Exercise 1 (10 points) Let U_n denote the group of $n \times n$ upper triangular matrices with 1s on the main diagonal. For $1 \leq i < j \leq n$, $\alpha \in \mathbb{C}$, let $x_{ij}(\alpha) \in U_n$ denote the identity matrix with an entry α in row i and column j. Prove that U_n is generated as a group by the set
\{ $x_{ij}(\alpha)$ | $1 \leq i < j \leq n$, $\alpha \in \mathbb{C}$ \}.

Solution: First let us see how does $x_{ij}(\alpha)$ act on a matrix $A \in \mathbb{C}^{n \times n}$ by the action of left multiplication. Verify that $x_{ij}(\alpha)A = A_{ij}(\alpha)$, where $A_{ij}(\alpha)$ is the matrix obtained from A by adding α-multiple αR_j of the j^{th} row R_j of A to i^{th} row R_i of A. Let $B \in U_n$ be a given matrix. We want to write B as a product of the matrices of the form $x_{ij}(\alpha)$. If we let $x_{1j}(\alpha)$ act on the identity matrix $I_n = x_{ij}(0)$, then we get the identity matrix whose $(1,j)$-th entry is α. Thus if $(1, \alpha_2, \alpha_3, \ldots, \alpha_n)$ is the first row of B then $\prod_{j=2}^{n} x_{1j}(\alpha_j)I_n$ is the identity matrix whose first row is $(1, \alpha_2, \alpha_3, \ldots, \alpha_n)$. By this process we have generated matrix whose first row matches with the first row of B. We can repeat the same process to get the other rows of B. In particular,

$$B = \prod_{i=1}^{n} \prod_{j=i+1}^{n} x_{ij}(B_{ij})I_n.$$

Exercise 2 (10 points) Let $V := \mathbb{C}^n$. The group GL_n acts on V by matrix-vector multiplication. Decompose V into a direct sum of irreducibles and determine their types λ.

Solution: Note that the first basis vector e_1 is fixed under U_n and is a weight vector of weight $(1,0,\ldots,0)$. Thus $\langle \text{GL}_n e_1 \rangle$ is irreducible. But $\langle \text{GL}_n e_1 \rangle = \mathbb{C}^n$. Thus \mathbb{C}^n is irreducible of type $(1,0,\ldots,0)$.

Exercise 3 (10 points) Let $V := \mathbb{C}^{n \times n}$ denote the vector space of $n \times n$ matrices. The group GL_n acts on V by left multiplication. Decompose V into a direct sum of irreducibles and determine their types λ.

Solution: By the previous exercise, it is not hard to find a irreducible decomposition of
\(V = \mathbb{C}^{n \times n} \). Let us use the symbol \(e_{ij} \) to denote the \(n \times n \) matrix \((i, j)^{th}\) entry is 1 and all other entries are 0. Let \(V_j := \langle e_{ij} \mid i \in [n] \rangle \), i.e., \(V_j \) is the subspace of \(V = \mathbb{C}^{n \times n} \) containing the \(n \times n \) matrices whose all columns are zero except the \(j^{th} \) one. By the previous exercise, \(V_j \) is an irreducible representation of \(\text{GL}_n \). Thus \(V = \bigoplus_{j=1}^n V_j \) is an irreducible decomposition of \(V \). It also follows from the previous exercise that the type of each \(V_j \) is \(\lambda = (1, 0, \ldots, 0) \) with \((V_j)_\lambda = \langle e_{1j} \rangle \).

Exercise 4 (10 points) Let \(V \) be a polynomial \(\text{GL}_n \)-representation. For \(i < j \) let \(x_{ij}(\alpha) \) be defined as in Exercise 1. The raising operator \(E_{ij} : V \to V \) is a linear map defined via

\[
E_{ij}(v) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left((x_{ij}(\epsilon)v) - v \right).
\]

Prove that \(E_{ij} \) is well-defined, i.e., that the limit exists.

Solution : Let \((V, \varrho)\) be the given polynomial representation of \(\text{GL}_n \). Let \(\{e_1, \ldots, e_n\} \) be the canonical basis of \(V \). Since \(\varrho \) is a polynomial representation, each coordinate function of \(x_{ij}(\alpha)v \) is a uni-variate polynomial in \(\alpha \). Thus \(x_{ij}(\alpha)v = v_0 + \alpha v_1 + \ldots + \alpha^d v_d \) for some \(d \in \mathbb{N} \) and \(v_0, v_1, \ldots, v_d \in V \). Since \(x_{ij}(0) = I_n \), we get that \(x_{ij}(0)v = I_n v = v \). Thus \(v_0 = v \). Therefore \(x_{ij}(\alpha)v = v + \alpha v_1 + \ldots + \alpha^d v_d \) for all \(\alpha \in \mathbb{C} \). In particular \(\frac{1}{\epsilon} ((x_{ij}(\epsilon)v) - v) = v_1 + \epsilon v_2 + \ldots + \epsilon^{d-1} v_d \). Thus \(E_{ij}(v) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} ((x_{ij}(\epsilon)v) - v) = v_1 \) is well defined.