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ABSTRACT
We consider the problem of indexing massive trajectory data in an
underlying road network. Our Pathfinder index structure is based
on a state-of-the-art speed-up technique for shortest path planning
and allows to both compress and access huge amounts of trajectory
data. In a continent-sized network with more than 400 million
nodes and almost a billion edges, Pathfinder allows to retrieve all
trajectories within a given space-time cube in a few microseconds
per reported trajectory. The applicability of Pathfinder is shown
using both synthetic and real-world trajectory sets.

CCS CONCEPTS
• Information systems→ Data management systems; Infor-
mation retrieval; Query representation.
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1 INTRODUCTION
With the ubiquity of mobile devices that are capable of tracking
positions (be it via GPS or via Wifi/mobile network localization)
there is a continuous stream of location data being generated every
second. Not all of this data is stored permanently, but platforms
like Strava, GPSies, or OpenstreetMap allow the users to collect
and share their location data with the community. Mobile network
providers or companies like Google or Apple also have access to
the location data of their customers and use it to improve their
services, e.g., to measure traffic flows or detect special events.

In all of these cases, location measurements are typically not con-
sidered individually but rather as sequences, each of which reflects
the movement of one person or vehicle. In this work we assume
that such sequences of location measurements have already been
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mapped to paths in an underlying transportation network using
appropriate methods. Throughout the paper, we use the term trajec-
tories to refer to such already map-matched movement sequences.

The main contribution of this paper is the development of a data
structure allowing for efficient compression and storage of as well
as access to a huge number of such trajectories. Here, by ’huge’
we mean tens of millions of trajectories in a country- or continent-
sized network, or – in the long run – even billions of trajectories.
Taking the trajectories of vehicles into consideration, this enables a
plethora of important use cases such as: (1) traffic anomaly detection
by monitoring the travel time of vehicles traversing a certain region
at a certain time interval, (2) determining most frequently used
paths within a region to facilitate historical trajectory based route
planning, or (3) quick access to relevant trajectories while mapping
the world (the OpenStreetMap project currently hosts more than a
million such trajectories but without an efficient retrieval system).

1.1 Problem Description
An underlying road network is given as a directed weighted graph
G(V ,E, c) with V embedded in R2. The trajectory data is provided
as a collection T of paths, where each path t ∈ T is a sequence of
nodesπ = v0v1 . . .vk inG annotatedwith timestampsτ0,τ1, . . . ,τk .

Our goal is to construct an index for T which allows to efficiently
answer queries of the form

[xl ,xu ] × [yl ,yu ] × [τl ,τu ]

that aim to identify all trajectories which in the time interval [τl ,τu ]
traverse the rectangular region [xl ,xu ] × [yl ,yu ]. In the literature
this kind of query is often namedwindow-query [18] or range-query
[10], where the formal definitions may differ in detail, also see [19].
In addition, we want to answer queries which specify periodic time
events, e.g., a query which asks for all trajectories on weekends
that intersect a query rectangle [xl ,xu ] × [yl ,yu ].

Two straightforward approaches for answering window-queries
are the linear scan where every edge of every trajectory t ∈ T is
explicitly checked for intersection with the query rectangle/space-
time cube. There is also the idea of an inverted index where a net-
work edge is associated with all trajectories using that edge. Then
at query time, one determines the set of network edges intersecting
the query rectangle and checks the time constraints for all respec-
tive associated trajectories. However, both approaches are too slow
and space consuming to handle large networks and huge sets of
trajectories in practice.

1.2 Related Work
Storage and retrieval of trajectory data is an established field of
research. There are basically two different flavours of the problem.
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The more geometric and continuous variant considers the trajec-
tory data as mere sequences of points in R2 (or even R3) that are
freely located in ambient space, see, e.g., [17]. In the other, more
discrete variant, as, e.g., proposed in [8], trajectories are paths in an
underlying network, which can be exploited for storage as well as
indexing. In our work we focus on the latter variant and assume that
the ’raw’ trajectories, which are typically given as a sequence of
GPS coordinates, have been matched to respective paths inG using
somemap matching technique, e.g. as described in [2, 12, 13, 15, 19].

Many other approaches also focus on already map-matched tra-
jectories. Examples are SPNET [10], TED [18], PARINET [14], NET-
TRA [11], and PRESS [16]. For the kind of queries we are interested
in, SPNET represents the state of the art (outperforming other
approaches, see [10]), and proposes both a compression scheme
(trajectories are segmented and represented by several unique short-
est paths) as well as a spatio-temporal index, which is essentially
based on a flat spatial decomposition.

Almost all approaches in the literature accept some loss of in-
formation to compress the trajectories, especially in the temporal
component. SPNET goes as far as only saving start and end time of
a trajectory. Our compression is lossless concerning spatial infor-
mation while keeping a moderate amount of temporal information.
Since we do not drop spatial information in the compression, we
are able to answer purely spatial queries with a 100% accuracy. For
queries including a time interval, our approach works conserva-
tively like SPNET, always containing the exact result as a subset.

There is also a distinction between whether the index is designed
to work in a disk or in a RAM context. The state-of-the-art disk
based systems are PARINET [14] and NETTRA [11]. They can also
be adapted to work in RAM but were then shown to be inferior
to SPNET which was explicitly designed to work in RAM. As our
approach is also designed to work in RAM, we consider SPNET [10]
as our strongest competitor and focus on comparing Pathfinder
to SPNET in our empirical studies. Nevertheless we also report on
some experiments externalizing our PATHFINDER structure.

Note that current approaches for efficient retrieval of trajectory
data make use of different dedicated data structures for the two
main tasks, compression and indexing. In contrast, our approach
elegantly uses an augmented version of the so called contraction
hierarchy (CH) data structure [7] (see also Section 2.1) for both
of these tasks. CH is typically used to accelerate route planning
queries, but has also proved successful in other settings like con-
tinuous map simplification [5]. This saves space and makes our
algorithms relatively simple without the need of too many auxil-
iary data structures. Only this slenderness allows for scalability to
continent-sized road networks and huge trajectory sets.

1.3 Contribution Summary and Outline
In this paper we present a novel index structure that allows to
answer window-queries on network-constrained trajectory sets
on an unprecedented scale. While current indexing schemes work
on small network sizes (e.g., PRESS [16]: network of Singapore,
PARINET [14]: cities of Stockton and Oldenburg, TED [18]: cities of
Singapore and Bejing) or moderate sizes (e.g., SPNET [10]: network
of Denmark with 800k vertices), our approach efficiently deals with

country- (Germany with 57 million vertices) or even continent-
sized networks (Europe with 437 million vertices). For example, for
the network of Europe and 10 million trajectories, we can answer
a window-query within few microseconds per reported trajectory
in the output. The scalability of our approach is mostly due to
the fact that our index structure is a very lean augmentation of
a constructed contraction hierarchy [7], which might be available
anyway, if routing queries are to be answered for the network. It
inherits the hierarchical structure from the contraction hierarchies
and is hence equally suitable for small and large query windows.

After introducing some basic concepts in Section 2, we develop
our spatial indexing scheme in Section 3. The extension to cater
for temporal information is described in Section 4, followed by an
extensive experimental evaluation in Section 5.

2 PRELIMINARIES
As we assume that two nodes are connected by at most one edge, a
path can be uniquely represented by its nodes or by its edges. Thus,
depending on what is more convenient, we either use a representa-
tion via nodes π = v0v1 . . .vk or via edges π = e0e1 . . . ek−1.

For our approach, we have to briefly introduce the main con-
struction that it relies on, namely the contraction hierarchy (CH).

2.1 Contraction Hierarchies
Our algorithms heavily rely on the contraction hierarchy (CH) [7]
data structure, which was originally developed to speed up shortest
path queries. A nice property of CH is that as a by-product it also
constructs compressed representations of shortest paths.

The CH augments a given graph G(V ,E, c) with shortcuts and
node levels. The elementary operation to construct shortcuts is the
so-called node contraction, which removes a node v and all of its
adjacent edges from the graph. To maintain shortest path distances
in the graph, a shortcut s = (u,w) is created between two adjacent
nodesu,w ofv if the only shortest path fromu tow is the pathuvw .
We define the cost of the shortcut to simply be the sum of the costs
of the replaced edges, i.e. c(s) = c(uv) + c(vw). The construction
of the CH is the successive contraction of all v ∈ V in some order;
this order defines the level l(v) of a node v . The order in which
nodes are contracted strongly influences the resulting speed-up
for shortest path queries and hence many ordering heuristics ex-
ist. In our work we choose the probably most popular heuristic:
nodes with low edge difference [7], which is the difference between
number of added shortcut edges and the number of removed edges
when contracting a node, are contracted first. We also allow the
simultaneous contraction of non-adjacent nodes. As a result, the
maximum level of even a continent-sized road network like the one
of Europe never exceeds a few hundred in practice. The final CH
data structure is defined as G(V ,E+, c, l) where E+ is the union of
E and all shortcuts created.

We also define the nesting depth nd(e) of an edge e = (v,w).
If e is an original edge, then nd(e) = 0. Otherwise, e is a shortcut
replacing edges e1, e2, and we define its nesting depth nd(e) B
max{nd(e1),nd(e2)}+1. Clearly, the nesting depth is upper bounded
by the maximum level of a node in the network.
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Algorithm 1 Converting π into its CH-representation. Note that
it directly works on π so the indices change while replacing edges.
1: procedure toCHPath(π = e0 . . . ek−1)
2: i ← 0
3: while i + 1 < length(π ) do
4: if ei and ei+1 form a shortcut then
5: s ← getShortcut(ei , ei+1)
6: replace ei and ei+1 by s in π
7: i ← max{i − 1, 0}
8: else
9: i ← i + 1
10: return π
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Figure 1: Original path (black, 13 edges) and derivation
of its CH-representation (bold blue, 3 edges) via repeated
shortcut substitution (in order according to the numbers). y-
coordinate corresponds to CH level.

3 SPATIAL PATHFINDER
This section contains the main contribution of our work: our com-
pression scheme as well as the spatial part of the Pathfinder data
structure and query algorithm.

3.1 Compression
Given a precomputed CH graph, we construct a CH-representation
for each trajectory t ∈ T , that is, we transform the path π =
e0e1 . . . ek−1 with ei ∈ E in the original graph into a path π ′ =
e ′0e
′
1e
′
2 . . . e

′
k ′−1 with e ′i ∈ E

+ in the CH graph.
Our algorithm to compute a CH-representation is quite simple:

We repeatedly check if there is a shortcut bridging two neighboring
edges ei and ei+1. If so, we substitute them with the shortcut. We
do this until there are no more such shortcuts. See Algorithm 1 for
the pseudocode and Figure 1 for an example. Note that uniqueness
of the CH-representation can be proven and therefore it does not
matter in which order neighboring edges are replaced by shortcuts.
The running time of that algorithm is linear in the number of edges:

Theorem 3.1. The CH-representation of a trajectoryπ = e0 . . . ek−1
can be computed in O(k).

Proof. During CH construction we can store all neighbors of
a node v in a hash map, allowing for constant access time, see [4].
Given two edges e1 = (v1,v2) and e2 = (v2,v3), we can then check
for and retrieve a shortcut (v1,v3) in constant time. Thus, the body
of the while-loop in Algorithm 1 takes O(1) time. However, the

while-loop can be entered at most 2k times since in every round
either i is increased or the length of π decreases by one. □

For the resulting CH-representation π ′ = e ′0e
′
1e
′
2 . . . e

′
k ′−1, the

repeated substitution of an e ′i ∈ E
+ \ E with the two edges it rep-

resents (also called child edges) yields the original path π . Thus,
we have a lossless compression scheme with respect to the spatial
information of t . Note that by switching to the CH-representation,
we can achieve a considerable compression rate in case the trajec-
tory is composed of few shortest paths (as shortest paths usually
have a very concise CH-representation, see e.g. [6]).

3.2 Retrieval Overview
At a high level, the idea of our retrieval process is to associate a
trajectory with all edges of its compressed representation in E+. Only
due to that compression, it becomes feasible to store a huge number
of trajectories within the index. Answering a spatial query then
boils down to finding all edges of the CH for which a corresponding
path in the original graph intersects the query rectangle. Typically,
an additional query data structure would be used for that purpose.
Yet, we show how to utilize the CH itself as a geometric query
data structure. Details are given in Section 3.3 and improvements
in Section 3.4. After this step, however, some of the edges we re-
trieve represent edges or paths which do not actually intersect the
query rectangle. This overestimation is due to checking the inter-
section with the bounding box and not the actual underlying path.
Therefore, these “pseudo-intersecting” edges need to be filtered
out by closer inspection. The details are explained in Section 3.5.
Finally, we only have to return all trajectories which are associated
with any of the edges remaining after the filtering step. High-level
pseudocode is provided in Algorithm 2.

Algorithm 2 Spatial Pathfinder Algorithm
1: procedure PathfinderQuery(Q )
2: EO ← FindEdgeCandidates(Q )
3: Er ← RefineEdgeCandidates(Q, EO )
4: return GetAssociatedTrajectories(Er )

3.3 Finding Edge Candidates
Let us now explain the details of the function called in Line 2 of
Algorithm 2. This requires two central definitions:
• With PB(e) we denote the path box of an edge e . It is defined
as the bounding box for the path that e represents in the
original graph G in case e ∈ E+ is a shortcut, or simply the
bounding box for the edge e if e ∈ E.
• We define the downgraph box DB(v) of a nodev as the bound-
ing box of all nodes that are reachable fromv on a down-path
(only visiting nodes of decreasing CH-level), ignoring the ori-
entation of the edges. In Figure 2, the downgraph boxes of the
green/red/blue nodes are depicted in light green/blue/red.

Both PB(e) and DB(v) can be computed for all nodes and edges in
linear time via a bottom-up traversal of the CH in a preprocessing
step and independently of the trajectory set to be indexed.

For a spatial-only window-query with query rectangle Q , we
start traversing the CH level-by-level in a top-down fashion, first
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Algorithm 3 The algorithm to find edge candidates given a query
rectangle Q .
1: procedure FindEdgeCandidates(Q )
2: VT ← FetchTopNodes(Q )
3: EO ← ∅
4: for v ∈ VT do
5: EO ← EO ∪ FindCandidatesForNode(v, Q )
6: return EO

7: procedure FindCandidatesForNode(v, Q )
8: C ← ∅
9: for e ∈ down edges of v do
10: if PB(e) ∩Q , ∅ then
11: C ← C ∪ {e }
12: vl ← lower node of e
13: if DB(vl ) ∩Q , ∅ then
14: C ← C ∪ FindCandidatesForNode(vl , Q )
15: return C

inspecting all nodes which do not have a higher-level neighbor
(note that there can be several of them in case the graph is not
a single connected component). We can check in constant time
for intersection of the query rectangle and the downgraph box of
a node, only continuing with children of nodes with non-empty
intersection. We call the set of nodes with non-empty intersection
VI . The set of candidate edges EO are then all edges adjacent to a
node in VI . See Algorithm 3 for the pseudocode.

Let us first prove the following lemma, which we then use to
prove correctness of our query routine.

Lemma 3.2. For every edge e = (v,w) or e = (w,v) with l(v) <
l(w), DB(w) contains the path represented by e .

Proof. We prove the lemma by induction over the nesting depth
of e . Additionally, assume that e = (v,w) as the proof for e =
(w,v) is equivalent. Clearly, if nd(e) = 0, then e is an original
(non-shortcut) edge, the lemma follows trivially since DB(w) by
definition containsv andw . Now consider the case when nd(e) > 0.
Then e is a shortcut bridging edges e1 = (v,u), e2 = (u,w) with
smaller nesting depths. By the induction hypothesis,DB(v) contains
the path represented by e1 since l(v) > l(u), and DB(w) contains
the path represented by e2 by the same argument. As l(v) < l(w)
and thus v is reachable on a down-path from w , DB(w) contains
the path represented by e . □

A simple application of this lemma shows that every edge that
has to be reported is found by our query routine.

Theorem 3.3. Every edge e which represents a path π intersecting
Q is adjacent to a node in VQ .

Proof. Consider an edge e = (v,w) whose represented path
intersects Q , w.l.o.g. l(v) < l(w). By the previous lemma, we know
that DB(w) contains the path represented by e . As all the ancestors
ofw also contain DB(w), the search from the root will indeed reach
w and thusw ∈ VQ . Finally, note that e is adjacent tow . □

Figure 2: Dashed query rectangle: The left blue downgraph
box is fully contained in the query rectangle, therefore we
know that the inner red one is contained too.

3.4 Improvements
In the following, we explain several significant improvements to the
just described edge retrieval data structure. The first improvement
addresses how to quickly retrieve the top nodes. The following
three improvements are related to pruning the search on the CH
graph. Finally, we explain how to parallelize the search.

R-Tree for Top Nodes. In Line 2 of Algorithm 3 we fetch the relevant
top nodes. Recall that top nodes are all the nodes v ∈ V which
have no edge to a higher level node. Continental road networks
are often not connected and hence several top nodes might exist.
By organizing the top nodes with their downgraph boxes in an
R-tree [9] we can quickly identify the top nodes v ∈ V for which
DB(v) ∩Q , ∅ and continue with them as in Algorithm 3.

Downgraph Box Contained in Query Rectangle. If we notice during
the CH-traversal that a downgraph box is completely contained in
the query rectangle, we do not need to check the spatial constraint
for all of its child downgraph boxes anymore, see Figure 2.

Obsolete Edges. Edges not associated with any trajectory and whose
lower-leveled end node can be reached via other non-obsolete edges
are marked obsolete and can therefore be omitted in the search.
Note that the marking of obsolete edges is not uniquely determined.
In this work, we greedily mark the obsolete edges. After having
marked the obsolete edges, we sort our edge lists accordingly, such
that we can directly access the non-obsolete edges without having
to check for the obsoleteness status at query time.

Tree Edges. During the CH-traversal, it suffices to visit a node once.
To speed up the CH-traversal, we reduce the DAG to a tree in the
preprocessing by greedily “deleting” edges. We store the tree by
marking the tree edges, which is very similar to marking obsolete
edges. The tree edges are a subset of the non-obsolete edges.

Parallelization. By imposing a tree structure on the CH graph, par-
allelization of the CH graph also becomes straightforward via a
breadth-first search where in each round we have a set of nodes (on
the same CH level) which needs to be processed. This set is split up
among the threads which process their part and then return a set
of nodes to be processed in the following round. All the returned
sets of the threads are merged (eliminating duplicates) and become
the set of nodes which needs to be processed in the next round.
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Figure 3: Unclear intersection of edge and query rectangle
(red): unpacking could result in a path which does intersect
the red query rectangle (brown) or not (green).

3.5 Refining Edge Candidates and Retrieving
Associated Trajectories

Having retrieved the candidate edges, we now have to filter out
edges e for which only the path box PB(e) intersects but not the
path represented by e . For simplicity, let us first focus on a single
edge e ∈ EO . If e is a non-shortcut edge, we can easily decide
whether e intersects Q . However, if e = (v,w) is a shortcut, more
effort might be necessary. Clearly, if PB(e) ∩ Q = ∅, then e must
not be reported, but if v ∈ Q or w ∈ Q , e must be reported. The
interesting case is thus when PB(e) ∩ Q , ∅ but v,w < Q . This
setting is shown in Figure 3. In this case we need to recursively
unpack e to decide whether e (and the trajectories associated with
e) has to be reported. As soon as one child edge reports a non-empty
intersection in the recursion, the search can stop and e must be
reported. We call the set of edges that results from this step Er .
Note that in practice, it is almost never necessary to completely
unpack an edge for a definitive decision.

Our final query result is all the trajectories which are referenced
at least once by the retrieved edges, i.e. those t ∈

⋃
e ∈Er Te .

3.6 Discussion
In some sense our index structure could be interpreted as a much
improved inverted index, where (a) we do not only use original
edges but also CH shortcut edges to represent a trajectory if possible
and (b) instead of scanning all edges we instrument the constructed
contraction hierarchy as a spatial index. Improvement (a) not only
dramatically decreases the space consumption of the index structure
compared to a naive inverted index but also limits the number of
edge-trajectory associations to collect. Additionally, (b) drastically
cuts down on the edges whose associations one needs to consider
at all. It is also noteworthy that a considerable part of the index
construction does not depend on the actual trajectory set to be indexed.
In particular, the construction of the CH itself as well as the path
and downgraph boxes are just based on the structure of the network
itself. Only the tagging of obsolete and tree edges actually depends
on the trajectory set. This is in stark contrast to, e.g., SPNET [10]
where the spatial index is a partition guided by the trajectory set.

4 ADDING TEMPORAL INFORMATION
4.1 Timestamps
Timestamps of a trajectory t are annotations to its nodes. In the CH-
representation of t , we omit nodes via shortcuts hence losing some
temporal information. Yet, Pathfinder will always answer queries
conservatively, i.e., returning a superset of the exact result set. It
has been observed in [10] that ”fine-grained temporal information
on trajectories has limited value for spatio-temporal filtering”, so

we do not expect this to be a real issue in practice, but will verify
this conjecture experimentally as well.

4.2 Time Intervals
Like the spatial bounding boxes PB(e), we store time intervals to
keep track of the earliest and latest trajectory passing over an edge.
Similar to DB(v) we compute minimal time intervals containing
all time intervals associated with edges on a down-path from v
This allows us to efficiently answer queries which specify a time
interval [τl ,τu ]. Like the spatial bounding boxes, we use these time
intervals to prune tree branches when they do not intersect the
time interval of the query.

An edge is associated with a set of trajectories, each of which we
could check for the time when the respective trajectory traverses
the edge. It is more efficient to store for all trajectories traversing an
edge their time intervals in a so-called interval tree [1]. By that we
can efficiently retrieve the associated trajectories matching the time
interval constraint of the query for a given edge. An interval tree
storing ℓ intervals has space complexityO(ℓ), can be constructed in
O(ℓ log ℓ), and can retrieve all intervals intersecting a given query
interval in time O(log ℓ + o) where o is the output size.

4.3 Time Slices
We first define time slices more formally. Let p be the period length
and k the number of slices, we define Sall = {0, . . . ,k − 1} to be
the set of slices and Sq ⊆ Sall a query set of slices. For example,
when the period is a week and the slices are the days of the week,
we have k = 7 and Sq = {5, 6} for Saturday and Sunday. Formally,
the set of times of a time slice query is given by⋃

i ∈N, j ∈Sq

[(
i +

j

k

)
· p,

(
i +

j + 1
k

)
· p

]
,

where we assume that the zero time stamp marks the beginning of
a new period due to simplicity. Otherwise, we have to adjust by a
constant offset.

This enables queries for periodic time intervals. In our imple-
mentation, we set p to be one week and split it into k = 64 time
slices. To get the corresponding time slices of a time interval, we
need to compute the time slices of its borders. For a given border τ ,
we first compute its timestamp within the period τp = (τ mod p).
Then we calculate the slice with j =

⌊
τp
k

⌋
. As we know start and

end slice, we can easily determine the set Sslices of slices [τl ,τu ]
falls into. We store Sslices as bitset with size k in which all bits for
j ∈ Sslices are set, whereas all j ∈ Sall \ Sslices are not set. Unifica-
tion and intersection of time slice sets are simple bitwise “AND”
and “OR” operations in this implementation. With unification and
intersection, we build analogues of PB(e) and DB(v) to speed up
queries which specify Sq .

At this point our Pathfinder structure can also answer queries
like ”return all trajectories intersecting [xl ,xu ]×[yl ,yu ] onMonday
and Friday afternoons in March 2017”.

5 EXPERIMENTS
We implemented the described algorithms in C++. Experiments
were conducted on two machines:
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Table 1: Characteristics of considered networks (M = 106).

Germany Europe
# nodes 57.4M 437.4M
# edges (original) 121.7M 902.1M
# edges (CH) 248.4M 1694.2M
CH construction time (min) 16 125

Table 2: Characteristics of trajectories in Tger,real.

∅ σ max.
# shortest paths 11 16.6 1118
length (km) 14.78 34.6 1928
original length (#edges) 347 654 46112
compressed length (#edges) 37 56 3726

(1) AMD Ryzen Threadripper 1950X (16-Core), 128 GB RAM
and a 512GB Toshiba OCZ RD400 NVMe SSD (2.6GB/s)

(2) Intel(R) Xeon(R) CPU E5-2650 v4 (24-Core), 768 GB RAM
Note that the 768GB of RAM of the second machine are humble in
comparison to [10] which used 2TB of RAM for far smaller graphs
(800k nodes for the Danish road network) and less trajectories.

5.1 Graph Data
We build our graphs from OpenStreetMap (OSM) data.1 From the
available networks, we chose to use the German and the European
graph and constructed the respective CH-graphs Gger and Geu.
In both cases, all types of path segments – from hiking trails to
motorways – are included, and the construction of the CH roughly
doubles the number of edges. Gger has over 57 million nodes and
almost 250 million edges, Geu 437 million nodes and 1.7 billion
edges; see Table 1 for the details. The maximum level of the CH
never exceeded 560, which also bounds the depth of our search
procedure. For our experiments with real trajectory data onGger, we
used our medium sized Threadripper machine. The Xeon machine
was only necessary for Geu and very large synthesized data sets.

5.2 Real-World Trajectory Data
For real world data, we considered all traces within Germany in the
bundled public collection of GPS traces from OSM2, only dropping
low quality traces (e.g., due to extreme outliers, non-monotonous
timestamps, . . . ). As a result, we obtain 350 million GPS measure-
ments that are matched to Gger with the map matcher from [15] to
get a dataset with 372,534 trajectories which we call Tger,real.

We consider the number of shortest paths a trajectory consists
of, its length in kilometer, and its length in edges given the original
(non-CH) representation as insightful quantities, which can be
found in Table 2 with average, standard deviation and maximum.
Note that on average, a trajectory can be represented by 11 shortest
paths. Since the OSM data set is highly heterogenous, as users can
upload all sorts of trajectories from short hiking trips to long road
trips, the maximum values are far from the average.

1https://download.geofabrik.de/
2https://planet.openstreetmap.org/gps/gpx-planet-2013-04-09.tar.xz

Figure 4: Visualization in the German region Saarland. The
blue rectangle is the query, the red lines are the returned
trajectories of Tger,real. Edges which are not contained in any
retrieved trajectory are drawn black.

5.3 Compression
The original edge representation of Tger,real consists of 121.8 million
edges (992 MB on disk), whereas the CH-representation only re-
quires 13.8 million edges (112MB on disk). The actual compression
for the 372k trajectories took 42 seconds, that is, around 0.1ms per
trajectory. No further compression technique was employed.

As the relationship between the number of edges in the original
representation and the CH-representation is of great interest for
the quality of the latter as a compression scheme, we compiled
various characteristic aspects in Table 2. To no surprise, the CH-
representation is significantly more compact.

5.4 Synthesized Trajectory Data
To demonstrate that Pathfinder scales well, we additionally gener-
ate trajectory data ourselves by randomly choosing a source node
vs and a target node vt . If the great-circle distance between vs and
vt is below a given parameter d , we include the shortest path in
our test data Tsynth. By varying d we can investigate the influence
of the length of the trajectories on our data structure.

Compared to a real world trajectory which consisted on average
of 11 shortest paths, t is only one shortest path by construction and
has therefore a far conciser CH-representation. To make our exper-
iments more realistic, we did not compute the CH-representation
for the whole trajectory t but we represent it by the concatenated
CH-representations of a number of shortest path segments instead.
We sampled the number of such segments uniformly between 8
and 14 to get an expected average of 11. This may look like a neg-
ligible tweak, but it worsened the query time in our experiments
by up to a factor of 3. To generate time data for t , we set τ0 to a
random date from 2008 onwards. For i ∈ {1, . . .k} (with k being
the uncompressed path length) we set τi+1 = τi + τstep, where τstep
is sampled uniformly between 1 s and 9 s to get an expected average
of 5 s which is the median edge time of Tger,real.

5.5 Index Structure
In Table 3 we state the setup time and space requirement of our
index structure for the real-world trajectory set on the network

https://download.geofabrik.de/
https://planet.openstreetmap.org/gps/gpx-planet-2013-04-09.tar.xz
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Table 3: Setting up the auxiliary data structures (CH con-
struction and compression excluded). |Tger,real | = 372, 534
and |Teu,synth | = 107, d = 105 km.

Tger,real Teu,synth
setup time 349s 5040s
total size 126GB 485GB

Table 4: Timings in seconds for |Tger,real | = 372, 534 for dif-
ferent variants with spatial only queries, single thread.

1/2 1/4 1/8 1/16 1/32
linear scan 74.53 79.65 82.37 83.33 83.90
inverted index CH 87.26 69.78 60.05 56.45 55.37
Pathfinder 0.89 0.39 0.14 0.04 0.01

of Germany and the synthetic trajectory set on the network of
Europe. Note that currently the construction does not make use of
parallelism at all when building the index structure. A considerable
speed-up by parallelization can be expected there. For additional
insights into the two data sets, we give the histograms of how many
trajectories are associated with each edge, see Figure 5.

5.6 Query Answering
Since we expect practical applications to query for different sized
rectangles, we tested our algorithms in all experiments with rec-
tangle sizes of different orders of magnitude. For the magnitude
parameter r within the range {1, . . . , 5}, we created a query rec-
tangle Rr = [xl ,xu ] × [yl ,yu ] as follows: First we compute the
bounding box RG of the graph. Then, a random node of our graph
is sampled and taken as the lower left corner of the query rectangle.
Finally, we set the width and height of Rr to 2−r of the width or
height of RG respectively. A visual depiction of an answered query
can be seen in Figure 4.

For evaluating performance for time interval constraints, we
also generate intervals of the form [τl ,τu ], where τl lies in the time
frame of the given trajectory data and the difference between τl ,τu
is chosen to be one week. For the time slices we constructed queries
which ask for all trajectories in a region which happened on a
certain day of the week.

The measurements are obtained by averaging the time for 100
queries with the same configuration. For each cell in one column,
we used the same 100 queries.

Comparison to Baselines. In order to demonstrate the efficiency of
Pathfinder, we first compare it to the linear scan algorithm and
to the inverted index approach described in Section 1.1. However,
we do not use the most naive variant of the inverted index here
but already the tuned variant where we index the trajectories in
the CH graph instead of the original graph. Note that the naive
variant does not allow for any compression and exhibits worse
query times. Thus, using the inverted CH index already provides
some improvements. However, the full power of Pathfinder is
only achieved by augmenting the CH with a spatial index structure.

Table 5: Timings in seconds for different sized sets Tger,synth,
spatial only queries, single thread.

set size 100, 000 1M 10M
linear scan 156.237 1568.022 15884.508
inverted index CH 69.577 68.403 71.550
Pathfinder 0.029 0.107 0.415

Table 6: Timings in milliseconds for |Tger,real | = 372, 534with
16 threads for different constraints.

1/2 1/4 1/8 1/16 1/32
pure spatial 108.7 48.5 15.9 7.2 3.2
intervals 12.1 6.2 3.6 2.3 1.9
slices 44.0 20.5 8.5 3.6 2.4
intervals + slices 10.0 5.8 3.2 2.0 1.5

Table 4 shows the measured query times for all three approaches
for different sizes of the query rectangle.We notice that Pathfinder
is faster than the naive approaches by several orders of magnitude,
especially for small rectangles. At first glance, it is surprising that
the approach using the inverted index is sometimes slower than the
linear scan. This can be explained by our relatively sparse trajectory
dataset. To confirm the asymptotic benefit of the inverted index,
we ran tests with larger synthesized data sets for which the results
can be found in Table 5. There we can see that the time complexity
for the linear scan is unsurprisingly linear in |Tsynth |. As the time
complexity for the inverted index approach is not, we can also see
that it outperforms the linear scan as the number of trajectories
increases. Pathfinder is even faster by several orders of magnitude
than the inverted index approach.

In Table 4, the 12ms taken by Pathfinder for the 1/32 sized
query allows a good comparison to TED: In [18], it is reported
in Figure 17f that TED requires more than 40ms for its window
queries in a similar setting (500k trajectories) with the exception
of geographical graph size. Their graph is only Singapore (20k
vertices compared to 57.4 million in our case). As time complexity
with respect to the number of trajectories is linear for TED while it
is not for Pathfinder, this difference only grows when going to
larger scales.

Parallelization. In Table 6 we show the times for different variants
using parallelization. We can see that for smaller rectangles, a query
can be answered within a few milliseconds. Adding a time slice
constraint significantly reduces the required time because the out-
put set Tout becomes smaller and parts of the traversed tree can be
pruned. Specifying a time interval constraint leads to even lower
response times because, on one hand Tout is even smaller, and on
the other hand we used interval trees to speed up such queries.

As already mentioned, we synthesized big datasets to test the
scaling behaviour of Pathfinder on the large graph Geu. The re-
sulting times for pure spatial queries using 24-fold parallelization
can be seen in Table 7(a). Additionally, timings for the most es-
sential steps are shown in 7(b), 7(c), and 7(d). For example, having
generated 107 random trajectories where source and target have
an Euclidean distance of at most 400km, querying with a randomly
placed rectangle of 1/16th the width and 1/16th the height of the
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Figure 5: The histograms of edge-trajectory associations for |Tger,real | = 372, 534 (left) and |Teu,synth | = 107, d = 105 km (right).

Table 7: Measurements for |Teu,synth | = 107 with 24 threads for spatial only queries.

(a) Overall querytime in seconds

d 1/2 1/4 1/8 1/16 1/32
25km 0.817 0.628 0.270 0.093 0.041
100km 5.630 4.381 1.866 0.609 0.201
400km 6.177 4.959 2.124 0.685 0.222

100,000km 6.889 4.773 1.882 0.608 0.211

(b) FindEdgeCandidates in seconds

d 1/2 1/4 1/8 1/16 1/32
25km 0.254 0.191 0.088 0.037 0.021
100km 1.219 0.886 0.372 0.140 0.050
400km 1.191 0.893 0.377 0.140 0.052

100,000km 1.194 0.815 0.315 0.106 0.043

(c) RefineEdgeCandidates in seconds

d 1/2 1/4 1/8 1/16 1/32
25km 0.280 0.207 0.086 0.025 0.007
100km 1.576 1.158 0.474 0.144 0.042
400km 1.504 1.152 0.458 0.135 0.043

100,000km 1.430 0.931 0.344 0.104 0.028

(d) GetAssociatedTrajectories in seconds

d 1/2 1/4 1/8 1/16 1/32
25km 0.269 0.221 0.090 0.028 0.009
100km 2.754 2.269 0.992 0.314 0.103
400km 3.379 2.827 1.246 0.391 0.118

100,000km 4.090 2.879 1.139 0.360 0.119

(e) Result size |Tout |

d 1/2 1/4 1/8 1/16 1/32
25km 168,570 134,451 57,107 18,468 6,595
100km 2,288,640 1,948,294 903,384 314,285 122,174
400km 2,824,558 2,511,392 1,359,735 568,822 256,962

100,000km 4,781,852 4,174,645 2,577,375 1,334,826 745,257

bounding box of Europe takes 0.685 seconds, reporting around 568k
trajectories in the output (see Table 7(e)). Note that such a query
rectangle still has width and height of several hundred kilometers.
In case of such a rather large result set, most of the time is spent col-
lecting the associated trajectories (0.391 seconds), while the other
steps take only 0.140 (FindEdgeCandidates) and 0.135 (RefineEdge-
Candidates) seconds. In general, though, the times for these steps
are in the same order of magnitude, meaning there is no single
bottleneck, which implies that all of our various optimizations are
necessary as otherwise one of the steps would dominate the run-
time and thereby become the bottleneck. Notably, the measured
times make a big jump between d = 25 km and d = 100 km. The
reason seems to be the size of the result set Tout, which is larger

for d = 100 km than for d = 25 km by at least a factor of 15 for all
parametrizations of the query size, as we can see in 7(e). Addition-
ally, on average a trajectory in Tout has 4 times more original graph
edges for d = 100 km than for d = 25 km by construction. Luckily,
our CH-representation cushions this data growth. Of highest sig-
nificance is that we can handle the smaller sized rectangle queries
with times far below one second. We want to emphasize again that
even the smaller rectangles still have a significant size as their size
is chosen relative to the bounding box of Europe. Obviously, if the
set of trajectories Tout to be reported is large – e.g., querying with
1/4th of the bounding box width and height of Europe, we have
|Tout | > 4 million – the query times must be higher. Therefore, it
is of interest to consider the query time per reported trajectory as
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Figure 6: Time per trajectory in the output for |Teu,synth | =
107 with 24 threads for spatial only query.

Table 8: Times in seconds for |Teu,synth | = 107 withd = 100 km
and 32 threads for different constraints.

1/2 1/4 1/8 1/16 1/32
pure spatial 5.630 4.381 1.866 0.609 0.201
intervals 1.439 1.095 0.532 0.174 0.076
slices 4.273 3.412 1.449 0.461 0.157
intervals + slices 1.447 1.059 0.520 0.168 0.068

Table 9: Times in seconds for |Teu,synth | = 107 with d = 25 km
and different number of threads for spatial only query.

threads

1/2 1/4 1/8 1/16 1/32

1 8.334 4.987 2.029 0.864 0.150
2 4.811 3.788 1.537 0.703 0.122
4 2.722 1.999 0.830 0.348 0.072
8 1.351 1.067 0.447 0.210 0.056
16 0.801 0.624 0.273 0.130 0.037
24 0.632 0.495 0.196 0.099 0.032

we have done in Figure 6 – essentially dividing the query times of
Table 7(a) by the result set sizes of Table 7(e). We see that the time
per reported trajectory is always in the microseconds range.

In Table 8 we have similar measurements as in Table 6 but on
larger scale. In comparison, the additional time constraints do not
speed up the query times by the same amount, but the general trend
stays the same and proves the scalability of Pathfinder.

In Table 9 we ran only spatial queries with different numbers of
threads. In Figure 7 these times are normalized and plotted. We can
see that our algorithm has only a small speedup from 1 to 2 threads
because |Tout | does not need to be merged in the single-threaded

Figure 7: Table 9 as a plot with reported times normalized by
multiplication with the number of used threads.

Table 10: On disk and RAM results for step GetAssociated-
Trajectories and |Tout |, single thread.

1/2 1/4 1/8 1/16 1/32
On disk (s) 36.33 22.60 9.35 3.86 1.53
RAM (s) 19.20 10.67 3.56 1.11 0.26
|Tout | (M) 16.49 12.46 6.80 3.46 1.42

case. For larger rectangles in particular we see an almost linear
speedup when using more threads.

Index on Disk. Although we designed Pathfinder as an in-memory
index we also considered the case that RAM is limited and therefore
implemented a variant which stores the trajectory data on disk
by using the STXXL-library [3]. We generated a huge dataset of
|Tger,synth | = 75 · 106 with d = 100 km which uses 358GB on the
SSD of our threadripper machine and ran spatial queries there and
also completely in the RAM of our Xeon machine for comparison.
The results with respect to the step GetAssociatedTrajectories are
shown in Table 10.We see that fetching from a (very fast) NVMe SSD
only incurs an overhead of at most a factor of 6. Note that in both
cases we assume the search structure (essentially the augmented
CH) to be resident in RAM, yet the number of trajectories can be
increased almost arbitrarily according to the capacity of the SSD.

Precision With Respect to Temporal Queries. In [10] it was argued
(but not experimentally verified) that fine-grained temporal infor-
mation has only limited value for spatio-temporal filtering. We
verify this conjecture by analyzing the interval queries from Ta-
ble 6, in particular how many more trajectories are reported due to
non-exact temporal information stored in the CH representation,
see Table 11. We see for example that for random queries of size
1
8 ×

1
8 with a random slot out of 64 slots within a week, the average

number of trajectories reported is 98.498 compared to a ground
truth of 98.234. This is due to the fact that if a trajectory is not fully
contained in the spatial query rectangle, our temporal compression
might report trajectories which should not be reported (this is the
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Table 11: Size of result set Tout: quality loss due to decrease
of temporal resolution (averaged over 2000 queries).

1/2 1/4 1/8 1/16 1/32
uncompressed 959.8600 313.8005 98.2340 28.5760 9.6105
compressed 960.3985 314.2435 98.4980 28.7365 9.6890
uncompressed
compressed 0.999 0.998 0.997 0.994 0.991

only possible reason). We see, though, that this happens very rarely.
We can also see that bigger query rectangles have a higher precision
because their boundary-to-area ratio is smaller.

Comparison to SPNET. To make a comparison with SPNET, we
have a closer look at the result for one thread and rectangle size
1/32 in Table 9 which is 150ms. For SPNET, such queries were
benchmarked in [10] with better hardware, on a smaller graph and
with less trajectories which were also shorter on average. Note that
the input for SPNET’s range query is not a rectangle but the set of
edges in a rectangle. Therefore, their query is strictly easier than
ours sincewe have to compute the edges in the rectangle first, which
is exactly what FindEdgeCandidates does. For the rectangle used in
our query with size 1/32, we counted the edges within the rectangle
which were on average 5.18 × 106. In Figure 5 (d) of the SPNET
paper [10], we comparewith the result forR19 which corresponds to
rectangles containing up to 219+1 edges. Consequently, we consider
more edges since 219+1 < 1.05 · 106 < 5.18 · 106. Figure 5 (d) states
that forR19, SPNET requires on average more than 103ms, whereas
Pathfinder requires 150ms under harder conditions.

6 CONCLUSION AND FUTUREWORK
We built a novel framework which delivers high compression rates
for heterogeneous network constrained trajectory data. However,
the main achievement of our framework is to speed up spatio-
temporal range queries tremendously. An advantage of Pathfinder
is that it is built upon a data structure which can also be used to
speed up routing related queries.We demonstrated that Pathfinder
is highly parallelizable with almost linear speedup and able to deal
with much larger data sets than previous work.

We also investigated storage of trajectories in external memory
on an SSD. This is possible since only the CH has to reside in RAM,
and the memory consumption of the CH is independent of the size
of the trajectory set. Since the latter can then be stored on an SSD,
we are only limited by the SSD capacity for the trajectory set and
the RAM for the CH representation of the network. The runtime
penalty for external storage of the trajectory set is moderate in case
of a fast NVMe PCIe SSD.

Pathfinder drops part of the temporal information. Even though
we experimentally validated the conjecture by [10] that this does
not significantly affect the query results, one can simply replace
some long shortcuts by shorter shortcuts or even the original edges
they represent if higher precision is required at certain places. This
leads to more accurate temporal resolution at the cost of higher
space consumption and query time. It might be interesting to see
whether more sophisticated approaches can increase the temporal
resolution without affecting query times and space consumption
too much.

Also, we have not discussed how to deal with dynamic updates
(in particular insertion) of trajectories. Fortunately, the main com-
ponents of our index structure are trajectory oblivious in a sense
that they do not depend on the trajectory set to be indexed. Only
the marking of obsolete and tree edges actually depends on the
trajectory set. So with little effort, we are be able to cater for inser-
tions and deletions of trajectories. Changes to the underlying road
network are unfortunately more difficult to handle, and we leave
this as possible future work.
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