Exercise 1 (+): Approximate Polynomial Evaluation (4 bonus points)

Let $x_1, x_2, \ldots, x_{d+1}$ be pairwise distinct real values and $f \in \mathbb{R}[x]$ a polynomial of degree d. We assume the existence of an oracle that provides arbitrary good fixed point approximations of the values x_i as well as of the coefficients of f. Give an algorithm to compute an i with $f(x_i) \neq 0$ and to compute the sign of $f(x_i)$. Can you estimate the running time of the algorithm with respect to d, the size of the coefficients of f and $\max_i |f(x_i)|$?

Hint: Use the fact that $\max_i |f(x_i)| \neq 0$ as f has at most d distinct roots. Then, use fixed point arithmetic to evaluate f at the points x_i with increasing precision.

Exercise 2: Discrete Fourier transform (4 points)

Let $F = \mathbb{Z}/29\mathbb{Z}$.

1. Find a primitive 4-th root of unity $\omega \in F$ and compute its inverse $\omega^{-1} \in F$.

2. Consider the 4×4 - Vandermonde matrices $V_\omega = \text{Vand}(1, \omega, \omega^2, \omega^3)$ and $V_{\omega^{-1}} = \omega^3$, and check that their product is $4I_4$, where I_4 denotes the identity matrix in $F^{4 \times 4}$.

Exercise 3: Fast Fourier Transform (4 points)

Use the Fast Fourier Transform to compute $\text{DFT}_\omega(f)$ for a general polynomial $f = a_3x^3 + a_2x^2 + a_1x + a_0$ and $\omega = i$ a primitive 4-th root of unity.

Exercise 4: Fast polynomial multiplication (4 points)

The complex number $\omega = e^{2\pi i/8} = \cos(\pi/4) + i \cdot \sin(\pi/4) \in \mathbb{C}$ is a primitive 8-th root of unity. Let $f = 5x^3 + 3x^2 - 4x + 3$ and $g = 2x^3 - 5x^2 + 7x - 2 \in \mathbb{C}[x]$, and run the Fast Convolution algorithm to compute the coefficients of the product $f \cdot g$. You may use a numerical approximation of ω and carry out the computations with a pocket calculator. You do not need to estimate the occurring errors.

Exercise 5: Existence of primitive roots in prime fields (4 points)

Denote by $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ the finite field with p elements for some prime p, and let $n \in \{1, \ldots, p-1\}$. Show that \mathbb{F}_p contains a primitive n-th root of unity if and only if n divides $p-1$, and conclude that the multiplicative group \mathbb{F}_p^\times of \mathbb{F}_p is cyclic.
Hints: 1. Use (without proof) Fermat’s little theorem: If \(p \in \mathbb{N} \) is prime and \(a \in \mathbb{Z} \) arbitrary, then
\[
a^p \equiv a \mod p.
\]
In particular, if \(a \in \{1, \ldots, p-1\} \), then
\[
a^{p-1} \equiv 1 \mod p.
\]

2. Let \(q \in \mathbb{N} \) be a divisor of \(p-1 \) and \(q = q_1^{e_1} \cdots q_r^{e_r} \) its prime factorization. For \(a \in \mathbb{F}_p^\times \), we denote by \(\text{ord}(a) := \min\{i \in \mathbb{N}_{>0} : a^i = 1\} \) the order of \(a \) in \(\mathbb{F}_p^\times \).
Prove the following facts:

- \(\text{ord}(a) = q \) if and only if \(a^q = 1 \) and \(a^{q/q_i} \neq 1 \) for \(i = 1, \ldots, r \).
- For each \(i \), \(\mathbb{F}_p^\times \) contains an element \(a_i \) with \(q_i^{e_i} | \text{ord}(a_i) \). Conclude that there is an element \(b_i \) with \(\text{ord}(b_i) = q_i^{e_i} \).
- If \(a, b \in \mathbb{F}_p^\times \) are elements of coprime orders, then \(\text{ord}(ab) = \text{ord}(a) \text{ord}(b) \).
- \(\mathbb{F}_p^\times \) contains an element of order \(q \).

3. Keep on going if you cannot prove one of the hints. Depending on your background in algebra, you may also want to try out other ways to solve this exercise.