Exercise 1: Polynomial Evaluation (4 points)

Let \(x_0 \) be an integer of length less than \(\ell \) and \(f(x) = \sum_{j=1}^{k} a_{ij} \cdot x^j \in \mathbb{Z}[x] \) a (so called sparse) polynomial with \(0 \leq i_j \leq n \) for all \(j \) and \(|a_{ij}| < 2^L \) for all \(j \). Show that one can compute \(f(x_0) \) using \(\tilde{O}(k \cdot (n\ell + L)) \) primitive operations!

Hint: Show first that one can compute \(x^{n_0} \) using \(\tilde{O}(n\ell) \) primitive operations.

Exercise 2: Estrin's scheme vs. Horner's scheme (4 points)

You have already seen Horner’s scheme for polynomial evaluation. An alternative method is Estrin’s scheme: To evaluate a polynomial \(f(x) = a_n x^n + \cdots + a_0 \), let \(m := 2^\lceil \log n \rceil - 1 \) and write

\[
f(x) = \left(a_n x^m + a_{n-1} x^{m-1} + \cdots + a_m \right) \cdot x^m + a_{m-1} x^{m-1} + a_{m-2} x^{m-2} + \cdots + a_0,
\]

where \(f_H \) and \(f_L \) are polynomials of degree at most \(m \). Recursively evaluate \(f_H \) and \(f_L \) and reconstruct \(f(x) = f_H(x) \cdot x^m + f_L(x) \). (Notice that it suffices to compute the powers \(x, x^2, x^4, \ldots \) of \(x \) in a preprocessing step.)

Provide and compare complexity bounds for the computation of \(f(x_0) \) with Horner’s and Estrin’s methods, where \(f \) is an integer polynomial of degree \(n \) with coefficients of length less than \(L \) and \(x_0 \in \mathbb{Z} \) is an integer of length \(\ell \).

Exercise 3: Fast bivariate polynomial multiplication (4 points)

Show that two polynomials \(f \) and \(g \in \mathbb{Z}[x, y] \) of total degree at most \(n \) with coefficients of length less than \(L \) can be multiplied using \(\tilde{O}(n^2 L) \) primitive operations.

Hint: Use Kronecker substitution!

Exercise 4: Fast Integer Multiplication (4 point + 4 bonus points for *)

Let \(n = 2^k \) with \(k \in \mathbb{N} \).

(a) Show that \(\omega := 8 \) is a primitive \(2n \)-th root of unity in \(R := \mathbb{Z}/(2^\sqrt{\pi} + 1) \mathbb{Z} \).
(b) Let \(a = a_{n-1}a_{n-2}\ldots a_0 \) and \(b = b_{n-1}b_{n-2}\ldots b_0 \) be two integers of length \(n \). Consider the integer polynomials

\[
\begin{align*}
 f(x) & := \sum_{i=0}^{\sqrt{n}-1} (a_{(i+1)\sqrt{n}-1}\ldots a_{i\sqrt{n}+1}a_{i\sqrt{n}}) \cdot x^i, \\
 g(x) & := \sum_{i=0}^{\sqrt{n}-1} (b_{(i+1)\sqrt{n}-1}\ldots b_{i\sqrt{n}+1}b_{i\sqrt{n}}) \cdot x^i,
\end{align*}
\]

and their images \(f^* := f \mod (2^{3\sqrt{n}} + 1) \) and \(g^* := g \mod (2^{3\sqrt{n}} + 1) \) in \(R[x] \). Show that the coefficients of \(h^* = f^* \star _{2\sqrt{n}} g^* \in R[x] \) equal the coefficients of \(f \cdot g \in \mathbb{Z}[x] \), and conclude that \(h \) can be computed with \(O(n \log n) \) arithmetic operations in \(R \).

(c)* Notice that, for computing \(h^* \), we need only \(2\sqrt{n} \) essential multiplications in \(R \), whereas the remaining multiplications are multiplications by powers of \(\omega \). Which complexity bound can you derive for the computation of \(a \cdot b \) when using the approach recursively for the essential multiplications?

Hint: You should first prove that each of these essential multiplications can be reduced to a constant number of additions and multiplications of integers of length \(\sqrt{n} \).