Exercise 1: Error Bounds for Interval Arithmetic (4 points)

Let \(f \in \mathbb{C}[x] \) be a polynomial of degree \(d \) with coefficients of absolute value less than \(2^L \), and let \(\mathbb{F} \) be the set of fixed point numbers with some precision \(\rho > \log d \). Suppose that \(R = [a, b] + i \cdot [c, d] \) is a rectangle of width \(w(R) < \frac{1}{3} \) with vertices in \(\mathbb{F} + i \cdot \mathbb{F} \) and that we compute \(\Box f \) (and \(\tilde{\Box} f \)) using Horner Evaluation and (fixed point) interval arithmetic (with precision \(\rho \)). Then, show that the following holds:

\[
\frac{1}{2} w(\Box f(R)) \leq w(\tilde{\Box} f(R)) < 8 \cdot (d + 1)^2 \cdot 2^L \cdot \text{max}(1, |m_R|)^d \cdot w(R),
\]

where \(m_R \) denotes the center of \(R \).

Hint: Consider a similar argument as in the proof of Theorem 1.3.3.

Exercise 2: Fast Division (4 points + 4 bonus points for *)

For a given \(b \in \mathbb{N} \), we recursively define \(x_0 := 2 - \lceil \log b \rceil \) and

\[
x_{i+1} := x_i \cdot (2 - b \cdot x_i) \quad \text{for } i \in \mathbb{N}_{\geq 1}.
\]

Show that, for all \(i \), it holds that:

(a) \(|x_{i+1} - \frac{1}{b}| \leq b \cdot |x_i - \frac{1}{b}|^2 \) and

(b) \(|x_i - \frac{1}{b}| < \frac{1}{b} \cdot 2^{-2^i} \). In particular, it holds that \(|x_i - \frac{1}{b}| < 2^{-L} \) for all \(i \geq \log L \).

(c) * Suppose now that we start with \(y_0 := x_1 = 2^{-\lceil \log b \rceil} \cdot (2 - b \cdot 2^{-\lceil \log b \rceil}) \) and define

\[
y_{i+1} := \text{fl}(y_i \cdot (2 - b \cdot y_i)) \quad \text{for } i \in \mathbb{N}_{\geq 1},
\]

where we consider rounding to the nearest fixed-point number of precision \(\rho_i := 2^{i+1} + 2\lceil \log(b + 1) \rceil \). Then, it holds \(|y_i - \frac{1}{b}| < \frac{1}{b+1} \cdot 2^{-2^i} \) for all \(i \).

Hint: For (c), use that the error \(2^{-\rho_i-1} \) that is induced by the rounding in the \((i + 1)\)-st iteration is smaller than \(\frac{2^{-2^i+1}}{(b+1)^2} \). Then, use induction on \(i \) to prove the claim.
Exercise 3: Computing π (4 points)

For arbitrary $x \in \mathbb{R}$ with $0 \leq x \leq 1$, it holds that

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \quad (1)$$

Now, for given $L \in \mathbb{N}$, use the above formula and the fact (due to Euler) that

$$\pi = 20 \cdot \arctan(1/7) + 8 \cdot \arctan(3/79)$$

to derive an efficient algorithm (i.e. with a running time polynomial in L) for computing a dyadic approximation $\tilde{\pi}$ of π to an error less than 2^{-L}.

Hint: Estimate the error when considering only the first k summands in (1). Then, proceed with a suitably truncated series.

Exercise 4: Box Functions for Analytic Functions (4 points)

For any $x \in \mathbb{R}$ with $0 \leq x \leq 1$ and any k, there exists a $\xi \in [0, x]$ such that

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots + \frac{x^{4k}}{(4k)!} \cdot \cos(\xi) \quad \text{(Taylor Series Expansion with Remainder Term)}$$

Use the above formula to derive a box function $\square \cos$ for \cos for intervals $[a, b] \subset [0, 1]$! Can you extend your approach to derive a box function for $\sin x$ and e^x.
