Adaptive Plausible Clocks

Anders Gidenstam
Marina Papatriantafilou
Outline

- Background
 - Time, Clocks and event orderings
 - Previous Work

- Contributions
 - Non-uniformly mapped vector (NUREV) clocks
 - How to avoid information loss
 - R-Others NUREV clock
 - MinDiff NUREV clock
 - Experimental results

- Conclusions

- Future work
Time, Clocks and event orderings

- Distributed system
 - N processes: P_1, P_2, \ldots, P_N
 - Communicate through messages
 - Asynchronous system
 - No physical clock
 - Events: send/receive message or local step
Time, Clocks and event orderings

- We want to order the events of an execution
 - Why?
 - As part of some distributed algorithm
 - E.g. Caching of replicated shared objects
 - Causally consistent multicast
 - For monitoring, debugging etc..

 - How?
 - Use a logical clock algorithm (a.k.a. time stamping system) to assign timestamps to the events
 - Timestamps
 - Equality and ordering operators: $=_{LC}$, $<_{LC}$
 - Concurrent if incomparable (unordered)
Event orderings

- **Total order**
 - No concurrency
 - Example: A < C < B < D < E

- **Causal order**
 - "happened before" or "knows about" relation
 - Example: A || C, B || C, B || D, B || E
Previous Work

- **Lamport Clocks** [Lamport 1978]
 - Total order (with tie-breaker)
 - N clock entries
 - Causal order
Previous Work

- Plausible Clocks [Torres-Rojas and Ahamad, 1999]
 - Class of logical clocks
 - Orders events consistent with causal order, but may also order concurrent events.
 - Includes: Lamport Clock and Vector clock
 - R-Entry Vector Clock
 - R clock entries
 - Clock vector indexed by Process ID mod R

![Diagram showing logical clock operations](image-url)
Non-uniformly mapped R-entry vector (NUREV) clocks

- A generalization of R-entry vector clocks
 - Allows a different mapping between process ID and clock entry in each timestamp
 - Allows (for example) self tuning and adaptation of the timestamping system
 - We have proved that All NUREV clocks are plausible clocks.
 - Regardless of mapping function and how it changes.
How to avoid information loss?

- Where is ordering information lost?
 - Inflation of one process key introduces ordering among concurrent events

Minimize inflation at updates
- Choose the mapping so that the inflation is small.

Next-Contact
- Avoid inflating the keys of processes you won’t hear from in a long time
R-Others Clock (ROV)

- **Idea**
 - Preserve recent information
 - Use exclusive entry for
 - own key
 - R-2 other processes’ keys
 (Last R-2 communication partners)
 - All other process keys share one entry

- **Benefits**
 - Constant-size timestamps
 - Agrees well with **Next-Contact**
MinDiff clock

Idea

- Minimize the inflation at each clock update
 - Use exclusive entry for own key
 - Select a new mapping function on each receive update
 - Map process keys with similar values to the same entry

- Timestamps need to include mapping
 - Small for a small number of clock entries
Experiments

- Simulations
 - Peer-2-Peer systems
 - Client-Server systems

- Performance measure
 - \#ordered concurrent event pairs / total \#concurrent event pairs
Experimental results

Accuracy compared to Vector clocks.

Peer-to-peer system 100 processes
Experimental results

Accuracy compared to Vector clocks.

Client-server system 1 server 99 clients
MinDiff timestamp sizes

Comparison of timestamp sizes

- Vector clock
- MinDiff (3 entries)
- MinDiff (5 entries)

Timestamp size (byte)

System size (#processes)
Conclusions

- Non-Uniformly Mapped R-Entries Vector Clocks (NUREV)
 - A general class of logical clocks
 - Guaranteed to be plausible
 - Includes Lamport, Vector and REV clocks

- Analysis of when and how NUREV clocks order concurrent events

- New NUREV clock algorithms
 - MinDiff and R-Others clocks
 - Improved performance at small timestamp sizes
Future Work

- Apply NUREV clocks in a group communication / ordered multicast framework
 - Work in progress
- Further investigation of mapping functions
 - Subsets with constant size representation
 - Approximations
- Bound the size of vector entries
Questions?

- Contact Information:
 - Address:
 Anders Gidenstam / Marina Papatriantafilou
 Computing Science
 Chalmers University of Technology
 SE-412 96 Göteborg, Sweden
 - Email:
 <andersg, ptrianta> @ cs.chalmers.se
 - Web:
 http://www.cs.chalmers.se/~dcs/