sim p$ and q is in the preamble and there is no path from p to q

Theorem (A. Badr, V. Geffert, I. Shipman)

The heuristic is proper, i.e. it results in hyper-minimal automaton f-equivalent to the input one.
Data structures

Definition (Operational definition of ~)

- $D^M(q, q')$ if $q = q'$ or,
- $D^M(q, q')$ if for all $a \in \Sigma$ $D^M(\delta_M(q, a), \delta_M(q', a))$.

Lemma

If the automaton M is minimised the D coincides with ~.
Data structures

Definition (Operational definition of \sim)

- $D^M(q, q')$ if $q = q'$ or,
- $D^M(q, q')$ if for all $a \in \Sigma$ $D^M(\delta_M(q, a), \delta_M(q', a))$.

Lemma

If the automaton M is minimised the D coincides with \sim.

We need a dictionary structure supporting

- query, if there are q, q' such that $(\delta(q, 0), \delta(q, 1)) = (\delta(q', 0), \delta(q', 1))$
- when q is merged to q', fast update of δ
Data structures

Definition (Operational definition of ⊳)
- \(D^M(q, q') \) if \(q = q' \) or,
- \(D^M(q, q') \) if for all \(a \in \Sigma \) \(D^M(\delta_M(q, a), \delta_M(q', a)) \).

Lemma

If the automaton \(M \) is minimised the \(D \) coincides with \(⊳ \).

We need a dictionary structure supporting

- query, if there are \(q, q' \) such that
 \((\delta(q, 0), \delta(q, 1)) = (\delta(q', 0), \delta(q', 1))\)
- when \(q \) is merged to \(q' \), fast update of \(\delta \)

- Deterministic — tree: the path from root to the leave is \((\delta(q, 0), \delta(q, 1))\)
- Randomised — hashing
Algorithm

Calculating relation D over states

- identify q, q' with the same successors
- delete the one with less predecessors
- update the predecessors

Using D greedily merge states.
Calculating relation D over states

- identify q, q' with the same successors
- delete the one with less predecessors
- update the predecessors

Using D greedily merge states.

Running time: $\mathcal{O}(n \log n)$ times insertion time

- insertion time:
 - deterministic: $\mathcal{O}(\log n)$
 - randomised $\mathcal{O}(1)$
Remarks and Questions

- $|\Sigma|$ has linear impact on the running time
- for partial δ, running time $O(|\delta| \log^2 n)$ can be obtained
Remarks and Questions

- $|\Sigma|$ has linear impact on the running time
- for partial δ, running time $O(|\delta| \log^2 n)$ can be obtained
- Done independantly by Markus Holzer and Andreas Maletti, CIAA 2009.
Remarks and Questions

- $|\Sigma|$ has linear impact on the running time
- for partial δ, running time $O(|\delta| \log^2 n)$ can be obtained
- Done independantly by Markus Holzer and Andreas Maletti, CIAA 2009.

- Deterministic running time $O(n \log n)$?
- Checking the f-equivalence of two automata is faster?
Refinement

Definition (distance between languages)

\[d(L, L') = \begin{cases}
\max\{|u| : u \in L(w) \Delta L(w')\} + 1 & \text{if } L \neq L' \\
0 & \text{if } L = L'
\end{cases} \]

Definition (\(k\)-f-equivalence)

\(L \sim_k L' \iff d(L, L') \leq k \)

Definition

\(M \) is \(k \)-minimal if it has the least number of states among the \(\sim_k \) automata.
Refinement

Definition (distance between languages)

\[d(L, L') = \begin{cases} \max \{|u| : u \in L(w) \Delta L(w')\} + 1 & \text{if } L \neq L' , \\ 0 & \text{if } L = L' . \end{cases} \]

Definition (k-f-equivalence)

\[L \sim_k L' \iff d(L, L') \leq k \]

Definition

\(M \) is \(k \)-minimal if it has the least number of states among the \(\sim_k \) automata.

Remark

Algorithm is similar, but some theoretical work is to be done.
Approach

Idea

- Suppose there are w_1, w_2 with respective q_1, q_2 and $L(w_1), L(w_2)$.
- We merge state q_1 to q_2
- Intuitively, $w_1 L(w_1)$ changes to $w_1 L(w_2)$
- If $L(w_1) \neq L(w_2)$ we want
 \[k \geq d(w_1 L(w_1); w_1 L(w_2)) = |w_1| + d(L(w_1), L(w_2)) \]
Approach

Idea

- Suppose there are w_1, w_2 with respective q_1, q_2 and $L(w_1), L(w_2)$.
- We merge state q_1 to q_2
- Intuitively, $w_1 L(w_1)$ changes to $w_1 L(w_2)$
- If $L(w_1) \neq L(w_2)$ we want
 \[k \geq d(w_1 L(w_1); w_1 L(w_2)) = |w_1| + d(L(w_1), L(w_2)) \]

Definition

\[w_1 \sim_k w_2 \iff L(w_1) = L(w_2) \text{ or } \min(|w_1|, |w_2|) + d(L(w_1), L(w_2)) \leq k \]

Remark

This is not an equivalence relation: it is not transitive.
Approach

Idea

- Suppose there are \(w_1, w_2 \) with respective \(q_1, q_2 \) and \(L(w_1), L(w_2) \).
- We merge state \(q_1 \) to \(q_2 \)
- Intuitively, \(w_1L(w_1) \) changes to \(w_1L(w_2) \)
- If \(L(w_1) \neq L(w_2) \) we want
 \[k \geq d(w_1L(w_1); w_1L(w_2)) = |w_1| + d(L(w_1), L(w_2)) \]

Definition

\[w_1\sim_k w_2 \iff L(w_1) = L(w_2) \text{ or } \min(|w_1|, |w_2|) + d(L(w_1), L(w_2)) \leq k \]

Remark

This is not an equivalence relation: it is not transitive.

Lemma

If \(\{w_i\}_{i=1}^\ell \) satisfy \(w_i \not\sim_k w_j \) then every automaton \(k\text{-f-equivalent to } M \) has at least \(\ell \) states.
Adjusting the relation

Definition (Expanding for states)

For q define its **representative word** $\text{word}(w)$: the longest word w such that $\delta(q_0, w) = q$. (take any word of length $k + 1$ if this is badly defined).

$q \sim_k q' \iff \text{word}(q) \sim_k \text{word}(q')$
Adjusting the relation

Definition (Expanding for states)

For \(q \) define its **representative word** \(\text{word}(w) \): the longest word \(w \) such that \(\delta(q_0, w) = q \). (take any word of length \(k + 1 \) if this is badly defined).

\[q \sim_k q' \iff \text{word}(q) \sim_k \text{word}(q') \]

Improving \(\sim_k \) to an equivalence relation \(\approx_k \) satisfying:

- \(w \approx_k w' \) implies \(w \sim_k w' \)
- equivalence class of \(\approx_k \) has a representative \(\text{Rep} \)
- \(w \not\approx_k w' \) implies \(\text{Rep}(w) \not\sim_k \text{Rep}(w') \)
Adjusting the relation

Definition (Expanding for states)

For q define its representative word $\text{word}(w)$: the longest word w such that $\delta(q_0, w) = q$. (take any word of length $k + 1$ if this is badly defined).

$q \sim_k q' \iff \text{word}(q) \sim_k \text{word}(q')$

Improving \sim_k to an equivalence relation \approx_k satisfying:

- $w \approx_k w'$ implies $w \sim_k w'$
- equivalence class of \approx_k has a representative Rep
- $w \not\approx_k w'$ implies $\text{Rep}(w) \not\sim_k \text{Rep}(w')$

Lemma

\approx_k can be calculated out of \sim_k in a greedy fashion (using word)
k-minimal Automata

Definition (k-minimal automata N)

- $Q_N = \{ \langle w \rangle : w = \text{Rep}(w) \}$
- $\delta_N(\langle w \rangle, a) = \text{Rep}(wa)$
k-minimal Automata

Definition (k-minimal automata \(N \))

- \(Q_N = \{ \langle w \rangle : w = \text{Rep}(w) \} \)
- \(\delta_N(\langle w \rangle, a) = \text{Rep}(wa) \)

Lemma

\(N \sim_k M \)

Proof.

- for \(\text{Rep}(q) \) s.t. \(|\text{Rep}(q)| > k\) transition structure does not change.
- for other states by backward induction we show that \(d(L_M(q), L_N(\text{Rep}(q))) \leq k \)

It is \(k \)-minimal by previous lemma.

Remark

Algorithm — refinement of the previous one
Questions

- Deterministic running time $O(n \log n)$?
- Checking the k-f-equivalence of two automata is faster?