
klcluster: Center-based Clustering of Trajectories
Kevin Buchin∗

Eindhoven Technical University
Eindhoven, the Netherlands

Anne Driemel∗
Hausdorff Center for Mathematics

University of Bonn
Bonn, Germany

Natasja van de L’Isle∗
Eindhoven Technical University
Eindhoven, the Netherlands

André Nusser∗
Max Planck Institute for Informatics
Graduate School of Computer Science

Saarbrücken, Germany

Figure 1: Example of a (k, ℓ)-clustering for the flight paths of a pigeon with the number of clusters k increasing from 2 (left)
until 5 (right) and the complexity of the clusters being ℓ = 10. Trajectories belonging to the same cluster are shown in the same
color. For each cluster, a center trajectory generated by the algorithm is shown using thick lines of the same color.

ABSTRACT
Center-based clustering, in particular k-means clustering, is fre-
quently used for point data. Its advantages include that the result-
ing clustering is often easy to interpret and that the cluster centers
provide a compact representation of the data. Recent theoretical
advances have been made in generalizing center-based clustering to
trajectory data. Building upon these theoretical results, we present
practical algorithms for center-based trajectory clustering.
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1 INTRODUCTION
Clustering is a fundamental task in data analysis that allows to
partition the data into groups according to inherent similarities,
inferring subpopulations and other hidden structures in the data.
Standard clustering algorithms, such as k-means, are designed for
point data (i.e., points in a feature space or geographic locations)
and are not suitable for clustering trajectories. A trajectory is a
series of time-stamped locations tracking themovement of an object
recorded by a GPS sensor or other positioning technology. Similar
trajectories may have variable length and small temporal deviations,
which make the Euclidean distance largely unsuitable for capturing
the inherent similarity. For a survey on common approaches to
time series clustering we refer to [14].

Generally speaking, we can distinguish two types of clustering
tasks for trajectories: to find clusters of similar subtrajectories [6,
8, 15] and, secondly, to group whole trajectories [18, 21]. In this
paper we focus on the latter. In particular, we focus on center-based
clustering, that is, the clustering partitions the data into groups in
such a way that within each group (or cluster) all objects are close
to one central object, the center of the cluster. To this end, we need
to be able to define and measure the similarity between different
trajectories. Frequently used similarity measures for trajectories
are dynamic-time warping [22], longest common subsequence [21],
the Fréchet distance [7], and the discrete Fréchet distance [10].

Center-based clustering can be contrasted with hierarchical clus-
tering under the single- or complete-linkage criterion, which has
also been applied to trajectory data in the past [18, 21]. In this ap-
proach, the instances are iteratively merged into clusters according
to some linkage criterion. In single-linkage clustering two clusters
are merged based on the smallest distance between two instances,
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one from each cluster. In complete-linkage, clusters are only merged
if all pairwise distances across the cluster boundary are small. Thus,
the latter criterion aims to minimize the diameter (the largest dis-
tance between two instances) in each cluster. In our setting, we aim
to minimize the radius (resp., the variance) of a cluster. To this end,
we need to generate cluster centers. The center of a cluster should
again be a trajectory. An advantage of center-based clustering is
that the centers provide a compact representation of the data and
the resulting clustering is often easy to interpret.

When clustering points there is a natural center of a cluster: For
k-means clustering the center of a cluster is the mean, which is the
point minimizing the sum of squared Euclidean distances. However,
choosing a center from the input is problematic on trajectory data.
First, none of the input trajectories might be a good representation
for the cluster, for instance, because of local variations in the trajec-
tories. Second, the input trajectories might be of high complexity
and thus are not a concise representation. Consequently, using non-
input centers and limiting them to a certain complexity (denoted
by ℓ), potentially increases the center quality significantly.

This is closely related to the problem of trajectory simplification.
However, we need to find a simplification that is valid with respect
to multiple trajectories. A similar problem was studied by Bereg et
al. [4] and later Fan et al. [12], in the context of analyzing protein
backbones. Conceptually our approach is similar to the approach
by Petitjean and Gançarski [19]. However, while their algorithm
is designed for discrete univariate time series, our methods work
for continuous trajectories. This difference is crucial: Because the
parameter ℓ enforces very compact centers, dynamic time warping
becomes less suited as measure for computing such an average. A
comparison of the different methods was done by van de L’Isle [20].
One of the outcomes of the study was that a DTW average of two
trajectories running in parallel tends to result in the center curve
zig-zagging back and forth between the two trajectories.

Our methods are based on recent algorithmic work on center-
based clustering of curves and time-series data. Driemel et al. [11]
studied the problem of time series clustering under the Fréchet
distance. They present algorithms for (k ,ℓ)-clustering of time series
that run in near-linear time in the input size for constant k , ℓ
and approximation factor ε . However, the dependency on these
constants is exponential, which makes the algorithm unsuitable
for practical purposes. Recently, Buchin et al. [9] extended these
results further to multi-dimensional trajectories. In particular, they
present a simple and fast approximation scheme.

2 OUR CONTRIBUTIONS
Building upon the work of Buchin et al. [9] and Bringmann et al. [5],
we present practical algorithms for (k, ℓ)-clustering of trajectories.
Our main algorithm is based on the algorithm proposed by Buchin
et al. but is optimized for speed and scalability. In particular it inte-
grates the recent fast Fréchet distance computation by Bringmann
et al. [5]. Moreover, we develop heuristics to improve the quality of
the centers that the (k , ℓ)-clustering algorithm outputs. To this end,
we develop a new method, which we call Fréchet centering. This
method aims at computing a central curve, based on aligning the
curves of the cluster with an initial center curve. Figure 1 shows
examples of the computed clusterings.

3 DEFINITIONS
In the following, we define (k, ℓ)-clustering and the (continuous)
Fréchet distance following Driemel et al. [11]. Let P and Q de-
note two polygonal curves, each defined by an ordered sequence
of points in the plane. That is, we linearly interpolate between
consecutive points in each sequence and obtain piecewise linear
parametrized curves P : [0, 1] → R2 and Q : [0, 1] → R2. We call
the points of the initial sequence the vertices of the curve and the
linear pieces the edges of the curve. We call the number of vertices
the complexity of the curve. The Fréchet distance between two such
curves is defined as

dF (P ,Q) := inf
f :[0,1]→[0,1]

sup
t ∈[0,1]

∥P(t) −Q(f (t))∥,

where f ranges over the set of continuous and monotone functions
f : [0, 1] → [0, 1] with f (0) = 0 and f (1) = 1. We refer to such a
mapping f as alignment between P and Q .

We say a curve P ′ is an ℓ-simplification of a curve P if P ′ has
complexity ℓ and dF (P , P

′) is minimal. We define the following
variants of (k, ℓ)-clustering. Let P be a set of input curves. The
(k, ℓ)-center cost of a clustering with centers Q is defined as

ϕ∞(Q) := max
P ∈P

min
Q ∈Q

dF (P ,Q).

Similarly, the (k, ℓ)-median cost function ϕ1 and the (k, ℓ)-means
cost function ϕ2 are defined as

ϕ1(Q) :=
∑
P ∈P

min
Q ∈Q

dF (P ,Q), ϕ2(Q) :=
∑
P ∈P

min
Q ∈Q

(dF (P ,Q))
2.

In each of the three clustering variants (center, median, means),
the optimal solution to the (k, ℓ)-clustering problem for input P
is defined as the set Q consisting of k polygonal curves, each of
complexity ℓ, which minimizes the cost. Note that, when k = 1
and |P | = 1, each of the above clustering problems is equivalent to
computing an ℓ-simplification of the input curve, since we restrict
the complexity of the cluster center(s) and minimize the distance.
Not surprisingly, curve simplification will turn out to be a crucial
element of the algorithms we use.

4 ALGORITHMS
Our algorithms combine different elements used for center-based
clustering in Euclidean space and in metric spaces, and generalizes
these to trajectories. The general setup follows Lloyd’s popular
k-means algorithm [16]:

(1) Compute a clustering (see Section 4.1)
(2) Improve centers (see Section 4.2)
(3) Update clusters and go to 2) unless there was no change

4.1 Initial Clustering
A careful choice of the initial clustering can provide a guarantee on
the quality of the resulting clustering. For instance, for the k-means
problem in Euclidean space, k-means++ in this way guarantees
an O(logk)-approximation [3]. In metric spaces –like the space of
trajectories with the Fréchet distance as metric– Gonzalez’ algo-
rithm [13] guarantees a 2-approximation for k-center clustering.
Both these algorithms select (initial) cluster centers by first choos-
ing one of the input objects at random, and then iteratively choosing
cluster centers that have a large distance to all previous centers.
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These algorithms do not directly apply to (k, ℓ)-clustering, since
the resulting centers would not have complexity ℓ. Buchin et al. [9]
recently showed that a 3-approximation for (k, ℓ)-center can be
achieved by intertwining Gonzalez’ algorithm with simplification
algorithms. We implemented their algorithm, but to achieve a clus-
tering algorithm that scales to large data sets we use a fast greedy
algorithm for simplification [1] together with a binary search to
(approximately) minimize the Fréchet distance between the simpli-
fication and the original trajectory for a given ℓ. For (k, ℓ)-center
this results in a 6-approximation [6].

In summary, we compute our initial clustering for the input set
of trajectories P by the following algorithm:

(1) For all trajectories P ∈ P: set min_dist_to_centersP to ∞

(2) Choose one of the trajectories uniformly at random, and take
its ℓ-simplification as the first center

(3) For all trajectories P ∈ P: compute the distance to the new
center, and update min_dist_to_centersP if necessary

(4) Pick the trajectory P with the largest min_dist_to_centersP ,
take its ℓ-simplification as the new center and continue at
(3) until k centers have been chosen.

Fast Fréchet distance computation. The main bottleneck of our
algorithm is the frequent computation of the Fréchet distance. To
make this part as fast as possible, we use the state-of-the-art imple-
mentation of Bringmann et al. [5]. Their implementation is based
on the classical free-space diagram [2], but they use a divide and
conquer approach combined with a pruning strategy which can
decide large chunks of the diagram.

4.2 Improving Centers
After the initial clustering, we alternate between computing new
centers and updating the clustering. A simple approach to compute
a new center for a cluster is to compute ℓ-simplifications for all
curves in the cluster, and to select the simplification that minimizes
the maximum distance (or for k-median/means the sum or sum of
squared distances) within the cluster. However, as argued in the
introduction, this limits the choices for the center too much.

We therefore propose Fréchet centering. As input we are given
a set of trajectories C, i.e., the trajectories within a cluster, and an
initial center trajectory T c . First, we compute the Fréchet distance
for each trajectory T ∈ C to T c . By that we obtain an alignment
between T and T c . For each vertex v of Tc this gives us a matching
to a point on each of the trajectories in C. We call this set Pv . For
each v ∈ T c we now compute the minimum enclosing circle of Pv .
We then move v to the center of this minimum enclosing circle.
Doing this for all vertices of T c , we obtain a new center curve. See
Figure 2 for an illustration of one step of Fréchet centering. We stop
this process when the new center does not improve the induced
radius compared to the previous center (i.e., the new center has at
least the maximum distance to any curve in the cluster as before).

4.3 Single- and Complete-Linkage Clustering
For the sake of completeness, we briefly sketch the clustering al-
gorithm that we compare to in our experiments. Complete-linkage
is a hierarchical clustering algorithm, i.e., it produces a series of
clusters which are nested. At the beginning of the algorithm, each
curve starts out being its own cluster. Then we iteratively merge

Fréchet matching:curves: new center:previous center:

Figure 2: A schematic illustration of Fréchet centering. The
colored curves are the input curves for which we want to
find a center. We already computed a preliminary center,
which is the dashed polyline. To compute a new center, we
first compute the Fréchet traversal and thereby a matching
from the old center vertices to points on all three curves. By
taking the centers of the minimum enclosing circle of those
matched points, we obtain our new center, which is the fat
non-dashed polyline.

the two clusters that minimize the maximum distance between any
two curves in the respective clusters. In other words, we greedily
minimize the diameter of the clusters. We stop the process when
exactly k clusters are remaining, where k is an input parameter.
Single-linkage clustering works the same as complete-linkage clus-
tering, except that it merges the two clusters which minimize the
closest distance of any two curves in the respective clusters.

5 EXPERIMENTS
5.1 Implementation
To test our new approach, we implemented it in modern C++ only
depending on the C++ Standard Library. For a fast computation and
decision of the Fréchet distance and to obtain valid traversals, we
rely on the implementation of [5]. We conducted our experiments
on a laptop with an Intel i5-6440HQ processor with 4 cores.

In total we implemented the following methods1: For clustering
we implemented Complete-Linkage, Single-Linkage and our adap-
tion of Gonzalez’ algorithm as described in Section 4.1. To compute
and improve centers, we implemented k-median, k-means, k-center,
and Fréchet centering as introduced in Section 4.2. In preliminary
experiments single-linkage appeared to be dominated by complete-
linkage clustering for our scenario, and we therefore restrict to the
latter, using it as a baseline comparison to our clustering algorithm.
For center improvement, k-median, k-means, and k-center were far
from being competitive with Fréchet centering regarding running
time and no significant quality improvement was observed in pre-
liminary experiments. Summarizing, we restrict to a comparison
with complete-linkage clustering, using k-means centers.

5.2 Comparison with Complete-Linkage
We are not aware of any similar practical work on clustering with
respect to the Fréchet distance. However, a comparison to a baseline
approach is necessary for judging the running time and quality
of our new approach. Therefore, we compare our work with a
complete-linkage clustering (which stops when only k clusters are
1Our code is available at https://gitlab.com/anusser/klcluster-sigspatial19

https://gitlab.com/anusser/klcluster-sigspatial19
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time (s) diam. radius
complete-linkage + k-means center 21.83 0.076 0.0104
Gonzalez + Fréchet centering 2.04 0.076 0.0092

Table 1: Comparison of our approachwith complete-linkage
clustering and a mean clustering (averaged over 10 runs).

Figure 3: Two examples for a character curve set (gray) and
their center curves (colorful). The centers adapt to different
shapes of the characters (left) and to scalings (right).

left). As centers we use the best ℓ-simplified curve from each cluster
which minimizes the sum of squared distances. To compare the
quality of the two clusterings, we compare their

• diameter, the largest distance of any curve pair which are in
the same cluster.

• average radius, the average over all cluster radii (the maximal
distance from a curve in the cluster to the cluster center).

We chose these two measures as the first one is what complete-
linkage is aiming to minimize, while the second one is what (k, ℓ)-
clustering aims to minimize. We applied our algorithm to flight
paths of homing pigeons [17]. In Table 1, we show the result of
a brief performance and quality comparison measured on all the
curves of the Bladon Heath release site of this data set. The experi-
ment is on 168 trajectories with an average hop length of 601.54
and k = 9, ℓ = 8. On this data, our new approach clearly dominates
the baseline approach. Further experiments lead to similar results.

5.3 Examples
Figure 1 shows clusterings of the data of one pigeon for k ∈

{2, . . . , 5}. A small number of data points (ℓ = 10) is sufficient
to capture the shapes of the clusters. For k = 5, two main clus-
ters are detected while there are 3 outlier trajectories, defined by
the clusters of size 1. The center trajectories (visually) are truthful
representations of their cluster.

In Figure 3, we show example clusters from applying (k, ℓ)-
clustering to a handwritten characters data set which was already
used in [5] as benchmark set for fast Fréchet distance computa-
tion. Our experiments showed that our implementation can classify
handwritten characters with high accuracy on this data set.

6 CONCLUSIONS
We showed that (k, ℓ)-center clustering combined with Fréchet cen-
tering is an efficient approach yielding qualitatively high results.
Our implementation is about 10 times faster when compared to the
commonly used complete-linkage clustering while yielding cluster-
ings with the same or better fit, not being bound to choose the center

from the input set. Moreover, (k, ℓ)-center clustering computes clus-
ter centers that simplify the input trajectories, thereby providing
a compact and interpretable representation of the data, making it
additionally suitable to be used for visualization of trajectory data.
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