Exercise 1 (10 Points). Let G be a finite group and let V and W be two G-representations (in particular, V and W are finite dimensional). Then the tensor product $V \otimes W$ of vector spaces is a G-representation via

$$g(v \otimes w) := gv \otimes gw$$

and linear continuation. Prove that the character $\chi_{V \otimes W}$ satisfies $\chi_{V \otimes W}(g) = \chi_V(g) \cdot \chi_W(g)$.

Solution 1. Let $n = \dim(V)$ and $m = \dim(W)$. Let v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_m be some basis of V and W respectively. For $g \in G$, let $A \in \text{GL}_n$ and $B \in \text{GL}_m$ be the corresponding matrices, i.e., $\forall v \in V : Av = gv$ and $\forall w \in W : Bw = gw$. These matrices A, B correspond to the basis v_1, v_2, \ldots, v_n and w_1, w_2, \ldots, w_m.

Similarly, let $C \in \text{GL}_{nm}$ be the corresponding matrix, i.e., $\forall t \in V \otimes W : C(t) = g(t)$. This matrix corresponds to the basis $v_i \otimes w_j$ of $V \otimes W$. We have $Av_i = \sum_{k=1}^{n} A_{ik}v_k$, $Bw_j = \sum_{\ell=1}^{m} B_{j\ell}w_\ell$ and

$$C(v_i \otimes w_j) = \left(\sum_{k=1}^{n} A_{ik}v_k\right) \otimes \left(\sum_{\ell=1}^{m} B_{j\ell}w_\ell\right) = \sum_{k=1}^{n} \sum_{\ell=1}^{m} A_{ik}B_{j\ell}v_k \otimes w_\ell \quad (0.1)$$

The coefficient of $v_i \otimes w_j$ in equation (0.1) is $A_{ii}B_{jj}$. Thus

$$\text{tr}(C) = \chi_{V \otimes W}(g) = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ii}B_{jj} = \left(\sum_{i=1}^{n} A_{ii}\right) \cdot \left(\sum_{j=1}^{m} B_{jj}\right) = \text{tr}(A) \cdot \text{tr}(B) = \chi_V(g) \cdot \chi_W(g).$$

One can also see that $C = A \otimes B$.

Exercise 2 (10 Points). The tensor product of Specht modules $[(2,1)] \otimes [(2,1)]$ is a 4-dimensional S_3-representation. Compute its character and decompose it as a linear combination of characters of irreducible S_3-representations.

Solution 2. The character is constant on conjugacy classes, so we only have to consider one group element from each conjugacy class. The conjugacy classes were determined on the last exercise sheet.
The character table of S_3 looks like below.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>$(1,2)$</th>
<th>$(1,2,3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{(3)}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi_{(1,1,1)}$</td>
<td>1</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>$\chi_{(2,1)}$</td>
<td>2</td>
<td>0</td>
<td>-1</td>
</tr>
</tbody>
</table>

Thus by using exercise 1, we can describe the characters of $[(2, 1)] \otimes [(2, 1)]$ as below.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>$(1,2)$</th>
<th>$(1,2,3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{[(2,1)] \otimes [(2,1)]}$</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Now it is easy to verify that $\chi_{[(2,1)] \otimes [(2,1)]} = \chi_{(3)} + \chi_{(1,1,1)} + \chi_{(2,1)}$.

Exercise 3 (10 Points). The tensor power of Specht modules $W := [(2, 1)]^\otimes n$ is a 2^n-dimensional S_3-representation via

$$g(v_1 \otimes v_2 \otimes \cdots \otimes v_n) = gv_1 \otimes gv_2 \otimes \cdots \otimes gv_n$$

and linear continuation. Determine the multiplicities of the irreducible S_3-representations in W.

Solution 3. By using a similar argument as in exercise 2, we can describe the characters of $W := [(2, 1)]^\otimes n$ as below.

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>$(1,2)$</th>
<th>$(1,2,3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi_{[(2,1)]^\otimes n}$</td>
<td>2^n</td>
<td>0</td>
<td>$(-1)^n$</td>
</tr>
</tbody>
</table>

Suppose we have that $\text{mult}_{(3)}([(2, 1)]^\otimes n) = x$, $\text{mult}_{(1,1,1)}([(2, 1)]^\otimes n) = y$ and $\text{mult}_{(2,1)}([(2, 1)]^\otimes n) = z$. By using the last exercise in Assignment 8, we know that

$$\chi_{[(2,1)]^\otimes n} = x \cdot \chi_{(3)} + y \cdot \chi_{(1,1,1)} + z \cdot \chi_{(2,1)}$$

Solving for x, y, z, we obtain that $x = y = \frac{2^{n-1}+(-1)^n}{3}$ and $z = \frac{2^n-(-1)^n}{3}$.

Exercise 4 (10 Points). Let $H \leq G$ be a subgroup of a (not necessarily finite) group. For each $g \in G$ we define the *coset* as its orbit under the right multiplication:

$$gH := \{ gh \mid h \in H \}.$$

Prove that distinct cosets have empty intersection. Also prove that all cosets have the same cardinality.

Solution 4. Let g_1H and g_2H be two cosets. Assume that $g_1H \cap g_2H \neq \emptyset$. Let $g \in g_1H \cap g_2H$, thus $g = g_1h_1 = g_2h_2$ for some $h_1, h_2 \in H$. This implies that $g_1 = g_2h_2h_1^{-1}$. Now we show that $g_1H = g_2H$. Let g_1h be some arbitrary element of g_1H. We have

$$g_1h = g_2h_2h_1^{-1}h.$$

Thus $g_1h \in g_2H$, giving us that $g_1H \subseteq g_2H$. Similarly we can show that $g_2H \subseteq g_1H$. Hence $g_1H = g_2H$.

The map $H \rightarrow gH, h \mapsto gh$, is a bijection: It’s inverse map is given by $gH \rightarrow H, j \mapsto g^{-1}j$. Thus H and gH have the same cardinality and hence all cosets have the same cardinality.