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Abstract
The discrete Fréchet distance is a popular measure for
comparing polygonal curves. An important variant is the
discrete Fréchet distance under translation, which enables
detection of similar movement patterns in different spatial
domains. For polygonal curves of length n in the plane,
the fastest known algorithm runs in time Õ(n5) [Ben
Avraham, Kaplan, Sharir ’15]. This is achieved by
constructing an arrangement of disks of size O(n4), and
then traversing its faces while updating reachability in
a directed grid graph of size N = O(n2), which can be
done in time Õ(

√
N) per update [Diks, Sankowski ’07].

The contribution of this paper is two-fold.
First, although it is an open problem to solve dy-

namic reachability in directed grid graphs faster than
Õ(

√
N), we improve this part of the algorithm: We ob-

serve that an offline variant of dynamic s-t-reachability in
directed grid graphs suffices, and we solve this variant in
amortized time Õ(N1/3) per update, resulting in an im-
proved running time of Õ(n4.66...) for the discrete Fréchet
distance under translation. Second, we provide evidence
that constructing the arrangement of size O(n4) is nec-
essary in the worst case, by proving a conditional lower
bound of n4−o(1) on the running time for the discrete
Fréchet distance under translation, assuming the Strong
Exponential Time Hypothesis.

1 Introduction
Fréchet distance. Modern tracking devices

yield an abundance of movement data, e.g., in the
form of GPS trajectories. This data is usually given
as a sequence of points in Rd for some small dimension
d like 2 or 3. By interpolating linearly between con-
secutive points, we obtain a corresponding polygonal
curve. One of the most fundamental tasks on such
objects is to measure similarity between two curves
π, σ. A popular approach is to measure their distance
using the Fréchet distance, which has two important
variants: The classic continuous Fréchet distance is
the minimal length of a leash connecting a dog and
its owner as they continuously walk along the inter-
polated curves π and σ, respectively, from the start-
points to the endpoints without backtracking. In the
discrete Fréchet distance, at any time step the dog
and its owner must be at vertices of their curves and
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may jump to the next vertex. This discrete version
is well motivated when we think of the inputs as se-
quences of points rather than polygonal curves, i.e., if
the interpolated line segments between input points
have no meaning in the underlying application. In
comparison to other similarity measures such as the
Hausdorff distance, the Fréchet distance considers the
ordering of the vertices along the curves, thus reflect-
ing an intuitive property of curve similarity.

The time complexity of the Fréchet distance is
well understood. For the continuous Fréchet distance,
Alt and Godau designed an O(n2 log n)-time algo-
rithm for polygonal curves π, σ consisting of n ver-
tices [AG95]. Buchin et al. [BBMM14] improved
on this result by giving an algorithm that runs in
time O(n2

√
log n(log logn)3/2) on the Real RAM

and O(n2(log logn)2) on the Word RAM. The first
algorithm for the discrete Fréchet distance ran in
time O(n2) [EM94], which was later improved to
O
(
n2 log logn

logn

)
[AAKS13]. On the hardness side, con-

ditional on the Strong Exponential Time Hypothe-
sis, Bringmann [Bri14] ruled out O(n2−ε)-time algo-
rithms for any ε > 0, for both variants of the Fréchet
distance. Recently, Abboud and Bringmann [AB18]
showed that any O(n2/ log17+ε n)-time algorithm for
the discrete Fréchet distance would prove novel cir-
cuit lower bounds.

Many extensions and variants of the Fréchet
distance have been studied, e.g., generalizing from
curves to other types of objects, replacing the ground
space Rd by more complex spaces, and many more
(see, e.g., [Ind02, BBW09, AB10, CdVE+10, CW10,
MSSZ11, DH13, AFK+15]). Applications of the
Fréchet distance range from moving objects analysis
(see, e.g., [BBG+11]) through map-matching tracking
data (see, e.g., [BPSW05]) to signature verification
(see, e.g., [MP99]).

Fréchet distance under translation. For
some applications, it is useful to change the definition
of the Fréchet distance slightly. In particular, several
applications on curves evolve around the theme of de-
tecting movement patterns. For instance, given GPS
trajectories of an animal, we might want to detect
different running styles by chopping the trajectories
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into smaller pieces and clustering these pieces accord-
ing to some distance measure. For such applications,
it is inconvenient that the Fréchet distance is not in-
variant under translation.1 Indeed, the same running
style performed at different spatial locations would
result in a large Fréchet distance. In order to over-
come this issue, the Fréchet distance under transla-
tion between curves π, σ is defined as the minimal
Fréchet distance between π and any translation of
σ, i.e., we minimize over all possible translations of
σ. Clearly, this yields a translation-invariant distance
measure, and thus enables the above application.

The continuous Fréchet distance under trans-
lation was independently introduced by Efrat et
al. [EIV01] and Alt et al. [AKW01], who designed
algorithms in the plane with running time Õ(n10)
and Õ(n8), respectively2. Both groups of researchers
also presented approximation algorithms, e.g., a
(1 + ε)-approximation running in time O(n2/ε2) in
the plane [AKW01]. This line of work was ex-
tended to three dimensions with a running time of
Õ(n11) [Wen03].

The discrete Fréchet distance under translation
was first studied by Jiang et al. [JXZ08] who designed
an Õ(n6)-time algorithm in the plane. Mosig et
al. [MC05] presented an approximation algorithm
that computes the discrete Fréchet distance under
translation, rotation, and scaling in the plane, up to
a factor close to 2, and runs in time O(n4). The
best known exact algorithm for the discrete Fréchet
distance under translation in the plane is due to Ben
Avraham et al. [AKS15]. It is an improvement of the
algorithm by Jiang et al. [JXZ08] and runs in time
Õ(n5).

Our contribution. In this paper, we further
study the time complexity of the discrete Fréchet dis-
tance under translation. First, we improve the run-
ning time from Õ(n5) to Õ(n4.66...). This is achieved
by designing an improved algorithm for a subrou-
tine of the previously best algorithm, namely offline
dynamic s-t-reachability in directed grid graphs, see
Section 1.1 below for a more detailed overview.

Theorem 1.1. The discrete Fréchet distance under
translation on curves of length n in the plane can be
computed in time Õ(n14/3) = Õ(n4.66..).

Our second main result is a lower bound of
n4−o(1), conditional on the standard Strong Expo-
nential Time Hypothesis. The Strong Exponential

1In this context one could even ask for a version of the
Fréchet distance that is translation- and rotation-invariant, but
we focus on the former in this paper.

2By Õ(·) we hide polylogarithmic factors in n.

Time Hypothesis essentially asserts that Satisfiabil-
ity requires time 2n−o(n); see Section 2 for a def-
inition. This (conditionally) separates the discrete
Fréchet distance under translation from the classic
Fréchet distance, which can be computed in time
Õ(n2). Moreover, the first step of all known algo-
rithms for the discrete Fréchet distance under trans-
lation is to construct an arrangement of disks of size
O(n4). Our conditional lower bound shows that this
is essentially unavoidable.

Theorem 1.2. The discrete Fréchet distance under
translation of curves of length n in the plane requires
time n4−o(1), unless the Strong Exponential Time
Hypothesis fails.

We leave closing the gap between Õ(n4.66..) and
n4−o(1) as an open problem.

1.1 Technical Overview
Previous algorithms for the discrete

Fréchet distance under translation. Let us
sketch the algorithms by Jiang et al. [JXZ08] and
Ben Avraham et al. [AKS15]. Given sequences π =
(π1, . . . , πn) and σ = (σ1, . . . , σn) in R2 and a number
δ ≥ 0, we want to decide whether the discrete Fréchet
distance under translation of π and σ is at most δ.
From this decision procedure one can obtain an al-
gorithm to compute the actual distance via standard
techniques (i.e., parametric search).

The translations τ for which the distance of πi
and σj + τ is at most δ form a disk in R2. Over
all pairs (πi, σj) this yields O(n2) disks, all of them
having radius δ. We construct their arrangement A,
which is guaranteed to have O(n4) faces. Within
each face of A, any two translations are equivalent,
in the sense that they leave the same pairs (πi, σj)
in distance at most δ. Thus, whether the discrete
Fréchet distance is at most δ is constant in each face.
Hence, it suffices to compute the discrete Fréchet
distance between π and σ translated by τ over O(n4)
choices for τ , one for each face ofA. Since the discrete
Fréchet distance can be computed in time O(n2), this
yields an O(n6)-time algorithm, which is essentially
the algorithm by Jiang et al. [JXZ08].

To improve this further, first we consider the
Fréchet distance more closely. Denote by M the
n × n matrix with Mi,j = 1 if the points πi, σj
are in distance at most δ, and Mi,j = 0 otherwise
(M is called the “free-space diagram”). It is well-
known that the discrete Fréchet distance of π, σ is
at most δ if and only if there exists a monotone
path from the lower left to the upper right corner
of M using only 1-entries. Equivalently, consider a
directed grid graph GM on n×n vertices, where each
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node (i, j) has directed edges to (i + 1, j), (i, j + 1),
and (i + 1, j + 1), and the nodes (i, j) of GM with
Mi,j = 0 are “deactivated” (i.e., removed). Then the
discrete Fréchet distance of π, σ is at most δ if and
only if node (n, n) is reachable from node (1, 1) in
GM . See Figure 1 on page 7 for an example of a pair
of curves and its corresponding free-space diagramM
and directed grid graph GM .

With this preparation, we start from a sequence
of O(n4) faces f1, . . . , fL of the arrangement A such
that (1) each face of A is visited at least once and
(2) f` and f`+1 are neighboring in A for all `. Such a
sequence can be constructed by building a spanning
tree of the dual graph of the arrangement, doubling
any edge of the spanning tree, and then computing an
Euler tour in the resulting graph. Since consecutive
faces in this sequence are neighbors, only one pair
(πi, σj) changes its distance, i.e., either πi, σj are
in distance at most δ in f` and in distance larger
than δ in f`+1, or vice versa. This corresponds to one
activation or deactivation of a node in GM . After this
update, we want to again check whether node (n, n)
is reachable from node (1, 1) in GM . That is, using
a dynamic algorithm for s-t-reachability in directed
grid graphs, we can maintain whether the Fréchet
distance is at most δ. The best-known solution to
dynamic reachability in directed n × n grids runs in
time Õ(n) [DS07].3 Over all O(n4) faces, this yields
time Õ(n5) for the discrete Fréchet distance under
translation in the plane [AKS15].

Intuition. There are two parts to the above al-
gorithm: (1) Constructing the arrangement A and
iterating over its faces, and (2) maintaining reacha-
bility in the grid graph GM . Both parts could poten-
tially be improved.

The natural first attempt seems to attack the ar-
rangement enumeration (1). The size of the arrange-
ment is O(n4), and for no other computational prob-
lem it is known – to the best of our knowledge – that
any optimal algorithm must construct such a large
arrangement, so this part seems intuitively wasteful.
Surprisingly, our conditional lower bound of Theo-
rem 1.2 shows that constructing the arrangement is
essentially unavoidable.

The remaining part (2) at first sight seems much
less likely to be improvable, since it is a well-known
open problem to find a faster dynamic algorithm for
reachability in directed grid graphs. Nevertheless, we
managed to improve the running time of this part of
the algorithm, as sketched in what follows.

3This algorithm even works more generally for dynamic
reachability in directed planar graphs.

Our algorithm. We observe that we do not
need the full power of dynamic reachability, since we
can precompute all O(n4) updates. This leaves us
with the following problem.

Offline Dynamic Grid Reachability : We start from
the directed n × n-grid graph G in which all nodes
are deactivated. We are given a sequence of updates
u1, . . . , uU , where each u` is of the form “activate
node (i, j)” or “deactivate node (i, j)”. The goal is to
compute for each 1 ≤ ` ≤ U whether node (1, 1) can
reach node (n, n) in G after performing the updates
u1, . . . , u`.

Our main algorithmic contribution is an algo-
rithm for Offline Dynamic Grid Reachability in amor-
tized time Õ(n2/3) per update. This is faster than the
time Õ(n) obtained by using a dynamic algorithm for
reachability in directed planar graphs [DS07].

Theorem 1.3. Offline Dynamic Grid Reachability
can be solved in time Õ(n2 + U · n2/3).

We give a short overview of this algorithm. Start
with the block [n] × [n] corresponding to the matrix
M . Repeatedly split every block horizontally in the
middle, and then split every block vertically in the
middle, until we end up with constant-size blocks. We
call all the blocks considered during this process (not
just the constant-size blocks!) the “canonical” blocks,
see Figure 2 on page 9. Ben Avraham et al. [AKS15]
showed that one can store for each canonical block
of sidelength s reachability information for each pair
of boundary nodes, succinctly represented using only
Õ(s) bits of space, and efficiently computable in time
Õ(s) from the information of the two canonical child-
blocks. In particular, over all blocks this information
can be maintained in time Õ(n) per update ui.

We extend their algorithm to show that given
k updates u1, . . . , uk, we can directly compute the
reachability information after all k updates in time
Õ(n
√
k). To understand this better, observe that

each update “touches” roughly 2 · log n blocks – all
those that contain the node which is activated or
deactivated. Our approach now uses that among
the canonical blocks containing an update, the large
blocks must be shared by many updates. More
concretely, instead of recomputing the reachability
information of the large blocks at the top of the
hierarchy k times, we perform those updates jointly
and thus avoid the runtime of k explicit updates of
large blocks. This result then allows us to split the
updates u1, . . . , uU into chunks of size k = Õ(n2/3)
and compute the above reachability information for
all startpoints of chunks in total time Õ(Uk · n

√
k) =

Õ(U · n2/3).
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Now fix a chunk C = u`, . . . , u`+k−1. Denote
by T (“terminals”) the entries that get activated
or deactivated during this chunk C, and also add
(1, 1) and (n, n) to the set of terminals. We first
deactivate all terminals, obtaining a matrix M and
a corresponding grid graph GM . The basic idea now
is to determine for each pair of terminals t, t′ ∈ T
whether t′ is reachable from t in GM .

Assuming we have this reachability information
among terminals, we now show that this yields a
speedup for Offline Dynamic Grid Reachability. We
describe a simplified algorithm here, which will be im-
proved later in the paper. Build a graph H with ver-
tex set T , containing a directed edge (t, t′) if and only
if t′ is reachable from t in GM . Activate or deactivate
the nodes ofH according to the state at the beginning
of the chunk C. Then iteratively perform each update
of the chunk C by activating or deactivating the cor-
responding node of H, and check whether (n, n) is
reachable from (1, 1) in H. Disregarding the time it
takes to construct H, this reachability check can be
performed in time O(k2) per update, or total time
O(k3) over the chunk C since H has O(k) nodes and
thus O(k2) edges. This solves the Offline Dynamic
Grid Reachability problem in time Õ(n

√
k + k3) per

chunk, or Õ(Uk (n
√
k + k3)) = Õ(U(n/

√
k + k2))

in total. Setting k = n2/5 optimizes this time to
Õ(Un4/5), again ignoring the preprocessing time.
This is a simplified variant of our algorithm. We will
later show how to improve the time per reachability
check from O(k2) to Õ(k), by working directly on the
graph GM instead of constructing the graph H. This
yields total time Õ(Uk (n

√
k+k2)) = Õ(U(n/

√
k+k)),

which is Õ(Un2/3) for k = Õ(n2/3). Note that the
above analysis ignores all preprocessing terms as they
are dominated. These details are given in the subse-
quent sections.

It remains to describe how to determine reach-
ability information among terminals. To this end,
we designed a surprisingly succinct representation
of reachability from terminals to block boundaries.
Consider a canonical block B and let TB be the ter-
minals in B. For each terminal t ∈ TB let A(t) be the
lowest/rightmost point on the right/upper boundary
of B that is reachable from t, and similarly let Z(t)
be the highest/leftmost reachable point, see Figure 4
on page 11. We label any terminal t = (x, y) by
L(t) := x + y, i.e., the anti-diagonal that t is con-
tained in. For any right/upper boundary point q of
B, let `(q) be the minimal label of any terminal in TB
from which q is reachable, see Figure 3 on page 9. We
prove the following succinct representation of reach-
ability (see Corollary 4.1).

For any right/upper boundary point q of B and any
terminal t ∈ TB, q is reachable from t if and only if

q ∈ [A(t), Z(t)] and `(q) ≤ L(t).

Here, q ∈ [A(t), Z(t)] is to be understood as “q
lies between A(t) and Z(t) along the boundary of B”,
which can be expressed using a constant number of
inequalities. The “only if” part is immediate, since t
can only reach boundary vertices in [A(t), Z(t)], and
`(q) is the minimal label of any terminal reaching q;
the “if” part is surprising.

Assume we can maintain the information
A(t), Z(t), `(q). Then using this characterization we
can determine all terminals reaching a boundary
point q by a single call to orthogonal range search-
ing, since we can express the characterization using
a constant number of inequalities. A complex exten-
sion of this trick allows us to determine reachability
among terminals (indeed, this technical overview is
missing many details of Section 4). This yields our
algorithm, see Sections 3 and 4 for details.

Conditional lower bound. Our reduction
starts from the k-OV problem, which asks for k vec-
tors from k given sets such that in no dimension all
vectors are 1. More formally:

k-Orthogonal Vectors (k-OV): Given sets V1, . . . , Vk
ofN vectors in {0, 1}D, are there v1 ∈ V1, . . . , vk ∈ Vk
such that for any j ∈ [D] there exists an i ∈ [k] with
vi[j] = 0?

A naive algorithm solves k-OV in time O(NkD). It
is well-known that the Strong Exponential Time Hy-
pothesis implies that k-OV has no O(Nk−εpoly(D))-
time algorithm for all ε > 0 and k ≥ 2 [Wil05].

In our reduction we set k = 4. An overview of
our construction can be found in Figure 7 on page 16.
We consider canonical translations of the form τ =
(ε ·h1, ε ·h2) ∈ R2 with h1, h2 ∈ {0, . . . , N2−1}. By a
simple gadget, we ensure that any translation result-
ing in a Fréchet distance of at most 1 must be close
to a canonical translation. For simplicity, here we re-
strict our attention to exactly the canonical transla-
tions. Note that there are N4 canonical translations,
and thus they are in one-to-one correspondence to
choices of vectors (v1, . . . , v4) ∈ V1 × . . . × V4. In
other words, the outermost existential quantifier in
the definition of 4-OV corresponds to the existential
quantifier over the translation τ in the Fréchet dis-
tance under translation.

The next part in the definition of 4-OV is the
universal quantifier over all dimensions j ∈ [D].
For this, our constructed curves π, σ are split into
π = π(1) . . . π(D), σ = σ(1) . . . σ(D) such that π(i), σ(j)

are very far for i 6= j. This ensures that the Fréchet
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distance of π, σ is the maximum over all Fréchet
distances of π(i), σ(i), and thus simulates a universal
quantifier.

The next part is an existential quantifier over
i ∈ [k]. Here we need an OR-gadget for the Fréchet
distance. Such a construction in principle exists in
previous work [Bri14, AB18], however, no previous
construction would work with translations, in the
sense that a translation in y-direction could only de-
crease the Fréchet distance. By constructing a more
complex OR-gadget, we avoid this monotonicity, see
Figure 8 on page 18.

Finally, we need to implement a check whether
the translation τ corresponds to a particular choice
of vectors. We exemplify this with the first dimen-
sion of the translation, which we call τ1, explain-
ing how it corresponds to choosing (v1, v2). Let
ind(v1), ind(v2) ∈ {0, . . . , N − 1} be the indices of
these vectors in their sets V1, V2, respectively. We
want to test whether τ1 = ε · (ind(v1) + ind(v2) ·N).
We split this equality into two inequalities. For the
inequality τ1 ≥ ε ·(ind(v1)+ind(v2) ·N), in one curve
we place a point at π1 = (1 + ε · ind(v1),−1− η), and
in the other we place a point at σ1 = (−1−ε · ind(v2) ·
N,−1− η), for some η > 0 which we specify later in
this work. Then the distance of π1 to the translated
σ1 is essentially their difference in x-coordinates,
which is (1 +ε · ind(v1))− (−1−ε · ind(v2) ·N + τ1) =
2 + ε · (ind(v1) + ind(v2) ·N)− τ1. This is at most 2
if and only if the inequality for τ1 holds. We handle
the opposite inequality similarly, and we concatenate
the constructed points for both inequalities in order
to test equality.

In total, our construction yields curves π, σ such
that their discrete Fréchet distance under transla-
tion is at most 1 if and only if V1, . . . , V4 con-
tain orthogonal vectors. The curves π, σ consist of
n = O(D · N) vertices. Hence, an algorithm for the
discrete Fréchet distance under translation in time
O(n4−ε) would yield an algorithm for 4-OV in time
O(N4−εpoly(D)), and thus violate the Strong Expo-
nential Time Hypothesis. See Section 5 for details.

1.2 Further related work
On directed planar/grid graphs. In this pa-

per we improve offline dynamic s-t-reachability in di-
rected grid graphs. The previously best algorithm
for this problem came from a more general solution
to dynamic reachability in directed planar graphs.
For this problem, a solution with Õ(N2/3) update
time was given by Subramanian [Sub93], which was
later improved to update time Õ(

√
N) by Diks and

Sankowski [DS07]. In particular, our work yields ad-
ditional motivation to study offline variants of classic

dynamic graph problems.
Related work on dynamic directed planar or

grid graphs includes, e.g., shortest path computa-
tion [KS98, ACG12, INSW11], reachability in the
decremental setting [IKLS17], or computing the tran-
sitive closure [DS07]. Recently, the first conditional
lower bounds for dynamic problems on planar graphs
were shown by Abboud and Dahlgaard [AD16], how-
ever, they did not cover dynamic reachability in di-
rected planar graphs.

2 Preliminaries
We let [n] denote the set {1, . . . , n}. Furthermore, for
convenience, we use as convention that min ∅ = ∞
and max ∅ = −∞.

Curves, Traversals, Fréchet distances, and
more. A polygonal curve π of length n over Rd is
a sequence of points π1, . . . , πn ∈ Rd. Throughout
the paper, we only consider polygonal curves in the
Euclidean plane, i.e., d = 2. Given any translation
vector τ ∈ R2, we denote by π+τ the polygonal curve
π′ = (π′1, . . . , π

′
n) given by π′i = πi + τ .

We now define two types of concatenations:
a concatenation of curves and a concatenation of
traversals. Let π = (π1, . . . , πn), σ = (σ1, . . . , σn) be
polygonal curves of lengths n. We define the concate-
nation of π and σ as π ◦ σ := (π1, . . . , πn, σ1, . . . , σn).
The resulting curve has length 2n. Now defining the
concatenation of traversals, we call any pair (i, j) ∈
[n] × [n] a position. A traversal T is a sequence
t1, . . . , t` of positions, where tk = (i, j) implies that
tk+1 is either (i+ 1, j) (that is, we advance one step
in π while staying in σj), (i, j + 1) (we advance in σ
while staying in πi), or (i + 1, j + 1) (we advance in
both curves simultaneously). We call T = (t1, . . . , t`)
a traversal of π, σ, if t1 = (1, 1) and t` = (n, n). Given
two traversals T = (t1, . . . , t`) and T ′ = (t′1, . . . , t

′
`′)

with t` = t′1, we define the concatenated traversal as
T ◦ T ′ := (t1, . . . , t` = t′1, t

′
2, . . . , t

′
`′). Note that we

obtain a traversals from t1 to t′`′ .
The discrete Fréchet distance is defined as

δF (π, σ) := min
T=((i1,j1),...,(i`,j`))

max
1≤k≤`

‖πik − σjk‖,

where T ranges over all traversals of π, σ and ‖ · ‖
denotes the Euclidean distance in R2.

We obtain a well-known equivalent definition as
follows: Fix some distance δ ≥ 0. We call a position
(i, j) free if ‖πi − σj‖ ≤ δ. We say that a traversal
T = (t1, . . . , t`) of π, σ is a valid traversal for δ if
t1, . . . , t` are all free positions. The discrete Fréchet
distance of π, σ is then the smallest δ such that there
is a valid traversal of π, σ for δ.

Analogously, consider the n × n matrix M with
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Mi,j = 1 if (i, j) is free, and Mi,j = 0 otherwise.
We call any traversal T = (t1, . . . , t`) a monotone
path from t1 to t`. If all positions (i, j) visited by T
satisfyMi,j = 1, we call T a monotone 1-path from t1
to t` in M . As yet another formulation, consider the
n× n grid graph GM where vertex (i, j) has directed
edges to all of (i, j+1), (i+1, j), and (i+1, j+1) (in
case they exist). Deactivate (i.e., remove) all non-free
vertices (i, j) from GM . Then a monotone 1-path in
M corresponds to a (directed) path in GM . Hence,
δF (π, σ) ≤ δ is equivalent to the existence of a valid
traversal of π, σ for δ, which in turn is equivalent
to the existence of a monotone 1-path from (1, 1) to
(n, n) in the matrix M , and to vertex (n, n) being
reachable from (1, 1) in GM .

Finally, we define the discrete Fréchet distance
under translation as minτ∈R2 δF (π, σ + τ), i.e., the
smallest discrete Fréchet distance of π to any trans-
lation of σ.

Hardness assumptions. The Strong Exponen-
tial Time Hypothesis (SETH) was introduced by Im-
pagliazzo and Paturi [IP01] and essentially postu-
lates that there is no exponential-time improvement
over exhaustive search for the Satisfiability Problem.
More formally, the Strong Exponential Time Hypoth-
esis states that for any ε > 0 there exists k ≥ 3 such
that k-SAT has no O((2− ε)n)-time algorithm.

In fact, our reductions even hold under a weaker
assumption, specifically, the k-OV Hypothesis.4 Re-
call the k-OV problem: Given sets V1, . . . , Vk of N
vectors in {0, 1}D, the task is to determine whether
there are v1 ∈ V1, . . . , vk ∈ Vk such that for all j ∈ [D]
there exists an i ∈ [k] with vi[j] = 0. The k-OV
Hypothesis states that for any k ≥ 2 and ε > 0,
there is no O(Nk−εpoly(D))-time algorithm for k-
OV. The well-known split-and-list technique due to
Williams [Wil05] shows that SETH implies the k-OV
Hypothesis. Thus, any conditional lower bound that
holds under the k-OV hypothesis also holds under
SETH.

Orthogonal range data structures. We will
use a tool from geometric data structures, namely
(dynamic) orthogonal range data structures. Let S
be a set of key-value pairs s = (ks, vs) ∈ Zd × Z.
An orthogonal range data structure on S allows to
query the maximal value of any pair in S whose
key lies in a given orthogonal range. Formally,
we say OR stores vs under the key ks for s ∈ S
for minimization queries, if OR supports, for any
`1, u1, `2, u2, . . . , `d, ud ∈ Z ∪ {−∞,∞} and R :=

4In fact, we only need the corresponding hypothesis for 4-
OV.

[`1, u1]× · · · × [`d, ud], queries of the form

OR.min(R) : return min{vs | s ∈ S, ks ∈ R}.

We will also consider analogous maximization
queries.

Classic results [GBT84, Cha88] show that for any
set S of size n and d = 2, we can construct such
a data structure OR in time and space O(n log n),
supporting minimization (or maximization) queries
in time O(log n).

At one point in the paper we will also use an
orthogonal range searching data structure that allows
(1) to report all values of pairs in S whose keys lie
in a given orthogonal range, and (2) to remove a
key-value pair from S. Formally, we say that OR
stores vs under the key ks for s ∈ S for decremental
range reporting queries, if OR supports, for any
`1, u1, `2, u2, . . . , `d, ud ∈ Z ∪ {−∞,∞} and R :=
[`1, u1]× · · · × [`d, ud], queries of the form

OR.report(R) : return {vs | s ∈ S, ks ∈ R},

as well as deletions from the set S.
Mortensen [Mor06] and Chan and Tsaka-

lidis [CT17] showed how to construct such a data
structure OR for any set S of size n in time and space
O(n logd−1 n), deletion time O(logd−1 n) and query
time O(logd−1 n + k), where k denotes the output
size of the query. (These works obtain even stronger
results, however, we use simplified bounds for ease of
presentation.)

3 Algorithm: Reduction to Grid
Reachability

In this section, we prove our algorithmic result by
showing how a certain grid reachability data struc-
ture (that we give in Section 4) yields an Õ(n4+2/3)-
time algorithm for computing the discrete Fréchet
distance under translation.

We start with a formal overview of the algorithm.
First, we reduce the decision problem (i.e., is the
discrete Fréchet distance under translation of π, σ at
most δ?) to the problem of determining reachability
in a dynamic grid graph, as shown by Ben Avraham
et al. [AKS15]. However, noting that all updates and
queries are known in advance, we observe that the
following offline version suffices.

Problem 3.1. (Offline Dynamic Grid Reachability)
Let M be an n × n matrix over {0, 1}. We call
u = (p, b) with p ∈ [n]× [n] and b ∈ {0, 1} an update
and define M [[u]] as the matrix obtained by setting
the bit at position p to b, i.e.,

M [[u]]i,j =

{
b if p = (i, j),

Mi,j otherwise.
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Figure 1: Two input curves π, σ and a distance δ, the corresponding free-space diagram M , and the grid
graph GM corresponding to M . A monotone traversal of M and GM is marked in orange.

For any sequence of updates u1, . . . , uk ∈ ([n] ×
[n]) × {0, 1} with k ≥ 2, we define M [[u1, . . . , uk]] :=
(M [[u1]])[[u2, . . . , uk]].

The Offline Dynamic Grid Reachability problem
asks to determine, given M and any sequence of
updates u1, . . . , uU ∈ ([n] × [n]) × {0, 1}, whether
there is a monotone 1-path from (1, 1) to (n, n) in
M [[u1, . . . , uk]] for any 1 ≤ k ≤ U .

We state the following lemma, whose proof is
deferred to the full version of this paper [BKN18] due
to space constraints.

Lemma 3.1. Assume there is an algorithm solving
Offline Dynamic Grid Reachability in time T (n,U).
Then there is an algorithm that, given δ > 0 and
polygonal curves π, σ of length n over R2, determines
whether δF (π, σ + τ) ≤ δ for some τ ∈ R2 in time
O(T (n, n4)).

Our speed-up is achieved by solving Offline
Dynamic Grid Reachability in time T (n,U) =
Õ(n2+Un2/3) (Ben Avraham et al. [AKS15] achieved
T (n,U) = O(n2 +Un)). To this end, we devise a grid
reachability data structure, which is our central tech-
nical contribution.

Lemma 3.2. (Grid reachability data structure)
Given an n × n matrix M over {0, 1} and a set of
terminals T ⊆ [n]× [n] of size k > 0, there is a data
structure DM,T with the following properties.

i) (Construction:) We can construct DM,T in time
O(n2 + k log2 n).

ii) (Reachability Query:) Given F ⊆ T , we can
determine in time O(k log3 n) whether there is
a monotone path from (1, 1) to (n, n) using only
positions (i, j) with Mi,j = 1 or (i, j) ∈ F .

iii) (Update:) Given T ′ ⊆ [n]× [n] of size k and an
n × n matrix M ′ over {0, 1} differing from M
in at most k positions, we can update DM,T to

DM ′,T ′ in time O(n
√
k log n + k log2 n). Here,

we assume M ′ to be represented by the set ∆ of
positions in which M and M ′ differ.

Section 4 is dedicated to devising this data struc-
ture, i.e., proving Lemma 3.2. Equipped with this
data structure, we can efficiently batch updates and
queries to the data structure. Specifically, we obtain
the following theorem.

Theorem 3.1. We can solve Offline Dynamic Grid
Reachability in time O(n2 + Un2/3 log2 n).

We prove this theorem in Section 3.1. Finally,
it remains to use standard techniques of parametric
search to transform the decision algorithm to an
algorithm computing the discrete Fréchet distance
under translation. This has already been shown by
Ben Avraham et al. [AKS15]; for all details, we also
refer to the full version of this paper [BKN18].

Lemma 3.3. Let Tdec(n) be the running time to de-
cide, given δ > 0 and polygonal curves π, σ of length
n over R2, whether δF (π, σ+τ) ≤ δ for some τ ∈ R2.
Then there is an algorithm computing the discrete
Fréchet distance under translation for any curves π, σ
of length n over R2 in time O((n4 + Tdec(n)) log n).

Combining Lemma 3.3, Lemma 3.1 and Theo-
rem 3.1, we obtain an algorithm computing the dis-
crete Fréchet distance under translation in time

O((n4 + T (n, n4)) log n) = O(n4+2/3 log3 n),

as desired. In the remainder of this section, we
provide the details of solving Offline Dynamic Grid
Reachability assuming Lemma 3.2, which we show in
Section 4.

3.1 Solving Offline Dynamic Grid Reachabil-
ity We prove Theorem 3.1 using the grid reachability
data structure given in Lemma 3.2. Specifically, we
claim that the following algorithm solves Offline Dy-
namic Grid Reachability in timeO(n2+Un2/3 log2 n).
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We partition our updates u1, . . . , uU into groups
u1, . . . , uO(U/k) containing k updates each. For any
group ūi, let Ti denote the set of positions of updates
in ūi and consider the grid reachability data struc-
ture Di = DMi,Ti with terminal set Ti and matrix Mi

obtained from M by performing all updates prior to
ūi and setting the positions of all terminals Ti to 0.
For each update within ūi, we can determine whether
it creates a monotone 1-path from (1, 1) to (n, n) by
simply determining the set F ⊆ Ti of terminals that
are set to 1 (at the point of this update) and perform-
ing the corresponding reachability query in Di. It is
straightforward to argue that the resulting algorithm
correctly solves Offline Dynamic Grid Reachability.

To analyze the running time, note that by
Lemma 3.2, we need time O(n2 + k log2 n) to build
D1 = DM1,T1 . The time spent for handling a sin-
gle group ūi is bounded by the time to perform k
queries in Di = DMi,Ti plus the time to update
Di = DMi,Ti to Di+1 = DMi+1,Ti+1

, which amounts
to O(k2 log3 n+n

√
k log n+k log2 n) = O(k2 log3 n+

n
√
k log n) by Lemma 3.2. Thus, in total, we obtain

a running time of

O
(
n2 + U

(
k log3 n+

n√
k

log n

))
.

This expression is minimized by setting k :=
n2/3/ log4/3 n, resulting in a total running time of
O(n2 + Un2/3 log1+2/3 n) = O(n2 + Un2/3 log2 n), as
desired.

4 Grid Reachability Data Structure
In this section, we prove Lemma 3.2. First, we state
some basic definitions and then present the details of
our construction.

4.1 Preparation Without loss of generality, we
may assume that n = 2κ + 1 for some integer κ ∈ N.

Canonical blocks. Let I, J be intervals in [n].
We call I×J ⊆ [n]×[n] a block. In particular, we only
consider blocks obtained by splitting the square [n]×
[n] alternately horizontally and vertically until we are
left with 2 × 2 blocks. More concretely, we define
B0 := {([n], [n])} and construct B`+1 inductively by
splitting each block B ∈ B` as follows. If the last split
was horizontally, then we now split vertically and vice
versa. The block B is split into two equally sized
blocks B1, B2 which overlap in the middle column
when split vertically, or the middle row when split
horizontally. We call B1, B2 the children of B. We
then let B :=

⋃2κ
`=0 B` be the set of canonical blocks,

and call each block B ∈ B` a canonical block on level
`. See Figure 2.

Boundaries. For any B = (I, J) ∈ B, we denote
the lower left boundary of B as B− = {min I} × J ∪
I × {min J}, and call each p ∈ B− an input of B.
Analogously, we denote the upper right boundary of
B as B+ = {max I} × J ∪ I × {max J}, and call
each q ∈ B+ an output of B. By slight abuse of
notation, we define |∂B| = |B− ∪ B+| as the size of
the boundary of B, i.e., the number of inputs and
outputs of B.

If B splits into children B1, B2, we call Bmid =
B+

1 ∩B
−
2 the splitting boundary of B.

Indices. To prepare the description of this infor-
mation, we first define, for technical reasons, indices
for all positions in [n]× [n]. It allows us to give each
position a unique identifier with the property that
for any canonical block B, the indices yield a local
ordering of the boundaries.

Observation 4.1. Let ind : [n]× [n]→ N, where for
any point p = (x, y) ∈ [n] × [n], we set ind(p) :=
(y − x)(2n) + x. We call ind(p) the index of p. This
function satisfies the following properties:

1. The function ind is injective, can be computed
in constant time, and given i = ind(p), we can
determine ind−1(i) := p in constant time.

2. For any B ∈ B, ind induces an ordering of B+ in
counter-clockwise order and an ordering of B−
in clockwise order.

4.2 Connectivity characterization Our aim
is to construct a data structure DM,T =
(DM,T (B))B∈B, where DM,T (B) succinctly describes
connectivity (via monotone 1-paths) between the
boundaries B−, B+ and the terminals TB := T ∩ B
inside B. In particular, we show that we only require
space O(|∂B|+ |TB |) to represent this information.

To prepare this, we start with a few simple obser-
vations that yield a surprisingly simple characteriza-
tion of connectivity from any terminal to the bound-
ary.

Compositions of crossing paths. We say that
we reach q from p, written p q, if there is a traversal
T = (t1, . . . , t`) with t1 = p, t` = q, and ti is free
for all 1 < i < ` (note that we do not require t1
and t` to be free). We call such a slightly adapted
notion of traversal a reach traversal. By connecting
the points of T by straight lines, we may view T as a
polygonal curve in R2. To avoid confusion, we denote
this polygonal line as P (T ).

Observation 4.2. Let T1, T2 be reach traversals
from p1 to q1 and from p2 to q2, respectively. Then
if P (T1) and P (T2) intersect, we have p1  q2 (and,
symmetrically, p2  q1).
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B0 B1 B2 B3 B2κ

. . .

Figure 2: The sets of canonical blocks B0, . . . ,B2κ. We alternate between horizontal and vertical splits.
Note that the blocks overlap which is visualized by darker gray tones.

Proof. Let t ∈ [n] × [n] be a free position in which
P (T1), P (T2) intersect (observe that such a point with
integral coordinates must exist unless p1 = p2 or
q1 = q2; in the latter case, the claim is trivial).
Note that t splits T1, T2 into T1 = T a1 ◦ T b1 and
T2 = T a2 ◦ T b2 such that T a1 , T a2 are reach traversals
ending in t and T b1 , T

b
2 are reach traversal starting

in t. By concatenating T a1 and T b2 , we obtain a reach
traversal from p1 to q2. Symmetrically, T a2 ◦T b1 proves
p2  q1.

Let B ∈ B and recall that ind(·) orders B+

counter-clockwise. For any p ∈ B, we define
A(p) := min{ind(q) | q ∈ B+, p q}, and analo-
gously Z(p) := max{ind(q) | q ∈ B+, p q}. Note
that in the following analysis we slightly abuse nota-
tion by also using ind(p) to denote the corresponding
(unique) position p ∈ [n]× [n].

Definition 4.1. Let p ∈ B with ∞ > A(p),Z(p) >
−∞ and fix any reach traversals TA, TZ from p to
A(p) and Z(p). We write

P (TA) = Pcom ◦ P ′A, P (TZ) = Pcom ◦ P ′Z ,

for some polygonal curves Pcom, P
′
A, P

′
Z with P ′A, P

′
Z

non-intersecting. Let F be the face enclosed by
P ′A, P

′
Z and the path from A(p) to Z(p) on B+ (if

A(p) = Z(p), we let F be the empty set). We define
the reach region of p as

R(p) := F ∪ Pcom.

We refer to Figure 3 for an illustration. Ob-
serve that R(p) is indeed well-defined: For any
reach traversals T ′A, T

′
Z from p to A(p) and Z(p),

respectively, consider the latest point in which
P (T ′A), P (T ′B) intersect, say t. We can define reach
traversals TA and TZ by following T ′A until t and then
following the remainder of T ′A or T ′Z to reach A(p) or
Z(p), respectively. These traversals satisfy the condi-
tions by construction.

Proposition 4.1. Let p, p′ ∈ B, q ∈ B+ with
ind(q) ∈ [A(p),Z(p)] and p′ /∈ R(p). Then p′  q
implies p q.

A(p)

Z(p) F

Pcom

P ′
Z

p

q

p′

P ′
A

p′′

Figure 3: Illustration of R(p), Proposition 4.1 and
Lemma 4.1: Any reach traversal from p′ /∈ R(p) must
cross P ′A or P ′Z to reach q. However, if p′′  q but
p′′ ∈ R(p), then q might not be reachable from p.
A sufficient condition for p′ /∈ R(p) is that p′ 6= p
and L(p′) ≤ L(p) (indicated by the orange triangular
area).

Proof. The claim holds trivially if ind(q) = A(p)
or ind(q) = Z(p). Thus, we may assume that
A(p) < Z(p), which implies that the face F in R(p) is
nonempty with q ∈ F and p′ /∈ F . Hence any reach
traversal T from p′ to q must cross the boundary of
F , in particular, the path P (TA) or P (TZ), where
TA, TZ both originate in p. By Observation 4.2, this
yields p q.

Reachability Labelling. We define a total or-
der on nodes in B that allows us to succinctly repre-
sent reachability on B+ for any subset S ⊆ B in space
Õ(|S|+|B+|). The key is a labelling L : [n]×[n]→ N,
defined by L((x, y)) = x + y, that we call the reach-
ability labelling.

Lemma 4.1. Let p = (x, y), p′ = (x′, y′) ∈ B with
L(p′) ≤ L(p) and q ∈ B+ with ind(q) ∈ [A(p),Z(p)].
Then p′  q implies p q.

Proof. The proof idea is to show that L(p′) ≤ L(p)
implies that p′ /∈ R(p), and hence Proposition 4.1
shows the claim. Note that by monotonicity of reach
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traversals, any point r = (rx, ry) ∈ R(p) satisfies
rx ≥ x and ry ≥ y. Thus, p′ ∈ R(p) only if
x′ ≥ x, y′ ≥ y, but this together with x′ + y′ =
L(p′) ≤ L(p) = x + y implies (x′, y′) = (x, y).
Summarizing, we either have p = p′, which trivially
satisfies the claim, or p′ /∈ R(p), which yields the
claim by Proposition 4.1.

For any S ⊆ B, this labelling enables a surprising
characterization of which terminals in S have reach
traversals to which outputs in B+ by the following
lemma (greatly generalizing a simpler characteriza-
tion due to Ben Avraham et al. [AKS15, implicit in
Lemma 4.4] for the case of S = B−). This is one of
our key insights.

Corollary 4.1. Let q ∈ B+ and define `(q) :=
min{L(p) | p ∈ B, p q}. Then for any
p ∈ B, we have p q if and only if ind(q) ∈
[A(p),Z(p)] and `(q) ≤ L(p).

Proof. Clearly, p q implies, by definition of
A(p),Z(p), and `(q), that A(p) ≤ ind(q) ≤ Z(p) and
`(q) ≤ L(p).

Conversely, assume that ind(q) ∈ [A(p),Z(p)]
and `(q) ≤ L(p). Take any p′ ∈ B with p′  q and
`(q) = L(p′). Thus we have L(p′) = `(q) ≤ L(p),
ind(q) ∈ [A(p),Z(p)] and p′  q, which satisfies the
requirements of Lemma 4.1, yielding p q.

Given this characterization, we obtain a highly
succinct representation of connectivity information.
Specifically, to represent the information which ter-
minals in S have reach traversals to which outputs
in B+, we simply need to store `(q) for all q ∈ B+ as
well as the interval [A(p),Z(p)] for all p ∈ S. Thus,
the space required to store this information amounts
to only O(|∂B|+ |S|), which greatly improves over a
naive O(|∂B| · |S|)-sized tabulation.

Reverse Information. By defining
Lrev((x, y)) = −L((x, y)) = −x − y, we obtain
a labelling with symmetric properties. In particular,
define Arev(q) := min{ind(p) | p ∈ B−, p q} and
Zrev(q) := max{ind(p) | p ∈ B−, p q}. It is
straightforward to prove the following symmetric
variant of Corollary 4.1.

Corollary 4.2. Let p ∈ B− and define `rev(p) :=
min{Lrev(q) | q ∈ B, p q}. Then for any
q ∈ B, we have p q if and only if ind(q) ∈
[Arev(p),Zrev(p)] and `rev(q) ≤ Lrev(p).

4.3 Information stored at canonical block B
Using the characterization given in Corollaries 4.1
and 4.2, we can now describe which information we
need to store for any canonical block B ∈ B.

Definition 4.2. Let B ∈ B. The information stored
at B (which we denote as DM,T (B)) consists of
the following information: First, we store forward
connectivity information consisting of,

• for every p ∈ B− ∪ TB, the interval I(p) :=
[A(p),Z(p)], where A(p) = min{ind(q) | q ∈
B+, p q}, and Z(p) = max{ind(q) | q ∈
B+, p q} (note that I(p) might be empty if
A(p) =∞,Z(p) = −∞),

• for every q ∈ B+, the reachability level `(q) =
min{L(p) | p ∈ B, p q}.

Symmetrically, we store the reverse connectivity in-
formation Irev(q) := [Arev(q), Zrev(q)] for all q ∈
B+ ∪ TB and `rev(p) for all p ∈ B−.

Finally, if B has children B1, B2 ∈ B, where
B1 is the lower or left sibling of B2, we additionally
store an orthogonal range minimization data struc-
ture ORB storing, for each free q ∈ Bmid = B+

1 ∩B
−
2 ,

the value `rev
2 (q) under the key (ind(q), `1(q)). Here

`1(q) denotes the forward reachability level in B1, and
`rev
2 (q) denotes the reverse reachability level in B2.

4.4 Computing Information at Parent From
Information at Children We show how to con-
struct the information stored at the blocks quickly in
a recursive fashion.

Lemma 4.2. Let B ∈ B with children B1, B2. Given
the information stored at B1 and B2, we can com-
pute the information stored at B in time O((|∂B| +
|TB |) log |∂B|).

Proof. Without loss of generality, we assume that
B1, B2 are obtained from B by a vertical split (the
other case is analogous) – let Bl, Br denote the
left and right child, respectively. As a convention,
we equip the information stored at Bl, Br with the
subscript l, r, respectively, and write the information
stored at B without subscript. Furthermore, we let
Bmid

free denote the set of free positions of the splitting
boundary Bmid = B+

l ∩B−r .
Computation of I(p). Let p ∈ B− ∪ TB be

arbitrary. We first explain how to compute A(p). If
p ∈ Br, then A(p) = Ar(p), since by monotonicity
any q ∈ B+ with p q satisfies q ∈ B+

r . Thus, it
remains to consider p /∈ Br.

We claim that for p /∈ Br, we have A(p) =
min{A1(p), A2(p)}, where

A1(p) := min
q∈B+∩Bl,

p q

ind(q)

A2(p) := min
j∈Bmid

free ,
p j

min
q∈B+∩Br,

j q

ind(q)
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Z(p) = Zr(j
′)

Zl(p)

j

j′

A(p) = Ar(j)
p

Al(p)

Figure 4: Computation of I(p). To determine the
smallest (largest) reachable index on B+ ∩ B+

r , we
optimize, over all j ∈ Bmid with p j, the smallest
(largest) reachable index Ar(j) (Zr(j)) on B+

r .

Indeed, this follows since each path starting in p ∈ Bl

and ending in B+ must end in Bl, or cross Bmid at
some free j ∈ Bmid and end in Br.

To compute A1(p) note that Corollary 4.1 yields
A1(p) = min{ind(q) | q ∈ B+ ∩ Bl, ind(q) ∈
[Al(p),Zl(p)], `l(q) ≤ L(p)}, which can be expressed
as an orthogonal range minimization query. Likewise,
to compute A2(p), note that B+ ∩Br = B+

r . Thus,

A2(p) = min
j∈Bmid

free ,
p j

min
q∈B+

r ,
j q

ind(q) = min
j∈Bmid

free ,
ind(j)∈Il(p),`l(j)≤L(p)

Ar(j),

where the last equality follows from the definition of
Ar and Corollary 4.1. Thus, we can compute A2(p)
using a simple orthogonal range minimization query.

Switching the roles of minimization and max-
imization, we obtain the analogous statements for
computing Z(p). We summarize the algorithm for-
mally in Algorithm 1. Its correctness follows from the
arguments above and the total running time amounts
to O((|∂B|+ |TB |) log |∂B|).

Computation of `(q). Let q ∈ B+ be arbi-
trary. If q ∈ Bl, then `(q) = `l(p), since by mono-
tonicity every p ∈ B with p q is contained in Bl.
Thus, we may assume that q /∈ Bl.

We claim that for q /∈ Bl, we have `(q) =
min{`1(q), `2(q)}, where

`1(q) := min
p∈Br,
p q

L(p), `2(q) := min
j∈Bmid

free ,
j q

min
p∈Bl,
p j

L(p)

Indeed, this follows since each path starting in B and
ending in q ∈ Br must start in Br, or start in Bl and
cross Bmid at some free j ∈ Bmid.

Observe that the definition of `1(q) coincides
with the definition of `r(q). Thus it only remains

Algorithm 1 Computing I(p) = [A(p),Z(p)] for all
p ∈ B− ∪ TB .
1: Build ORA storing Ar(j) under the key

(ind(j), `l(j)) for j ∈ Bmid
free (for min queries)

2: Build ORZ storing Zr(j) under the key
(ind(j), `l(j)) for j ∈ Bmid

free (for max queries)
3: Build ORtop storing ind(q) under the key

(ind(q), `l(q)) for q ∈ B+ ∩Bl (for both queries)
4: for p ∈ (B− ∪ TB) do
5: if p ∈ Br then
6: I(p)← Ir(p)
7: else
8: range← [Al(p),Zl(p)]× (−∞, L(p)]
9: A1(p)← ORtop.min(range)

10: A2(p)← ORA.min(range)
11: A(p)← min{A1(p),A2(p)}
12: Z1(p)← ORtop.max(range)
13: Z2(p)← ORZ.max(range)
14: Z(p)← max{Z1(p),Z2(p)}

Arev
r (q)

Zrev
r (q)

j

p p′

p′′

q

Figure 5: Computation of `(q). To determine the
smallest label of a position in Bl reaching q, we
optimize, over all j ∈ Bmid with j  q, the smallest
label `l(j) of a position p ∈ Bl reaching j.

to compute `2(q). We write

`2(q) = min
j∈Bmid

free ,
j q

min
p∈Bl,
p j

L(p) = min
j∈Bmid

free ,
ind(j)∈Irevr (q),`revr (j)≤Lrev(q)

`l(j),

where the last equality follows from the definition of
`l(j) and Corollary 4.2. It follows that we can com-
pute `2(p) using a simple orthogonal range minimiza-
tion query. For an illustration of `2(q), we refer to
Figure 5.

We summarize the resulting algorithm formally
in Algorithm 2 and illustrate it in Figure 5. Its
correctness follows from the arguments above and the
total running time amounts to O(|∂B| log |∂B|).

Computation of reverse information.
Switching the direction of reach traversals (which
switches roles of inputs and outputs, Bl and Br, etc.)
as well as L and Lrev, we can use the same algorithms
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Algorithm 2 Computing `(q) for all q ∈ B+.
1: Build OR` storing `l(j) under the key

(ind(j), `rev
r (j)) for j ∈ Bmid

free (for min queries)
2: for q ∈ B+ do
3: if q ∈ Bl then
4: `(q)← `l(q)
5: else
6: range← [Arev

r (q),Zrev
r (q)]× (−∞, Lrev(q)]

7: `2(q)← OR`.min(range)
8: `(q)← min{`r(q), `2(q)}

to compute the reverse connectivity information in
the same running time of O((|∂B|+ |TB |) log |∂B|).

Computation of ORB. Finally, we need to
construct the two-dimensional orthogonal range min-
imization data structure ORB : Recall that ORB
stores, for each q ∈ Bmid

free , the value `rev
r (q) un-

der the key (ind(q), `l(q)) for minimization queries.
Since |Bmid

free | ≤ |∂B|, this can be done in time
O(|∂B| log |∂B|) (cf. Section 2).

In summary, we can compute the information
stored at B from the information stored at B1 and
B2 in time O((|∂B|+ |TB |) log |∂B|), as desired.

4.5 Initialization and Updates We have to
show how to construct and update our reachability
data structure (using Lemma 4.2 that shows how to
compute the information stored at some canonical
block B given the information stored at both chil-
dren). However, due to space constraints we omit
the proof for i) of Lemma 3.2 and instead refer to the
proof of iii) of Lemma 3.2, which is very similar, and
also to the full version of this paper [BKN18]. Thus,
we now prove iii) of Lemma 3.2.

Proof. [Proof of iii) of Lemma 3.2] SetX := ∆∪T ∪T ′
and note that |X| = O(k). Observe that for any B ∈
B with B ∩X = ∅, we have DM,T (B) = DM ′,T ′(B),
since the information stored at this block does not
depend on any changed entry in M and does not
contain any of the old or new terminals. Thus, we
only need to update DM,T (B) to DM ′,T ′(B) for all
B ∈ B with B ∩ X 6= ∅. We do this analogously to
i) of Lemma 3.2 in a bottom-up fashion. Specifically,
for any lowest-level block B ∈ B2κ with B∩X 6= ∅, we
can compute the information stored in B in constant
time. Since there are at most 4|X| such blocks, this
step takes time O(|X|) = O(k) in total.

It remains to bound the running time to compute
DM,T (B) for B ∈ B` with B ∩ X 6= ∅, where
0 ≤ ` < 2κ. For any such B, we let again
cB := |∂B| log |∂B|+ |TB | log |∂B|. Observe that the
running time for the remaining task is thus bounded

by O(
∑2κ−1
`=0

∑
B∈B`,B∩X 6=∅ cB) by Lemma 4.2.

We do a case distinction into 0 ≤ ` < ¯̀ and
¯̀≤ ` < 2κ where ¯̀ := blog kc. For the first case, we
bound

¯̀−1∑
`=0

∑
B∈B`,
B∩X 6=∅

|∂B| log |∂B| ≤
¯̀−1∑
`=0

∑
B∈B`

|∂B| log |∂B|

≤
¯̀−1∑
i=0

2κ+i/2+3(κ− i/2 + 3) ≤

 ¯̀−1∑
i=0

2i/2

 2κ+3κ

= (1 +
√

2)(2
¯̀/2 − 1)2κ+3κ = O(

√
kn log n).

Recall that for any 0 ≤ ` < 2κ, there are at most 4|X|
blocks B ∈ B` with B ∩X 6= ∅ and for any B ∈ B`,
we have |∂B| ≤ 2κ−`/2+3. We compute

2κ−1∑
`=¯̀

∑
B∈B`,
B∩X 6=∅

|∂B| log |∂B|

≤
2κ−1∑
`=¯̀

4|X|2κ−`/2+3(κ− `/2 + 3)

≤ 4|X|2κ−¯̀/2+3κ ·
2κ−¯̀−1∑
`=0

2−`/2

= O
(
|X| n√

k
log n

)
= O(

√
kn log n).

Furthermore, as in the proof of i) of Lemma 3.2, we
again compute

2κ−1∑
`=0

∑
B∈B`,
B∩X 6=∅

|TB | log |∂B| ≤
2κ−1∑
`=0

4|T |(κ− `/2 + 3)

= O(|T |κ2) = O(|T | log2 n).

Thus, in total we obtain a running time of O(k +
n
√
k log n+ |T | log2 n) = O(n

√
k log n+ k log2 n).

4.6 Reachability queries It remains to show how
to use the information stored at all canonical blocks
to answer reachability queries quickly. Specifically,
we now prove ii) of Lemma 3.2.

Recall that we aim to determine whether there
is a monotone path in M using only positions (i, j)
with Mi,j = 1 or (i, j) ∈ F , i.e., we view F as a
set of free terminals (typically, (i, j) ∈ F is a non-
free position). In this section we assume, without
loss of generality, that (1, 1), (n, n) ∈ TB (whenever
we construct/update to the data structure DM,T ,
we may construct/update to DM,T ∪{(1,1),(n,n)} in the
same asymptotic running time).
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For any block B ∈ B, S ⊆ F ⊆ TB , we define the
function Reach(B,S, F ) that returns the set

R := {t ∈ F | ∃f1, . . . , f` ∈ F :

f1 ∈ S, f` = t, f1  f2  · · · f`},

i.e., we interpret S as a set of admissible starting
positions for a reach traversal and ask for the set of
positions reachable from S using only free positions or
free terminals. We call any such position F -reachable
from S. (Recall that in the definition of p q, only
the intermediate points on a reach traversal from p
and q are required to be free, while the endpoints p
and q are allowed to be non-free.)

We show that Reach(B,S, F ) can be computed in
time O(|TB | log3 n). Given this, we can answer any
reachability query in the same asymptotic running
time: the reachability query asks whether there is
a sequence f1, . . . , f` ∈ F ∪ {(1, 1), (n, n)} such that
(i) f1 = (1, 1) and f` = (n, n), (ii) both (1, 1) and
(n, n) are free positions or contained in F and (iii)
f1  f2  · · · f`. Since (ii) can be checked in
constant time, it remains to determine whether

(n, n) ∈ Reach([n]× [n], {(1, 1)}, F ∪{(1, 1), (n, n)}).

4.6.1 Computation of Reach(B,S, F ) To com-
pute Reach(B,S, F ), we work on the recursive block
structure of DM,T . Specifically, consider any canoni-
cal block B ∈ B (containing some free terminal) with
children B1, B2. The (somewhat simplified) approach
is the following: We first (recursively) determine all
free terminals that are F -reachable from S in B1 and
call this set R1. Then, we determine all free termi-
nals in B2 that are (directly) reachable from R1 and
call this set T2. Finally, we (recursively) determine
all free terminals in B2 that are F -reachable from
T2 ∪ (S ∩ B2) and call this set R2. The desired set
of free terminals that are F -reachable from S is then
R1 ∪ R2. The main challenge in this process is the
computation of the set T2; this task is solved by the
following lemma.

Lemma 4.3. Let B ∈ B be a block with children
B1, B2. Given S ⊆ B1 \ Bmid and F ⊆ B2 \ Bmid

with S, F ⊆ TB, we can compute the set

T = {t ∈ F | ∃s ∈ S : s t}

in time O(|TB | log2 n). We call this procedure
SingleStepReach(B,S, F ).

This lemma yields an algorithm for Reach, and
thus, for reachability queries. Algorithm 3 computes
the result in time O(|T | log3 n). For the proof of
correctness and runtime of ii) of Lemma 3.2, see the
full version [BKN18].

Algorithm 3 Computing Reach(B,S, F ) for B ∈ B,
S ⊆ F ⊆ TB .
1: function Reach(B,S, F )
2: if F = ∅ then
3: return ∅
4: else if B is a 2× 2 block then
5: Compute R by checking all possibilities
6: return R
7: . Else B splits into child blocks B1, B2

8: S1 ← S ∩B1, S2 ← S ∩B2

9: R1 ← Reach(B1, S1, F ∩B1)
10: T2 ← SingleStepReach(B,R1 \Bmid, F \B1)
11: R2 ← Reach(B2, S2∪T2∪(R1∩Bmid), F ∩B2)
12: return R1 ∪R2

4.6.2 Computing SingleStepReach(B,S, F )
It remains to prove Lemma 4.3 to conclude the proof
of ii) of Lemma 3.2.

Proof. [Proof of Lemma 4.3] Consider B ∈ B. We
only consider the case that B is split vertically (the
other case is symmetric); let Bl, Br denote its left
and right sibling, respectively. Let S ⊆ Bl \ Bmid,
F ⊆ Br \ Bmid with S, F ⊆ TB be arbitrary. We
use notation (subscripts l, r, etc.) as in the proof of
Lemma 4.2.

Observe that for any s ∈ S, f ∈ F , we have
that s f if and only if there exists some j ∈
Bmid

free with s j and j  f . To introduce some
convenient conventions, let Jmid = {j1, . . . , jN},
where j1, . . . , jN is the sorted sequence of ind(q) with
q ∈ Bmid

free . We call J ⊆ Jmid an interval of Jmid

if J = {ja, ja+1, . . . , jb} for some 1 ≤ a ≤ b ≤ N
and write it as J = [ja, jb]Jmid (i.e., [ja, jb]Jmid simply
disregards any indices in [ja, jb] representing positions
outside of Bmid

free ).
Consider any interval J of Jmid with the property

that for all s ∈ S we either have J ∩ Il(s) = J
or J ∩ Il(s) = ∅ and for all f ∈ F we either have
J ∩ Irev

r (f) = J or J ∩ Irev
r (f) = ∅. We call such a

J an (S, F )-reach-equivalent. Note that by splitting
Jmid right before and right after all points A(s),Z(s)
with s ∈ S and Arev(f),Zrev(f) with f ∈ F , we
obtain a partition of Jmid into (S, F )-reach-equivalent
intervals J1, . . . , J` with ` = O(|S ∪ F |) = O(|TB |).5

Claim 4.1. Let J be an (S, F )-reach-equivalent in-
terval J . Let RJ be the set of t ∈ F reachable from S

5To be more precise, we start with the partition J con-
sisting of the singleton Jmid. We then iterate over any point
j among A(s),Z(s), s ∈ S and Arev(f),Zrev(f), f ∈ F , and
replace the interval J = [ja, jb]Jmid ∈ J containing j by the
three intervals [ja, j)Jmid , {j}, (j, jb]Jmid , where the first and
the last interval may be empty.
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Al(s1)

Zl(s1) Zl(s2)

J

Al(s2)

Figure 6: Computation of RJ for an (S, F )-reach
equivalent interval J . Intuitively, we first determine,
among indices in J reachable from some s ∈ S, the
index j ∈ J with the best connectivity towards F .
We then determine all f ∈ F reachable from j.

via J , i.e., RJ := {t ∈ F | ∃s ∈ S, j ∈ J : s j  t}.
Define `J := min j∈J,

∃s∈S:s j
`rev
r (j). We have

(4.1) RJ = {t ∈ F | J ⊆ Irev
r (t), `J ≤ Lrev(t)}.

Proof. See Figure 6 for an illustration. Indeed, for
any t ∈ F with J ⊆ Irev

r (t) and `J ≤ Lrev(t), consider
any j ∈ J with `rev

r (j) = `J and s j for some
s ∈ S. Then we have j ∈ J ⊆ Irev

r (t) and `rev
r (j) =

`J ≤ Lrev(t). Thus by Corollary 4.2, j  t, which
together with s j implies s j  t, as desired.
For the converse, let t ∈ F with s j  t for some
s ∈ S, j ∈ J . Then by definition of `J , we obtain `J ≤
`rev
r (j). Furthermore, by Corollary 4.2, j  t implies
that j ∈ Irev

r (t) with Lrev(t) ≥ `rev
r (j) ≥ `J . Note

that j ∈ Irev
r (t) implies J ⊆ Irev

r (t) (as J is (S, F )-
reach-equivalent), thus we obtain that J ⊆ Irev

r (t)
and `J ≤ `rev

r (j), as desired.

Thus, after computing `J , an orthogonal range
reporting query can be used to report all t ∈ F
reachable from S via J . To compute `J , we observe
that for any j ∈ J , we have

∃s ∈ S : s j
Cor. 4.1⇐⇒ ∃s ∈ S : j ∈ Il(s), `l(j) ≤ L(s)

⇐⇒ `l(j) ≤ max
s∈S,
j∈Il(s)

L(s) =: Lj .

Noting (by (S, F )-reach-equivalence of J) that j ∈
Il(s) if and only if J ⊆ Il(s), we have that Lj is
independent of j ∈ J , and, in particular, equal to

(4.2) LJ := max
s∈S,

J⊆Il(s)

L(s),

which can be computed by a single orthogonal range
minimization query. Equipped with this value, we
may determine `J as

(4.3) `J = min
j∈J,

`l(j)≤LJ

`rev
r (j).

Note that given `J , we may determine RJ by a single
orthogonal range reporting query; by (4.1). We
obtain Algorithm 4, whose correctness follows from
above and the runtime amounts to O(|TB | log2 n).
For the detailed analysis we refer to the full version
of this paper [BKN18].

Algorithm 4 Computing SingleStepReach(B,S, F )
for B ∈ B, S ⊆ Bl \Bmid, F ⊆ Br \Bmid.
1: function SingleStepReach(B,S, F )
2: Compute a partitioning of Jmid into (S, F )-

reach-equivalent intervals J1, . . . , J`
3: Build ORS storing L(s) under the key

(Al(s),Zl(s)) for s ∈ S (for max queries)
4: Build ORF storing ind(f) under the key

(Arev
r (f),Zrev

r (f), Lrev(f)) for f ∈ F (for dynamic
dominance reporting queries)

5: for i = 1, . . . , ` do . consider J = [ai, bi]Jmid

6: range = (−∞, ai]× [bi,∞)
7: LJ ← ORS .max(range)
8: `J ← ORB .min([ai, bi]× (−∞, LJ ])
9: Ri ← ORF .report(range× [`J ,∞))

10: ORF .delete(Ri)

11: return
⋃`
i=1Ri

5 Conditional Lower Bound
In this section we prove a lower bound of n4−o(1)

for the discrete Fréchet distance under translation for
two curves of length n ∈ R2 conditional on the Strong
Exponential Time Hypothesis, or more precisely the
4-OV Hypothesis. To this end, we reduce 4-OV to
the discrete Fréchet distance under translation.

Let us first have a closer look at 4-OV. Given
four sets of N vectors V1, . . . , V4 ⊆ {0, 1}D, the 4-OV
problem can be expressed as

∃v1 ∈ V1, . . . , v4 ∈ V4 ∀j ∈ [D]

∃i ∈ {1, . . . , 4} : vi[j] = 0.
(5.4)

Recall from the introduction that we encode choosing
the vectors v1, . . . , v4 by the translation τ = (h1 ·ε, h2 ·
ε) with h1, h2 ∈ {0, . . . , N2 − 1} for some constant
ε > 0 which is sufficiently small, e.g., ε = 0.001/N4.
Choosing v1 ∈ V1 and v2 ∈ V2, we define h1 :=
h(v1, v2) := ind(v1) + ind(v2) · N , where ind(vi) is
the index of vector vi in the set Vi; similarly for
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v3 ∈ V3, v4 ∈ V4 we define h2 := h(v3, v4). To perform
the reduction, we want to construct two curves π and
σ that implement the following expression, which is
equivalent to (5.4):

∃τ ∈ R2 ∀j ∈ [D] ∃i ∈ {1, 2}, v ∈ V2i−1, v
′ ∈ V2i :

(v[j] = 0 ∨ v′[j] = 0) ∧ (h(v, v′) · ε = τi).

We can further transform this expression to make it
easier to create gadgets for the reduction:

∃τ ∈ [0, (N2 − 1) · ε]× [0, (N2 − 1) · ε]

∀j ∈ [D]
∨

i∈{1,2}
v∈V2i−1,v

′∈V2i:
v[j]=0 or v′[j]=0

h(v, v′) · ε = τi.

According to this formula, we will construct the
following gadgets:

• Translation gadget: It ensures that τ ∈ [− 1
4 ·

ε, (N2 − 3
4 ) · ε] × [− 1

4 · ε, (N
2 − 3

4 ) · ε], i.e. we
are always close to the points in the ε-grid of
translations that choose our vectors v1, . . . , v4.

• OV-dimension gadget: AND over all j ∈ [D].

• OR gadget: The big OR in the formula.

• Equality gadget: This gadget is only traversable
if the two vectors it was created for correspond
to τ , i.e., it ensures that h(v, v′) · ε ≈ τi.

We use the above mentioned gadgets as follows.
The constructed curves π and σ start with the
translation gadget consisting of the curves π(0), σ(0).
They are followed by D different parts that form the
OV-dimension gadget. Each of the D parts is an
OR gadget and we call the respective curves π(j)

and σ(j) for j ∈ [D]. Each of the OR gadgets
(π(j), σ(j)) contains several equality gadgets. We will
use different variations of the equality gadget (one
for each set of vectors V1, . . . , V4) but they are all of
very similar structure. We need four different types of
equality gadgets because for a certain vi ∈ Vi a part
of the gadget is only inserted if vi[d] = 0. Thus, if
we traverse an equality gadget later, we know that it
corresponds to one zero entry and also to the current
translation. See Figure 7 for an overview.

Without loss of generality, assume that for all
dimensions j ∈ [D] at least one vector in V1∪ · · ·∪V4

contains a 0 in dimension j. Now we give the
detailed construction of the gadgets and the proofs
of correctness. The instance of the discrete Fréchet
distance under translation that we construct in the
reduction uses a threshold distance of δ = 2 + 1

4ε, i.e.

we want to know for the constructed curves π and σ
if their discrete Fréchet distance under translation is
not more than δ.

Translation Gadget. This gadget is also de-
picted in Figure 7. First we have to restrict the pos-
sible translations to ensure that τ ∈ [− 1

4 ·ε, (N
2− 3

4 ) ·
ε]× [− 1

4 · ε, (N
2 − 3

4 ) · ε]. This is realized by a gadget
where curve π(0) consists of one and curve σ(0) of four
vertices with a = 2− (N2 − 1)ε:

π(0) := 〈(0, 0)〉, σ(0) := 〈(a, 0), (0, a), (−2, 0), (0,−2)〉.

Lemma 5.1. Given two curves π, σ with prefixes
π(0), σ(0), such that all remaining points are in dis-
tance greater than 8 of the prefixes, the following
holds:

(i) if τ ∈ [0, (N2 − 1)ε] × [0, (N2 − 1)ε], then
δF (π(0), σ(0) + τ) ≤ δ

(ii) if δF (π, σ + τ) ≤ δ, then τ ∈ [− 1
4 · ε, (N

2 − 3
4 ) ·

ε]× [− 1
4 · ε, (N

2 − 3
4 ) · ε]

Proof. We start with showing (i), so assume τ ∈
[0, (N2− 1)ε]× [0, (N2− 1)ε]. Note that the maximal
distance maxq∈σ(0) maxτ

∥∥π(0) − (q + τ)
∥∥ is an upper

bound on δF (π(0), σ(0) + τ). We obtain:

max
q∈σ(0)

max
τ

∥∥∥π(0) − (q + τ)
∥∥∥ <√22 + ε2N4 ≤ 2 +

1

4
ε,

where we used ε ≤ N−4.
Now we prove (ii). Note that the start points

of π and σ have to be in distance ≤ δ, thus τ ∈
[−4, 1]× [−2, 2] (using a very rough estimate). Using
this and the fact that all points on π except π(0) are
further than 8 from σ(0), we have to stay in π(0) while
traversing σ(0). Thus, the following inequality holds
for τi > (N2 − 3

4 )ε or τi < − 1
4ε and i ∈ {1, 2} (where

‖v‖∞ denotes the infinity norm of v):

δF (π, σ + τ) ≥ max
i∈[4]

{∥∥∥π(0)
1 − (σ

(0)
i + τ)

∥∥∥
∞

}
> δ,

which is the contrapositive of (ii).

For the remainder of this section we restrict τ
to the range from the previous lemma, and thus for
convenience define

T := [−1

4
· ε, (N2 − 3

4
) · ε]× [−1

4
· ε, (N2 − 3

4
) · ε].

OV-dimension Gadget. For every 4-OV di-
mension j ∈ [D], we construct separate gadgets
π(1), . . . , π(D) for π and σ(1), . . . , σ(D) for σ. We want
to connect these gadgets in a way that the whole
curve has distance not more than δ if and only if
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Figure 7: Overview of how the different gadgets are used in the curves that result from the reduction. We
use one translation gadget, one OV-dimension gadget, D OR gadgets, and O(ND) equality gadgets.

all gadgets have distance not more than δ for a given
translation τ . This is done by simply placing the gad-
gets in distance greater than δ+N2 ·ε from each other
and concatenating them.

Lemma 5.2. Given a translation τ ∈ T and curves
π = π(1), . . . , π(D) and σ = σ(1), . . . , σ(D) where
for all j ∈ [D] all points of π(j) are further than
δ + 2N2 · ε from each point of σ(j′) with j 6= j′, then
δ(π, σ + τ) ≤ δ if and only if δF (π(j), σ(j) + τ) ≤ δ
for all j ∈ [D].

Proof. First, note that whatever τ we choose in the
given range, σ(j) + τ is still in distance greater than
δ from every π(j′) with j′ 6= j.

Now, assume that for all j ∈ [D] the curves
π(j), σ(j) + τ have distance at most δ. Then we can
traverse the gadgets in order and do simultaneous
jumps between them. Note that those jumps do not
change the distance. Thus, also the distance of the
whole curves π and σ + τ is at most δ. For the
other direction, assume that at least one distance is
greater than δ. If we do not traverse simultaneously
(i.e., at one point the traversal is in π(j) and σ(j′) for
j 6= j′), then due to large distances of π(j), σ(j′) + τ
for j 6= j′ we have distance greater than δ for
this traversal. On the other hand, a simultaneous
traversal traverses π(j) and σ(j) together for all j, so
we also have distance greater than δ due to the gadget
with distance greater than δ.

Equality Gadget. For the remaining gadgets
we define for convenience η := 3 · N2ε. An equality
gadget F (v1, v2) for the vectors v1 ∈ V1, v2 ∈ V2 is a
pair of two curves, πF (v1) and σF (v2):

πF (v1) := 〈(1 + ind(v1)ε,−1− η),

(−1 + ind(v1)ε, 1 + η)〉,
σF (v2) := 〈(−1− ind(v2)Nε,−1− η),

(1− ind(v2)Nε, 1 + η)〉.

Note that this gives usN2 different gadgets consisting
of 2N different curves. We later use the curves πF (v1)
in π and the curves σF (v2) in σ where they can be
matched to form a gadget.

Lemma 5.3. Given curves πF (v1), σF (v2) for some
v1 ∈ V1 and v2 ∈ V2, and given a translation τ ∈ T ,
the following properties hold:

(i) if τ1 = ε · (ind(v1) + ind(v2) · N), then
δF (πF (v1), σF (v2) + τ) ≤ δ

(ii) if δF (πF (v1), σF (v2) + τ) ≤ δ, then
|ε · (ind(v1) + ind(v2) ·N)− τ1| ≤ 1

3ε

Proof. To prove (i), it suffices to give a valid traversal.
We traverse πF (v1) = (p1, p2) and σF (v2) = (q1, q2)
simultaneously. Thus, we just want an upper bound
on the distance between the (translated) first points
p1, q1 + τ and the distance between the (translated)
second points p2, q2 + τ to get an upper bound on
δF (πF (v1), σF (v2) + τ). These distances are

‖p1 − (q1 + τ)‖2 = 4 + τ2
2 ≤ 4 + ε+

1

16
ε2 = δ2,

‖p2 − (q2 + τ)‖2 = 4 + τ2
2 ≤ δ2,

where we used |τ2| ≤ N2ε and thus τ2
2 ≤ N4ε2 ≤ ε

since ε ≤ N−4. Both distances are at most δ and thus
the discrete Fréchet distance is at most δ as well.

For proving (ii), first note that the first (re-
spectively second) point of πF (v1) is far from the
second (respectively first) point of σF (v2), due to
η ≥ N2ε. Thus, we have to traverse the gadget si-
multaneously. It remains to show that if the first
two points are in distance not more than δ and the
same holds for the second points, then τ1 is close to
ε ·(ind(v1)+ind(v2) ·N). In the following calculations
let ∆ := ε · ind(v1) + ε · ind(v2) ·N − τ1. For p1, q1 we
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then get ‖p1 − (q1 + τ)‖2 is equal to

(2 + ind(v1)ε+ ind(v2)Nε− τ1)2 + τ2
2 ≤ (2 +

1

4
ε)2

⇔ (2 + ∆)2 + τ2
2 ≤ 4 + ε+

1

16
ε2

⇒ 4∆ ≤ ε+
1

16
ε2 ⇒ ∆ ≤ 1

3
ε.

With a similar calculation for p2, q2 we obtain
that ∆ ≥ − 1

3ε, and thus |∆| ≤ 1
3ε.

Now we introduce three gadgets which have the
same properties as the equality gadget but are slightly
different. The aim is to have four types of gadgets
which are pairwise further than a discrete Fréchet
distance of δ apart such that we can use them
together in one big OR expression.

Shifted Equality Gadget. As described in the
introduction of this section, we want to use the curves
πF (v1), σF (v2) in case v1[j] = 0 and we need an
additional gadget for v2[j] = 0. However, those two
gadgets should not be too close such that the curves
cannot be matched but also not too far such that
the OR gadget (which we introduce later) still works.
Thus, we introduce another gadget F ′(v1, v2) which
consists of a pair of curves πF ′(v1), σF ′(v2) that are
just shifted versions of πF (v1), σF (v2); shifted by N2ε
in the first dimension. More formally,

πF ′(v1) := πF (v1) + (N2ε, 0),

σF ′(v2) := σF (v2) + (N2ε, 0).

Before proving the desired properties, we introduce
the remaining two variants of the equality gadget.

Equality Gadget for V3 and V4. The above
introduced equality gadgets only work for vectors in
V1 and V2 but we also need a gadget for vectors in V3

and V4. Therefore, we introduce the gadget G(v3, v4),
which is a mirrored equality gadget consisting of the
curves πG(v3) and σG(v4):

πG(v3) := 〈(−1− η, 1 + ind(v3)ε),

(1 + η,−1 + ind(v3)ε)〉,
σG(v4) := 〈(−1− η,−1− ind(v4)Nε),

(1 + η, 1− ind(v4)Nε)〉.

Shifted Equality Gadget for V3 and V4. We
define G′(v3, v4) similarly to F ′(v1, v2), i.e., we shift
the curves of G by N2ε, but in contrast to F ′ we shift
it in the second dimension. More formally:

πG′(v3) := πG(v3) + (0, N2ε),

σG′(v4) := σG(v4) + (0, N2ε).

Due to the similar structure of the curve pairs of
F (v1, v2) and F ′(v1, v2), G(v3, v4), G′(v3, v4), analo-
gous statements to Lemma 5.3 also hold for the curve
pairs from F ′(v1, v2), G(v3, v4), and G′(v3, v4). We
now show that all subcurves of different equality gad-
gets are pairwise further apart than δ.

Lemma 5.4. For any vectors v1 ∈ V1, . . . , v4 ∈ V4

and any translation τ ∈ T , each π-subcurve from
any of F (v1, v2), F ′(v1, v2), G(v3, v4), G′(v3, v4) is in
discrete Fréchet distance greater than δ from each σ-
subcurve of any equality gadget of different type.

Proof. We first show that this holds for F and F ′.
Consider the first point of σF (·,·) which we call q.
This point is further than 2 + N2ε from both points
of πF ′(·,·). When translating σ with τ , the distance
is still greater than 2 + 3

4ε. Thus, σF (·,·) and πF ′(·,·)
are in discrete Fréchet distance greater than δ for any
valid τ . Now let p be the second point of πF (·,·). The
point p has distance greater than 2 + ε from σF ′(·,·).
With translation τ this distance is still greater than
2 + 3

4ε and thus πF (·,·) and σF ′(·,·) are in discrete
Fréchet distance greater than δ for any valid τ . The
proof for G and G′ is symmetric.

Now we prove the lemma for F and G,G′. First
note that every point of F is in distance 1 + η of
the first coordinate axis and every point of G,G′
is in distance 1 + η of the second coordinate axis.
Additionally, no point of F is closer than 1 − 2N2ε
to the second coordinate axis while no point of G,G′
is closer than 1 − 2N2ε to the first coordinate axis.
This means that every point of a π-curve of F is in
distance at least 2 +η−2N2ε = 2 +N2ε of any point
of a σ-curve of G or G′. Even with translation this
distance is at least 2+ 3

4ε ≥ δ. Thus, also the discrete
Fréchet distance is greater than δ. The proof for F ′
is similar and the proofs for G and G′ are symmetric.

We moreover observe that our equality gadgets lie
in very restricted regions. Specifically, call a curve
diagonal if all of its vertices are in

[−1− 2η,−1 + 2η]2 ∪ [1− 2η, 1 + 2η]2,

and call it anti-diagonal if all of its vertices are in

[−1− 2η,−1 + 2η]× [1− 2η, 1 + 2η] ∪
[1− 2η, 1 + 2η]× [−1− 2η,−1 + 2η].

Observation 5.1. For all gadgets F (v1, v2),
F ′(v1, v2), G(v3, v4), G′(v3, v4) the σ-parts are
diagonal while the π-parts are anti-diagonal.

We are now ready to describe the last gadget. For
proving its correctness, we will essentially only use
the diagonal and anti-diagonal property of the curves.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2918



r1

t1

s1
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Figure 8: The OR gadget for general diagonal and
anti-diagonal curves. The gray square is the centered
square with diameter 2.

OR Gadget. We construct an OR gadget over
diagonal and anti-diagonal curves which we will later
apply to equality gadgets. Before introducing the
gadget itself, we define various auxiliary points whose
meaning will become clear later. Here we keep
notation close to [Bri14], although the details of our
construction are quite different.

s1 :=
(
− 1

4 ,−
1
4

)
, t1 :=

(
1
4 ,

1
4

)
,

r1 :=
(

99
100 ,−

5
4

)
, r′1 :=

(
− 99

100 ,
5
4

)
,

s2 := (0, 0), s∗2 :=
(
− 3

2 ,−
3
2

)
, t∗2 :=

(
3
2 ,

3
2

)
,

t2 := (0, 0), r2 :=
(
− 99

100 ,−
5
4

)
, r′2 :=

(
99
100 ,

5
4

)
.

Now, given diagonal curves σ̂1, . . . , σ̂` and anti-
diagonal curves π̂1, . . . , π̂k, we define the two curves
of the OR gadget as

πOR := ©
i∈[k]

s1 ◦ r1 ◦ π̂i ◦ r′1 ◦ t1,

σOR := s2 ◦ s∗2 ◦ ( ©
j∈[`]

r2 ◦ σ̂j ◦ r′2) ◦ t∗2 ◦ t2.

See Figure 8 for a visualization. Now let us prove
correctness of the gadget.

Lemma 5.5. Given an OR gadget over diago-
nal curves σ̂1, . . . , σ̂` and anti-diagonal curves
π̂1, . . . , π̂k, for any translation τ ∈ T we have
δF (πOR, σOR +τ) ≤ δ if and only if δF (π̂i, σ̂j+τ) ≤ δ
for some i, j.

Proof. First observe that no two auxiliary points have
distance close to 2 and thus the translation τ does
not change whether auxiliary points are closer than
δ = 2+ 1

4ε or not. Thus, we can ignore the translation
for distances between auxiliary points in this proof.

We first show that if δF (π̂i, σ̂j + τ) ≤ δ for some
i, j, then δF (πOR, σOR + τ) ≤ δ by giving a valid
traversal. We start in s1, s2. Then we traverse πOR

until the copy of s1 which comes before the subcurve

π̂i. While staying in s1, we traverse σOR until we
reach the copy of r2 right before the subcurve σ̂j .
We then do one step on πOR to r1. Now we step to
the first nodes of π̂i and σ̂j simultaneously, and then
traverse these two subcurves in distance δ, which is
possible due to δF (π̂i, σ̂j+τ) ≤ δ. We then step to the
copies of r′1 and r′2 simultaneously. We then step to
t1 on πOR, while staying at r′2 at σOR. Subsequently,
while staying in t1, we traverse σOR until we reach
its last point, namely t2. Now we can traverse the
remainder of πOR. One can check that this traversal
stays within distance δ.

We now show that if δF (πOR, σOR + τ) ≤ δ, then
there exist i, j such that δF (π̂i, σ̂j + τ) ≤ δ. We
prove this by reconstructing how a valid traversal,
which exists due to δF (πOR, σOR + τ) ≤ δ, must have
passed through πOR and σOR. Consider the point
when s∗2 is reached. At that point, we have to be in
some copy of s1 as this is the only type of node of
πOR which is in distance at most δ from s∗2. Let π̂i
be the subcurve right after this copy of s1. When we
step to the copy of r1 right after this s1, there are only
three types of nodes from σOR in distance δ: s2, t2, r2.
Note that we already passed s2, and we cannot have
reached t2 yet, as t∗2 is neither in reach of s1 nor r1.
Thus, we are in r2. Let the curve right after r2 be
σ̂j . The only option now is to do a simultaneous step
to the first nodes of π̂i and σ̂j . Now, consider the
point when either r′1 or r′2 is first reached. All points
of π̂i are far from r′2 and all points of σ̂j are far from
r′1 and thus we have to be in r′1 and r′2 at the same
time. This implies that we traversed π̂i and σ̂j from
the start to the end nodes in distance δ and therefore
δF (π̂i, σ̂j + τ) ≤ δ.

Assembling π(j) and σ(j). Now we can apply
the OR gadget to the equality gadgets in the following
way. For each of the D dimensions we construct
an OR gadget. The OR gadget for dimension j ∈
[D] contains as anti-diagonal curves all πF (v1) with
v1[j] = 0, all πF ′(v1), all πG(v3) with v3[j] = 0,
and all πG′(v3); and as diagonal curves it contains
all σF (v2), all σF ′(v2) with v2[j] = 0, all σG(v4),
and all σG′(v4) with v4[j] = 0. By Observation 5.1
these curves are suited for the OR gadget. We denote
the resulting curves by π(j) and σ(j), and we write
H(j) = (π(j), σ(j)). This yields the following lemma.

Lemma 5.6. Given a 4-OV instance V1, . . . , V4, and
consider the corresponding OR gadget H(j) =
(π(j), σ(j)) for some j ∈ [D]. It holds that:

(i) For any vectors v1 ∈ V1, . . . , v4 ∈ V4 with v1[j] ·
v2[j]·v3[j]·v4[j] = 0 we have δF (π(j), σ(j)+τ) ≤ δ
for τ = ((ind(v1) + ind(v2) · N) · ε, (ind(v3) +
ind(v4) ·N) · ε).

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited2919



(ii) If δF (π(j), σ(j) + τ) ≤ δ for some τ ∈ T , then

(∃v1 ∈ V1, v2 ∈ V2 : v1[j] · v2[j] = 0 and

|ε · (ind(v1) + ind(v2) ·N)− τ1| ≤
1

3
ε)

or

(∃v3 ∈ V3, v4 ∈ V4 : v3[j] · v4[j] = 0 and

|ε · (ind(v3) + ind(v4) ·N)− τ2| ≤
1

3
ε).

Proof. For (i), from v1[j] · v2[j] · v3[j] · v4[j] = 0 it fol-
lows that at least one gadget of F (v1, v2), F ′(v1, v2),
G(v3, v4), G′(v3, v4) is contained in H(j). By Lemma
5.3 and its analogous versions, we know that the dis-
crete Fréchet distance of this gadget is small. By
Lemma 5.5 it then follows that δF (π(j), σ(j) + τ) ≤ δ.

For (ii), from δF (π(j), σ(j) + τ) ≤ δ it follows by
Lemmas 5.5 and 5.4 that there exists a gadget Γ for
which the discrete Fréchet distance is at most δ. From
Lemma 5.3 and its analogous versions it follows that

|ε · (ind(v1) + ind(v2) ·N)− τ1| ≤
1

3
ε or

|ε · (ind(v3) + ind(v4) ·N)− τ2| ≤
1

3
ε.

for some vectors v1 ∈ V1, . . . , v4 ∈ V4. As Γ is
contained in the OR gadget, we additionally have
that v1[j] · v2[j] = 0 or v3[j] · v4[j] = 0, respectively.

Final Curves. The final curves π and σ are
now defined as follows. We start with the translation
gadget π(0) (σ(0)). Then the curves π(j) (σ(j)) follow
for j ∈ [D]. Note that we have to translate these
curves to fulfill the requirements of Lemmas 5.1 and
5.2, thus, we translate π(j) (σ(j)) by (100 · j, 0).

We are now ready to prove Theorem 1.2. We
split the proof into Lemma 5.7 and Lemma 5.8 which
together imply Theorem 1.2.

Lemma 5.7. Given a YES-instance of 4-OV, the
curves π and σ constructed in our reduction have
discrete Fréchet distance under translation at most
δ, i.e. minτ δF (π, σ + τ) ≤ δ.
Proof. Let v1 ∈ V1, . . . , v4 ∈ V4 be orthogonal vectors
and let τ = ((ind(v1) + ind(v2) · N) · ε, (ind(v3) +
ind(v4) · N) · ε) be the corresponding translation
to those vectors. From Lemma 5.1 we know that
δF (π(0), σ(0) + τ) ≤ δ, and thus there is a valid
traversal to the endpoints of the translation gadget.
Then we simultaneously step to the start of π(1) and
σ(1). From Lemma 5.6 we know that there also exist
traversals of π(1), . . . , π(D) and σ(1) + τ, . . . , σ(D) + τ
of distance at most δ. It follows from Lemma 5.2
that we can also traverse those gadgets sequentially
in distance δ and thus δF (π, σ + τ) ≤ δ.

Lemma 5.8. If the curves π and σ constructed in
our reduction have discrete Fréchet distance under
translation at most δ, then the given 4-OV instance
is a YES-instance.

Proof. Let τ be a translation such that δF (π, σ +
τ) ≤ δ. We know from Lemma 5.1 that τ ∈ T .
Furthermore, from Lemma 5.2 we know that for all
j ∈ [D] it holds that δF (π(j), σ(j) + τ) ≤ δ. It follows
from Lemma 5.6 that for every j ∈ [D] there exist
v1 ∈ V1, v2 ∈ V2 such that v1[j] · v2[j] = 0 and
|ε · (ind(v1) + ind(v2) ·N)− τ1| ≤ 1

3ε or there exist
v3 ∈ V3, v4 ∈ V4 such that v3[j] · v4[j] = 0 and
|ε · (ind(v3) + ind(v4) ·N)− τ2| ≤ 1

3ε. Therefore,
every dimension j ∈ [D] gives us constraints on either
v1, v2 or v3, v4. Note that those constraints have to
be consistent. If in total this gives us constraints for
v1, . . . , v4, then we are done. Otherwise, if this only
gives us constraints for v1, v2, then we already found
v1, v2 which are orthogonal and thus we can pick
arbitrary v3 ∈ V3, v4 ∈ V4 to obtain an orthogonal
set of vectors. The case of v3, v4 is symmetric.

Proof. [Proof of Theorem 1.2.] SETH implies the
k-OV hypothesis. The reduction above from a 4-
OV instance of size N over {0, 1}D to an instance
of the discrete Fréchet distance under translation in
R2 results in two curves of length O(D ·N). Lemmas
5.7 and 5.8 show correctness of this reduction. Hence,
any O(n4−ε)-time algorithm for the discrete Fréchet
distance under translation would imply an algorithm
for 4-OV in time O((D ·N)4−ε) = O(poly(D) ·N4−ε),
refuting the k-OV hypothesis.
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