Placement of Loading Stations for Electric Vehicles: No Detours Necessary!

Stefan Funke, André Nusser and Sabine Storandt

MOTIVATION

Electric vehicles have a limited cruising range (\sim 125km) which together with the current sparsity of battery loading stations demands deliberate route planning and to put up with **detours**.

MODELLING AS HITTING SET PROBLEM

Given:

- road network: graph G(V, E)
- edges have two metrics:
 - travel time
 - energy consumption

Assumptions:

battery loading station can be positioned on any node

Recap: • Hitting Set Problem: $(\mathcal{U}, \mathcal{S}), \mathcal{S} \subseteq 2^{\mathcal{U}}$ • Find minimum $H \subseteq \mathcal{U}$ such that $\forall s \in S : s \cap H \neq \emptyset$.

Goal: Place a *minimum number* of battery loading stations such that we can drive *every shortest path* without running out of energy!

• full battery charge at the beginning of every trip

Approach: Formulate as *hitting set* (HS) problem (\mathcal{U}, S) with

• $\mathcal{U} = \mathsf{set} \mathsf{ of nodes} = V$

• S = shortest paths where we run out of energy

...

. and solve via Greedy Algorithm

This means we place at least one battery loading station on every shortest path we cannot drive without running out of energy.

PROBLEMS WITH THIS STRATEGY

FREIBUR

Extraction time and space for storing paths make this approach impractical!

For German road network (|V| = 17.7M): time: > 1 month, space: > 1000 terabyte

reduce size of individual sets by using more space efficient path representations

FURTHER TECHNIQUES

- adapt greedy algorithm to path representations
- multiple hitters strategy
- multi-stage construction
- initial *k*-hop path cover

of battery loading stations Contraction Hierarchies (CH) - based

Setting:

- desktop hardware (i7-3930, 6 cores, 64GB RAM)
- road network of Baden-Württemberg (|V| = 2.2M, |E| = 4.6M)

Constructing the HS Instance (multicore)

rep.	time to construct HS instance (h:m)	space (GB)
Dij*	93:00	526
CH	33:00	34
PNM	00:47	14

extrapolated values

• adapt greedy hitting set algorithm to new path representations

PATH EXTRACTION AND REPRESENTATION

\rightarrow store shortcut path

	Setting:	Solution Statistics (multicore):			
	 desktop hardware (i7-2700, 4 cores, 32GB RAM) 			guaranteed a	approximation factor
NAL RESULTS	• German road network ($ V = 17.7M$, $ E = 36M$)	comp. time (h:m)	#stations	a priori	a posteriori
	• CH rep., all speed-ups, different multi-stage parameters	5:22	728	16.7	< 3.83
	• cruising range: $\sim 125 { m km}$	3:29	1212	16.7	< 6.38