Exercise Sheet 4
complete until Thursday, November 16th

Throughout this exercise sheet, A, B, and F refer to the suffix, backward, and forward array, respectively, as defined in the lecture (slides are on the Wiki).

Exercise 1
Consider the functions b and f with \(b(i) = C[\sigma] + \text{Occ}[\sigma, i] \) where \(\sigma = B[i] \) and \(C[\sigma] = |\{ j : B[j] < \sigma \}| \) and \(\text{Occ}[\sigma, i] = |\{ j : j \leq i \text{ and } B[j] = \sigma \}| \), and \(f(i) = F[i] \).

By the definition of \(F \) from the lecture, \(A[f(i)] = A[i] + 1 \) for all \(i \).

Show that \(A[b(i)] = A[i] - 1 \) for all \(i \).

From that infer that \(b \) and \(f \) are inverses of each other, that is, \(b(f(i)) = f(b(i)) = i \) for all \(i \).

Exercise 2
Let \(n_B \) be the number of maximal intervals \([i..j]\) with the property that \(B[i] = \ldots = B[j] \) (maximal same-letter subsequences, for example, \(\text{aaa} \) and \(\text{bb} \) and \(\text{11} \) and \(\text{aa} \) in \(\text{aaab11aa} \)), and let \(n_F \) be the number of maximal intervals \([i..j]\) with the property that \(F[i], \ldots, F[j] = F[i], F[i] + 1, F[i] + 2, \ldots \) (maximal runs of consecutive integers, for example, \(\text{7} \) and \(\text{3, 4, 5} \) and \(\text{2 and 8, 9 in 7, 3, 4, 5, 2, 8, 9} \)).

Show that \(n_F \leq n_B \leq n_F + |\Sigma| \), where \(\Sigma \) is the alphabet.

Exercise 3
Prepare yourself to give a short (5-10 minutes) blackboard presentation of your proof of either Exercise 1 or Exercise 2. Mark your choice on the Wiki following the instructions given there.