Exercise 1 (10 points).
Use the discriminant polynomial to show that the Waring rank of $X^2 + XY + Y^2$ is at least 2.

Exercise 2 (10 points).
We have seen polynomials whose Waring rank exceeds their border Waring rank. In contrast to this observation prove that the set of Waring rank 1 polynomials is \mathbb{C}-closed.

Exercise 3 (10 points).
Consider the action of $\mathbb{C}^{N\times N}$ on $\mathbb{C}[X_1, \ldots, X_N]_d$ defined in the lecture. Compute the following polynomial in the standard monomial basis:

$$
\begin{pmatrix}
2 & 3 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
(X_1X_2^2 + X_3)
$$

Exercise 4 (10 points).
Let GL_n denote the group of invertible complex $n \times n$ matrices. Let $G = GL_n \times GL_n$ and let $V = \mathbb{C}^{n\times n}$. Define an action of G on V by

$$(g_1, g_2)v := g_1 \cdot v \cdot g_2^t,$$

where \(\cdot \) is the product of matrices. Let $v \in V$ have rank exactly k. Prove that

$$Gv = \{ w \in V \mid \text{rk}(w) = k \}.$$