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Abstract

In many models for large-scale computation, decomposition of the problem is key to efficient
algorithms. For distance-related graph problems, it is often crucial that such a decomposition results
in clusters of small diameter, while the probability that an edge is cut by the decomposition scales
linearly with the length of the edge. There is a large body of literature on low diameter graph
decomposition with small edge cutting probabilities, with all existing techniques heavily building
on single source shortest paths (SSSP) computations. Unfortunately, in many theoretical models
for large-scale computations, the SSSP task constitutes a complexity bottleneck. Therefore, it is
desirable to replace exact SSSP computations with approximate ones. However this imposes a
fundamental challenge since the existing constructions of low diameter graph decomposition with
small edge cutting probabilities inherently rely on the subtractive form of the triangle inequality,
which fails to hold under distance approximation.

The current paper overcomes this obstacle by developing a technique termed blurry ball growing.
By combining this technique with a clever algorithmic idea of Miller et al. (SPAA 2013), we obtain
a construction of low diameter decompositions with small edge cutting probabilities which replaces
exact SSSP computations by (a small number of) approximate ones. The utility of our approach is
showcased by deriving efficient algorithms that work in the CONGEST, PRAM, and semi-streaming
models of computation. As an application, we obtain metric tree embedding algorithms in the
vein of Bartal (FOCS 1996) whose computational complexities in these models are optimal up to
polylogarithmic factors. Our embeddings have the additional useful property that the tree can be
mapped back to the original graph such that each edge is “used” only logaritmically many times,
which is of interest for capacitated problems and simulating CONGEST algorithms on the tree into
which the graph is embedded.
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50:2 Low Diameter Decompositions by Approximate Distances

1 Introduction

Consider an n-vertex graph G = (V,E, `), where ` : E → Z>0 is an edge length function.1
The distance between two vertices u and v in G, denoted by dG(u, v), is defined to be the
length with respect to ` of a shortest (u, v)-path in G. The diameter of G is the maximum
distance between any two vertices, denoted by diam(G) = maxu,v∈V {dG(u, v)}.

A decomposition D of G is a partition of the vertex set V into pairwise disjoint clusters.
Such a decomposition induces a (multiway) cut on G and we use Ecut(D) to denote the
subset of edges that cross this cut, namely, edges whose endpoints belong to different clusters
of D. The weight of the decomposition D is defined to be the sum

∑
e∈Ecut(D)

1
`e

of the
reciprocal lengths of the edges crossing its cut. Our focus in this paper is on the construction
of decompositions whose clusters’ diameter is bounded by some specified parameter r (the
notion of a cluster’s diameter will be made clear soon), referred to hereafter as low diameter
decompositions. The challenging part is to keep the weight of D small.

Low diameter decompositions with small weight were first studied by Awerbuch [5] (see
also [6, 4]). Bartal [7] introduced their (combinatorially equivalent) probabilistic counterpart:
An (r, λ)-decomposition of the graph G = (V,E, `) is a random decomposition D of G such
that (1) the diameter of each cluster in D is at most r; and (2) Pr[e ∈ Ecut(D)] ≤ λ`e

r for
every edge e ∈ E. Bartal presented a method that, for a given parameter r, constructs an
(r,O(logn))-decomposition and proved the resulting bound on the edge cutting probabilities
to be asymptotically tight.

Low diameter decompositions with small edge cutting probabilities have proven to be
very useful in the algorithmic arena (see Section 7) and several different techniques have
been developed over the years for constructing them [3, 7, 18, 22, 43, 24]. A common thread
of all the existing techniques is that they rely heavily on making calls to a single source
shortest paths (SSSP) subroutine. While we know how to solve the SSSP problem efficiently
in the sequential (centralized) model of computation, the situation is much more challenging
in restricted models of computation such as the CONGEST model of distributed computing,
the parallel random access memory (PRAM) model, or the semi-streaming graph algorithms
model. As it stands, SSSP computations are the main obstruction to designing efficient
constructions of low diameter decompositions with small edge cutting probabilities in the
aforementioned computational models (and related ones).

1.1 Our Contribution
In this paper, we introduce a new technique that, given a graph G = (V,E, `) and a parameter
r, constructs an (r,O(logn))-decomposition of G. The crux of our construction is that it does
not rely on any exact SSSP computations. Rather, it efficiently reduces the task to a small
number of calls to an approximate SSSP subroutine. The technical challenge in this regard
stems from the fact that the existing constructions of low diameter decompositions with small
edge cutting probabilities crucially rely on the subtractive form of the triangle inequality,
stating that dG(u, v) ≥ dG(u,w)− dG(v, w) for every three vertices u, v, w ∈ V . Due to the
subtraction on the right hand side, the inequality fails if one replaces exact distances with
approximate ones. The main technical contribution of this paper lies in overcoming this
difficulty.

The approximate SSSP problem can be solved efficiently in the CONGEST [12], PRAM

1 We sometimes use the shorthand `e for `(e).
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[14], and semi-streaming [12] models, hence we obtain efficient algorithms for constructing
(r,O(logn))-decompositions for the three computation models. These in turn can be invoked
recursively to yield efficient CONGEST, PRAM, and semi-streaming constructions of path
embeddable trees [16, 15] and hierarchically well-separated trees [7, 8, 9, 22] with low stretch —
important combinatorial objects in their own right. In fact, our low diameter decompositions
(and the resulting tree embeddings) admit an even stronger property.

Tree-Supported Decompositions

The notion of graph diameter naturally extends from the entire graph G = (V,E, `) to a
vertex subset U ⊆ V by considering the maximum distance between any two vertices in U .
This yields the following distinction: the weak diameter of U in G considers the distances in
the underlying graph G, formally defined as maxu,v∈U{dG(u, v)}; the strong diameter of U
in G considers the distances in the subgraph G(U) induced by G on U , formally defined as
diam(G(U)).2 In the context of low diameter graph decompositions with small edge cutting
probabilities, both the weak and strong notions of the cluster diameter have been considered
in the literature. As we now explain, the current paper adopts a diameter notion that falls
somewhere in between the two.

For a decomposition D of the graph G = (V,E, `), we require that each cluster C ∈ D
is associated with a tree TC = (UC , FC), referred to as the supporting tree of C, that is a
subgraph of G and spans C, i.e., C ⊆ UC ⊆ V and FC ⊆ E. To emphasize this requirement,
we refer to the decomposition D as a tree-supported decomposition (TSD). The diameter of
a TSD D of G is then defined to be the maximum diameter of any of its supporting trees,
denoted by diam(D) = maxC∈D{diam(TC)}.

Notice that if the supporting tree TC of each cluster C ∈ D is required to be a spanning
tree of G(C), then diam(D) bounds the strong diameter of D’s clusters. This requirement is
not imposed in the current paper, allowing TC to use edges (and vertices) outside of G(C),
meaning that diam(D) merely bounds the weak diameter of the clusters. However, we do
require that the maximum edge load is kept small, where the load of edge e ∈ E in D is
defined to be the number of clusters C ∈ D such that e is included in the supporting tree of
C, denoted by loadD(e) = |{C ∈ D : e ∈ FC}|. The properties of our graph decomposition
construction can now be formally stated.

I Theorem 1. There exists a (randomized) algorithm that given a graph G = (V,E, `) and
a real parameter r > 0, constructs a random TSD D of G with the following guarantees: (1)
diam(D) ≤ r w.h.p.;3 (2) maxe∈E{loadD(e)} ≤ O(logn) w.h.p.; and (3) Pr [e ∈ Ecut(D)] ≤
O
(
`e·logn

r

)
for every edge e ∈ E. The algorithm is based on an approximate SSSP subroutine

without any exact SSSP computations.

The algorithm promised in Theorem 1 is designed by combining a novel technique termed
blurry ball growing with the algorithmic ideas of Miller et al. [43]. As discussed earlier, this
combination allows us to bypass the need for exact SSSP computations, implementing our
algorithm based solely on approximate SSSP. By example of the CONGEST, PRAM, and
semi-streaming models, we show that this leads to efficient implementations. We stress that
what little computation is performed beyond approximate SSSP computations is very easy,

2 Unless stated otherwise, the edge length function of a subgraph H of G is the restriction of ` to H’s
edge set.

3 We say that event A occurs with high probability, abbreviated w.h.p., if Pr[A] ≥ 1− n−c, where c is an
arbitrarily large constant chosen upfront.
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50:4 Low Diameter Decompositions by Approximate Distances

if not trivial, to implement. Accordingly, we expect the technique to carry over to further
computational models.

We emphasize that our decomposition maintains a small load of O(logn) on the edges.
Consequently, in many situations, our decomposition can be used in an identical way as a
strong diameter decomposition with only polylogarithmic overheads. For example, although
we cannot construct low average stretch spanning trees as these are required to be subgraphs
of the original graph, we can construct projected trees (see Section 5.2), a special case of
path-embeddable trees [15, 16]. Projected trees have a mapping of their edges to the original
graph such that, e.g., a CONGEST algorithm on the projected tree can be simulated on the
original graph with a round complexity overhead proportional to the maximum edge load.
Our result is related to the low-congestion shortcuts of Ghaffari and Haeupler [28] with the
following differences. In Ghaffari and Haeupler’s work, the partition is chosen by an adversary
and the input is restricted to unweighted graphs. In contrast, our technique constructs the
partition, but weighted graphs can be treated as well. A further possible application of our
projected trees is in the field of solvers for symmetric diagonally dominant linear systems,
utilizing them in a similar way as low average stretch spanning trees (cf. [16, 15]). Prior
algorithms for metric tree embeddings lack this property and, accordingly, cannot take this
role.

1.2 Structure of this Paper

We first fix some notation and state basic facts in the preliminaries in Section 2. In
Section 3, we present the blurry ball growing technique that we use in Section 4 in order to
obtain the routine for computing a random TSD of low diameter, load, and edge cutting
probability, as promised in Theorem 1. In Section 5, we highlight some applications of this
routine: We first explain how to obtain a hierarchical decompositions by applying the method
recursively (Section 5.1) and then show how to obtain random projected trees (Section 5.2)
and hierarchically well-separated trees (Section 5.3) with O(log2 n) bound on the expected
stretch. We also show that this bound can be improved to O(logn) by considering the
relaxed notion of p-stretch [15, 16] (Section 5.4). In Section 6, we explain how to implement
our algorithms in the CONGEST, PRAM, and semi-streaming models. Further related work
is reviewed in Section 7.

2 Preliminaries

We start with basic notation. We consider a weighted, undirected, connected n-vertex graph
G = (V,E, `), where ` : E → Z≥0 is an edge length function. Notice that while some of our
subroutines introduce edges e ∈ E with zero length `e = 0, it is assumed that all edges in the
original graph input to the (r,O(logn))-decomposition algorithm (as well as the algorithms
built on top of it) admit positive lengths. We denote the set of positive length edges by
E>0 = {e ∈ E | `e > 0} and let `min = min{`e | e ∈ E>0} and `max = max{`e | e ∈ E>0}.
The ratio of `max to `min, denoted by σ = `max

`min
is referred to as the aspect ratio of G.

For a subgraph H of G, we denote by dH(u, v) the length of the shortest path between
two nodes u and v in H. If H = G, we may omit the subscript. For a set B ⊆ V and a node
v ∈ V , we use d(B, v) := minu∈B{d(u, v)} to denote the distance of the node v to the set B.
For a set of vertices U ⊆ V , we denote by Ecut(U) := {e = {u, v} ∈ E : u ∈ U, v ∈ V \ U}
the set of edges that are “cut” by U .
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Approximate Single Source Shortest Paths

The main subroutine we use in our algorithm computes (1+ε)-approximate SSSP in undirected
graphs. A (1 + ε)-approximate SSSP algorithm is an algorithm that takes as input a weighted
undirected graph G = (V,E, `) and a source node s ∈ V and returns a spanning tree T
of G such that, for every node v ∈ V , the length of the path from s to v in T is at most
(1 + ε) · d(s, v), i.e., d(s, v) ≤ dT (s, v) ≤ (1 + ε) · d(s, v).

Super-Source Graphs

Our approach requires (1 + ε)-approximate SSSP computations in graphs Gs that result
from subgraphs of G by adding a (virtual) super-source node s /∈ V :

I Definition 2 (Super-source graphs). Fix a subgraph H = (VH , EH , `|H) of G. Construct
Gs = (VH ∪̇{s}, EH ∪ Es, `Gs) by choosing Es ⊆ VH × {s}, picking `Gse ∈ {1, . . . , nc} for
e ∈ Es, and setting `Gse = `e for all e ∈ EH . We refer to Gs as a super-source graph (of G)
and to s as its super-source.

We note that one way of obtaining a super-source graph of a graph G is to contract a subset
of nodes, say B, into a super-source s. In this case VH = V \B and the edges Es and their
lengths result from the contraction of B into s.

Exponential Distribution

We denote the exponential distribution with mean 1
β by Expβ . Using the Heaviside step

function that is defined as H(x) = 0 if x < 0 and H(x) = 1 otherwise, the density function
of the exponential distribution is given by fExpβ (x) = β exp(−βx) ·H(x). Its cumulative
density function is FExpβ (x) = (1 − exp(−βx)) ·H(x). A standard result is that drawing
from this distribution results in values of O(β logn) w.h.p.:

I Lemma 3. For parameters 0 < ε < 1, β > 0, and a sufficiently large constant c > 0, let
t := c logn

4(1+ε)β and X ∼ Expβ. Then P [X ≥ t] = n−Ω(c), i.e., X < t w.h.p.

Proof. Using the form of the density function, we get

P [X ≥ t] =
∫∞
t

exp(−βx) dx∫∞
0 exp(−βx) dx

=
exp(−βt)

∫∞
0 exp(−βx) dx∫∞

0 exp(−βx) dx
= exp(−Ω(c logn)) = n−Ω(c) .J

We will make heavy use of the following lemma, see the paper by Miller et al. [43] for the
proof. Note that in their paper they state the lemma with an upper bound of O(βc) on the
probability, although their proof in fact bounds the probability by exactly βc.

I Lemma 4 (Lemma 4.4 in [43]). Let d1 ≤ . . . ≤ ds be arbitrary values and δ1, . . . , δs be
independent random variables picked from Expβ. Then the probability that the smallest and
the second smallest values of di − δi are within c of each other is at most βc.

Miller et al. [43] used this lemma to analyze the following ball growing technique that
proceeds in time steps. Every node u in the graph grows a ball Bu independently and in
parallel, but with a delay of δu time steps, where δu ∼ Expβ . Every ball increases its radius
by 1 in each time step and we say that the ball Bv “arrives” at node u, if node v minimizes
d(u, v)− δv over all nodes. In this case u “gets absorbed” by v’s ball Bv. The process stops
when every node u is absorbed by some ball. Notice that u gets absorbed by its own ball Bu,
if and only if no other ball arrives at u during the first δu time steps.

ITCS 2020



50:6 Low Diameter Decompositions by Approximate Distances

Now consider an arbitrary edge e in the graph and imagine it to be split into two equal
length edges by a node ve. If we let d1 ≤ . . . ≤ dn denote the n values d(u, ve) − δu for
every u ∈ V , the above lemma shows that the arrival times of the first and second ball at
node ve differ by at least 2`e with probability 1−O(β`e) = 1−O( `e logn

εr ), when choosing
β = Θ( logn

εr ). Hence the lemma allows for bounding the probability of an edge being cut by
such ball growing process with exponentially distributed delays.

We remark that the implementations in Section 6 draw from discrete distributions.
Rounding continuous distributions to multiples of n−c for sufficiently large c ∈ O(1) yields
w.h.p. the same results, but limits the number of random bits required to draw and store a
random value to O(logn).

3 Blurry Ball Growing

In this section, we describe a subroutine called blur that takes as input a graph G = (V,E, `)
with aspect ratio σ = `max

`min
≤ poly(n), a node set B ⊆ V , and a real 0 < ρ < `max, and

outputs a superset U of B. It guarantees that nodes in U are not too far from B, yet the
probability to cut edges is small. More precisely, we establish the following theorem.

I Theorem 5. Let n ≥ 2. There is a routine blur(G, ρ,B) that outputs a superset U of B
such that:
1. For every edge e ∈ E, the probability that e ∈ Ecut(U) is bounded by O( `eρ ).
2. For every v ∈ U , it holds that d(B, v) ≤ ρ

1−α , where α = 1
2 logn .

The routine blur, see Algorithm 1, is based on (1 + ε)-approximate SSSP computations
and contractions of node sets and thus can be readily parallelized. The basic idea is to grow
a ball of uniformly random radius around B, where contraction of B yields the super-source
of the SSSP computation. However, as approximating distances may imply that the “noise”
due to the relative ε-error may cut a short edge with a comparatively large probability, the
procedure is repeated with random radii drawn from uniform distributions with width that
decrease by factor α = 1

2 logn in each step. To make this work, the approximation error of
the SSSP algorithm must satisfy ε ≤ α2. Accordingly, it would be desirable to chose α large
for the sake of small computational costs in the approximate SSSP routine. However, it
turns out that, in order to achieve Property 1 in Theorem 5, we have to set α such that
α = O

( log logn
logn

)
. In addition, the approximate SSSP computations must respect the 0-length

edges in the sense that none of the balls we grow cuts these edges. This is ensured by
updating the approximate distances so that all nodes in the same connected component of
the graph induced by the 0-length edges hold the same value.

Analysis

We begin with two important properties of the distance approximations d̃
i
(·) computed in

line 9.

I Lemma 6. For every iteration i and vertex v in G[i], the distance approximation d̃
i
(v)

satisfies (I) dG[i](s[i], v) ≤ d̃
i
(v) ≤ (1 + α2) dG[i](s[i], v); and (II) if {u, v} is a 0-length edge

in G[i], then d̃
i
(u) = d̃

i
(v).

Proof. Property (II) follows immediately from the definition of d̃
i
(v) (see line 9). To see

that property (I) holds, notice that d̃
i
(v) captures the distance from s[i] to v in the subgraph
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Algorithm 1: blur(G, ρ,B)
Input : graph G = (V,E, `), real 0 < ρ < `max, set B ⊂ V
Output : set U ⊆ V

1 i := 0, B[0] := B, α := 1
2 logn

2 while αiρ ≥ `min do
3 i := i+ 1, r[i] ∈ U [0, αi−1ρ].
4 Obtain super-source graph G[i] from G by contracting B[i−1] into a super-source

node s[i]

5 Compute (1 + α2)-approximate SSSP tree T [i] of G[i]

6 Let G[i]
0 be the restriction of the graph G[i] to its 0-length edges

7 for each v ∈ G[i] do
8 Let W (v) be the connected component of v in G[i]

0

9 d̃
[i]

(v) := min{dT [i](s[i], u) | u ∈W (v)}

10 B[i] := B[i−1] ∪ {v ∈ G[i] | d̃
[i]

(v) ≤ r[i]} \ {s[i]}

11 return
⋃i
j=0B

[i]

of G[i] induced by the union of the edge set of T [i] and the 0-length edges. The assertion
follows since T [i] is a (1 + α2)-approximate SSSP tree of G[i]. J

Next, we establish Property 2 of Theorem 5, which readily follows from the manner in
which we sample r[i] from U [0, αi−1ρ].

I Lemma 7. If dG[i+1](s[i+1], u) = d(B[i], u) ≥ αiρ
1−α for some i, then u /∈ U . In particular,

it holds that dG(B, v) ≤ ρ
1−α for every v ∈ U .

Proof. Any u ∈ B[k] for k > i has distance to B[i] at most
∑
j≥i+1 r

[j] ≤
∑
j≥i+1 α

j−1ρ <

αiρ
∑∞
j=0 α

j = αiρ
1−α , showing the first claim. Setting i = 0 yields the second claim. J

It remains to verify Property 1 of Theorem 5, i.e., that the probability of cutting edge
e = {u, v} ∈ E is bounded from above by O( `eρ ). Property (II) of Lemma 6 ensures that
this bound holds if `e = 0 as in this case, in each iteration i, either both u and v join B[i]

in line 10 or none of them does. In the remainder of this section, we therefore focus on the
edges in E>0 = {e ∈ E | `e > 0}, starting with the following definition.

I Definition 8. We say that edge {u, v} ∈ E>0 is safe after step i of blur(G, ρ,B) if either
u, v ∈ B[i] or min{dG[i+1](s[i+1], u),dG[i+1](s[i+1], v)} ≥ αiρ

1−α .

Clearly, if {u, v} ∈ E is safe after step i of blur(G, ρ,B), then e /∈ Ecut(U): if u, v ∈ B[i],
then u, v ∈ U by construction; if min{dG[i+1](s[i+1], u),dG[i+1](s[i+1], v)} ≥ αiρ

1−α , then u, v /∈
U by Lemma 7. See Figure 1 for an illustration of these two cases. Thus, in order to bound
the probability of an edge being cut, it suffices to bound the probability that an edge never
becomes safe. Accordingly, we define Xi,e to be the event that e is not safe after step i of the
algorithm conditioned on the event that e was not safe after step i− 1 and bound P [Xi,e].

I Lemma 9. For each iteration i and e ∈ E>0, it holds that Pr[Xi,e] ≤ 5
4 ·

`e
αi−1ρ +α ·(1+4α).

ITCS 2020



50:8 Low Diameter Decompositions by Approximate Distances

B[i]

B[i−1] r[i]

αi−1ρ

αiρ
1−α

x0

e1

e2

Figure 1 An illustration of the blurry ball growing procedure blur(G, ρ,B) in iteration i. The
radius r[i] is sampled uniformly from [0, αi−1ρ] and B[i] is defined as all nodes whose (1 + α2)-
approximate distance to B[i−1] is at most r[i]. Both edges e1 and e2 are safe from being cut after
iteration i: e1 has both endpoints in B[i] ⊆ U and both endpoints of e2 are farther away from B[i]

than αiρ
1−α , meaning that neither of them will lie in U after termination.

Proof. By Definition 8, it holds that if e = {u, v} ∈ E>0 is not safe after step i, we must,
w.l.o.g. over the choice of u, v, have dG[i+1](s[i+1], u) < αiρ

1−α and {u, v} * B[i]. By the
approximation guarantee of the SSSP algorithm and the triangle inequality, we get

r[i] < max{d̃
[i]

(u), d̃
[i]

(v)} ≤ (1 + α2) max{dG[i](s[i], u),dG[i](s[i], v)}

≤ (1 + α2)(dG[i](s[i], u) + `e) ,

where the first transition follows from property (I) in Lemma 6. From the former inequality,
we get that

dG[i](s[i], u) ≤ dG[i+1](s[i+1], u) + r[i] <
αiρ

1− α + r[i], (1)

which yields r[i] ≥ dG[i](s[i], u)− αiρ
1−α . As r

[i] is drawn uniformly from an interval of length
αi−1ρ, these lower and upper bounds on r[i] readily imply a bound on the probability of Xi,e:

Pr[Xi,e] ≤ Pr
[
r[i] ∈

(
dG[i](s[i], u)− αiρ

1− α, (1 + α2) · (dG[i](s[i], u) + `e)
)]

≤ (1 + α2)`e
αi−1ρ

+ α2 dG[i](s[i], u)
αi−1ρ

+ α

1− α. (2)

Moreover, from (1) and r[i] ≤ αi−1ρ, we conclude that dG[i](s[i], u) < αi−1ρ·(1+ α
1−α ) = αi−1ρ

1−α .

Plugging into (2), with α ≤ 1
2 we get that Pr[Xi,e] ≤ 5

4 ·
`e

αi−1ρ + α2

1−α + α
1−α ≤

5
4 ·

`e
αi−1ρ +

α(1 + 4α). J

Applying this lemma to all iterations in which e has a significant probability to become safe
(i.e., all iterations i for which αi−1ρ ≥ `e), we obtain the desired bound on the probability
that e is cut.

I Lemma 10. For every edge e ∈ E, it holds that Pr[e ∈ Ecut(U)] = O
(
`e
ρ

)
.

Proof. The case where `e = 0 has already been treated, so assume hereafter that e ∈ E>0. If
`e > ρ, then trivially Pr[e ∈ Ecut(U)] ≤ 1 < `e

ρ . Otherwise, we let ie ≥ 1 be the largest index
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such that `e ≤ αie−1ρ. By Lemma 9, for all i, the probability that an edge that is not safe
after i− 1 steps is still not safe after step i is bounded by Pr[Xi,e] ≤ 5

4 ·
`e

αi−1ρ + α · (1 + 4α).
Depending on the index i, we differentiate this upper bound further:

Case i = ie: As αieρ < `e, we get that α < `e
αie−1ρ . With α ≤ 1

2 , Pr[Xie,e] < 5`e
αie−1ρ

follows.
Case i = ie − 1: As `e ≤ αie−1ρ, we conclude that `e

αi−1ρ ≤
αie−1

αie−2 = α, yielding with
α ≤ 1

2 that Pr[Xie−1,e] < 5α.
Case i ≤ ie − 2: This entails that `e

αi−1ρ ≤ α2 and thus Pr[Xi,e] < 2α2 + α · (1 + 4α) =
α · (1 + 6α).

Using these bounds and distinguishing cases based on ie, we can bound the overall probability
that the edge is cut.

Case ie = 1: Pr[e ∈ Ecut(U)] ≤ Pr[X1,e] = Pr[Xie,e] < 5`e
ρ .

Case ie = 2: Pr[e ∈ Ecut(U)] ≤ Pr[X2,e] · Pr[X1,e] = Pr[Xie,e] · Pr[Xie−1,e] < 5`e
αρ · 5α =

25`e
ρ .

Case ie ≥ 3: Pr[e ∈ Ecut(U)] ≤ 25`e
αie−2ρ ·

∏
i≤ie−2 Pr[Xi,e] ≤ 25`e

αie−2ρ · (α(1 + 6α))ie−2 <
25`e
ρ · (1 + 6α)ie .

Hence, it remains to bound (1 + 6α)ie = O(1). Since ρ < `max, it follows that

`min ≤ `e ≤ αie−1ρ < αie−1`max .

Recalling that σ = `min
`max

≤ nO(1), we conclude that ie = O
(

logn
log(1/α)

)
. Therefore,

(1+6α)ie = (1+6α)O(logn/ log(1/α)) =
(

(1 + 6α)1/(6α)
)O(α logn/ log(1/α))

= eO(α logn/ log(1/α)) .

The assertion follows by the choice of α = 1
2 logn . J

Theorem 5 now follows from Lemmas 7 and 10.

4 Tree-Supported Decomposition

In this section, we present the construction of TSDs that admit low diameter, low load,
and low edge cutting probability, establishing Theorem 1. Our method is inspired by the
partition technique from [43] that allows for efficient parallel and distributed implementations.
However, we seek to rely on approximate rather than on exact distance computations.

To motivate our approach, consider a naive application of the decomposition technique
from [43] using approximate rather than exact distance computations. This would look as
follows: One would add a super-source s to the graph, assign exponentially sampled lengths
to the edges adjacent to s, compute a (1 + ε)-approximate SSSP tree T rooted at s for
some small enough ε, and partition the node set V according to the subtrees of T rooted
at the children of s. This approach certainly leads to a decomposition of G. However, a
consequence of the approximate distance computation is that the probability to cut a short
edge is dominated by the approximation error, which is ε times the distance to the source —
an expression that may be very large compared to the length of the edge.

In order to still ensure the desired bound, we seek to employ the blurring technique
from the previous section to clusters obtained as described above. This introduces the new
obstacle that the clusters need to be separated from each other first, as the blurring procedure
grows the clusters by a random radius. We enforce this separation by removing from each
cluster every node that is too close to its boundary; Property 2 of Theorem 5, stating that

ITCS 2020



50:10 Low Diameter Decompositions by Approximate Distances

the distance of any node in the blurred cluster from the original cluster is at at most ρ
1−α ,

determines what precisely is “too close.” While this may result in a large portion of the
graph not being contained in any cluster even after blurring all clusters, we can ensure that
each edge is contained in some cluster with probability at least p = Ω(1) (or is very long
and can be safely deleted). Hence, repeating the procedure O(logn) times completes the
decomposition w.h.p.

The blurring procedure presented in Section 3 requires that the aspect ratio σ = `max
`min

of its input graph is bounded by poly(n) and that the parameter ρ is smaller than `max.
Therefore, we have to slightly modify the graph so that it satisfies these two conditions before
invoking the blurring procedure. The latter requirement is readily satisfied by deleting all
edges that are sufficiently long for the edge cutting probability bound to be greater than 1
(clearly, these edges can be safely deleted). For the former requirement, we reset the length of
all edges e ∈ E that are significantly shorter than the cluster diameter bound, thus ensuring
that the aspect ratio of the graph is nO(1). The original length of all 0-length edges is then
recovered after the decomposition is constructed. Since any simple path in the graph contains
at most n− 1 short edges, it follows that the length recovery operation does not increase the
diameter of any cluster in the decomposition by “too much”.

Algorithm 2: ts_decompose (G,∆)
Input : graph G = (V,E, `) and ∆ ∈ N
Output :decomposition D = (C1, . . . , Ck) of G, trees T = (T1, . . . , Tk) of depth ≤ ∆

2
s.t. Ti spans a superset of Ci

1 β := 3c logn
∆ , ε := 1

c log2 n
, D := ∅, T := ∅ // c sufficiently large constant

2 delete all edges e ∈ E of length `e > 1
40β // long edges

3 reset the length of each edge e ∈ E with `e < ∆
6n by setting `e = 0 // short edges

4 while E(G) 6= ∅ do

// * initial decomposition by exponential shifts *
5 pick δu ∼ Expβ for each u ∈ V independently
6 Gs := super-source graph of G with edges {u, s} of length

`us = 1 + maxv∈V {δv} − δu for u ∈ V
7 T := (1 + ε)-approximate SSSP tree for Gs with source s
8 R := roots of T \ {s} and V := (Vu)u∈R, where Vu are the nodes in u’s subtree

// * separate cells *
9 ∂V :=

⋃
u∈R{v ∈ Vu | ∃{v, w} ∈ E : w /∈ Vu}

10 G′s := super-source graph of G with edges {u, s} of length 1 for u ∈ ∂V
11 T ′ := (1 + ε)-approximate SSSP tree for G′s with source s
12 for each u ∈ R do
13 V ◦u := Vu \ {v ∈ Vu | dT ′(s, v) ≤ 1+ε

4β }
// V ◦u is the interior of cell Vu

14 Cu := blur(G, ρ, V ◦u ), where ρ := 1− 1
2 logn
4β

15 append Cu to D and the subtree of T rooted at u to T
16 G := G \ Cu

17 recover the original length of each edge e ∈ E with `e = 0
18 return (D, T )
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I Remark. The operations of resetting the lengths of the short edges (line 3) and recovering
their original lengths (line 17) are necessary only if the aspect ratio of G is large and can be
ignored if the aspect ratio is guaranteed to be bounded by nO(1). In this case, the graphs
handed to the blurring procedure (line 14) have no zero length edges.

Algorithm

The pseudocode of our procedure ts_decompose is given in Algorithm 2. The value β chosen
in Line 1 is the parameter chosen for the exponential distributions: up to normalization, the
density of the distribution is exp(−βx). The diameter of each (initial) cluster is bounded
by maxv∈V {δv}, which we need to be smaller than ∆

2 w.h.p. However, the probability to
cut edges increases as we make the distributions “narrower,” i.e., β larger. Accordingly, we
choose β = Θ

(
logn

∆

)
, just small enough to ensure δv ≤ ∆

2 w.h.p. for all v ∈ V .

The partition from [43] can be interpreted as a Voronoi decomposition in which each
cell center xv is a virtual copy of its corresponding node v ∈ V that is attached to v by
an edge of length maxw∈V {δw} − δv. Note that the children of the virtual node s in the
(approximate) shortest path tree T are exactly the nodes which have not been “absorbed”
into another node’s Voronoi cell before they started to grow their own. Lines 9 to 13 remove
from each cluster nodes that are in distance (roughly) 1

4β from the boundary of the Voronoi

cell containing them. Choosing a distance of O
(

1
β

)
here ensures a constant probability that

edges of this length remain in a shrunk cluster; longer edges can safely be cut, as the required
bound on the probability for cutting them is trivial (i.e., 1), which is why they are removed
at the start of the routine. We then proceed to applying the blurring subroutine to each
(remaining) shrunk cluster. Note that, as the clusters remain separated due to the choice
of parameters, we can realize this step concurrently for all clusters. The algorithm iterates
until all nodes are assigned to clusters, which requires O(logn) loop iterations w.h.p.

The remainder of this section is dedicated to proving Theorem 1.

Number of Iterations

We first prove the key statement that, with at least constant probability, for any node w, a
ball of radius Θ( 1

β ) around it is contained within the interior of a cell.

I Lemma 11. Consider an iteration of the while loop of Algorithm 2 and (by slight abuse of
notation) denote by G = (V,E) the subgraph that remains at the beginning of the iteration.
For any w ∈ V , with at least constant probability a ball of radius 1

40β around it is contained
in the interior of a cell computed in Line 13.

Proof. For x ∈ V , set dx := dGs(x,w) + 1 + maxy∈V {δy}. Moreover, set Xx := dx−δx =
`sx + dGs(x,w) for x ∈ V and let X(i) be the i’th order statistic of the variables Xv (i.e., the
i’th smallest element). Denote by xmin ∈ V the node for which Xxmin = X(1). By Lemma 4,
with constant probability X(2) −X(1) ≥ 7

8β . Condition on this event. Accordingly, we have
for all x ∈ V \ {xmin} that Xx −Xxmin ≥ X(2) −X(1) ≥ 7

8β .
Denote for each v ∈ V by xv the child of s in T in whose subtree v is situated. Then the
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assumption that xv 6= xmin implies by copious use of the triangle inequality that

dT (s, v)− dGs(s, v) = `xvs + dT (xv, v)− dGs(s, v)
≥ `xvs + dGs(xv, v)− dGs(s, v)
≥ `xvs + dGs(xv, w)− dGs(v, w)− (dGs(s, w) + dGs(v, w))
≥ `xvs + dGs(xv, w)− (`xmins + dGs(xmin, w))− 2 dGs(v, w)

= Xxv −Xxmin − 2 dGs(v, w) ≥ 7
8β − 2 dGs(v, w).

On the other hand, the approximation guarantee of the SSSP algorithm yields that

dT (s, v)− dGs(s, v) ≤ εdGs(s, v) ≤ ε`vs ≤ εmax
x∈V
{1 + δx}.

By Lemma 3, w.h.p. maxx∈V {δx} ≤ t = c logn
4(1+ε)β after sampling the δ-values in Line 5 of this

iteration. Condition on this event as well. Using that ε = 1
c log2 n

and c is sufficiently large,
we get that dT (s, v)− dGs(s, v) ≤ ε(1 + t) < 1

4β .
In summary, if both events on which we conditioned occur, xv 6= xmin entails that

dGs(v, w) > 5
16β . (3)

In particular, choosing v = w yields the contradiction 0 = dGs(w,w) > 5
16β , i.e., xw = xmin.

We proceed to show that dG(v, w) ≤ 1
40β implies that also v ∈ V ◦xmin

. By a union bound
over the two events on which we conditioned, this will complete the proof. To this end,
observe that Inequality (3) shows that a ball of radius 5

16β around w in Gs is contained within
Vxmin . Because longer edges have been deleted, nodes in ∂V are connected to neighbors
outside their cell by edges of length at most 1

40β . Together with the approximation guarantee
of the second SSSP computation used to compute T ′, it follows that nodes v ∈ V for which
dGs(v, w) ≤ 1/16−1/40−ε

β < 5
16β −

(1+ε)2

4β − 1
40β end up in V ◦xmin

. In particular, as trivially
dGs(v, w) ≤ dG(v, w) and ε is sufficiently small, we conclude that dG(v, w) ≤ 1

40β implies
that v ∈ V ◦xmin

. J

I Corollary 12. Algorithm 2 terminates after O(logn) iterations of the while loop w.h.p.

Proof. Consider any edge e ∈ E that is not deleted right away, i.e., `e ≤ 1
40β . By Lemma 11,

in each iteration in which e is present in the remaining subgraph of G, there is a constant
probability that it is contained in V ◦u for some node u. Thus, the probability that the edge
remains for c logn iterations is bounded by 2−Ω(c logn) = n−Ω(c). By a union bound, this
implies that all edges are either cut or included in a part within O(logn) iterations w.h.p.,
i.e., the termination condition that E(G) is empty becomes satisfied. J

The Diameter Bound

In order to prove that the diameter bound holds, we first show that for each iteration of the
while loop of Algorithm 2 and each u ∈ R, we have that Cu ⊆ Vu.

I Lemma 13. Fix any iteration of the while loop of Algorithm 2 and u ∈ R. It holds that
Cu ⊆ Vu.

Proof. Again, denote for simplicity the remaining subgraph at the beginning of the loop
iteration by G = (V,E). By the approximation guarantee of the second call to the SSSP
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algorithm, v ∈ V ◦u implies that d(v, ∂V) ≥ 1
4β . By Theorem 5, w ∈ Cu implies that

dG(w, V ◦u ) ≤ ρ
1−1/(2 logn) = 1

4β . Consider the node v ∈ V ◦u that is closest to w and fix a
shortest path from v to w. By the second bound, the path is no longer than 1

4β , which by
the first bound implies that it cannot leave Vu. Hence, w ∈ Vu, showing the claim of the
lemma. J

We observe that the above lemma yields that the algorithm indeed outputs a partition of V ,
and each set in the partition is spanned by the corresponding tree in T . We now apply the
tail bound on Expβ given in Lemma 3 to infer that the diameter of the computed parts is
appropriately bounded w.h.p.

I Lemma 14. W.h.p., each cluster in the decomposition D returned by ts_decompose(G,∆)
has weak diameter at most ∆

2 . This is witnessed by the corresponding tree in T .

Proof. We prove that each tree T ∈ T has diameter at most ∆
3 assuming that the lengths of

the short edges e are reset to `e = 0 (see line 3 of ts_decompose(G,∆)). This implies the
desired ∆

2 -bound on the diameter of T in the original graph since each path P in T includes
less than n short edges and each such short edge adds at most a ∆

6n -term to the total length
of P when recovering its original length (line 17 of ts_decompose(G,∆)).

By Lemma 3 and a union bound over all nodes, w.h.p. always maxv∈V {δv} ≤ 1 + t for
t = c logn

4(1+ε)β in Line 5 of ts_decompose(G,∆). Assume that v ends up in the subtree of T
rooted at the child xv of s in Gs. From the above bound, it follows that, w.h.p.,

dT (xv, v) = dT (s, v)− `xvs ≤ (1 + ε) · dGs(s, v)− `xvs ≤ (1 + ε) · `vs − `xvs
= ε · (1 + max

x∈V
{δx} − δv) + δxv − δv ≤ ε · (1 + t) + t = (1 + ε) · t+ ε.

Recalling that R denotes the children of the root node in T , it follows that for each x ∈ R, we
have that Tx has (weighted) depth at most (1+ε)t+ε w.h.p. in Line 8 of ts_decompose(G,∆).
We conclude that w.h.p., for all u ∈ R, it holds that the subgraph induced by Vu has diameter
at most 2[(1 + ε)t+ ε] ≤ c logn

2β + 2ε ≤ ∆
3 , using that ε = 1

c log2 n
≤ 1

12 for sufficiently large c.
Using Lemma 13 concludes the proof. J

The Edge Cutting Probability Bound

We proceed to showing that the probability to cut an edge is sufficiently small. This follows
from the analysis of Algorithm 1 and the probabilistic progress guarantee from Lemma 11.

I Corollary 15. The probability that edge e ∈ E is cut by ts_decompose(G,∆) is O
(
`e logn

∆

)
.

Proof. Consider edge e = {v, w} ∈ E. If e is deleted right away, then `e > 1
40β = Ω

(
∆

logn

)
and the claim trivially holds. Accordingly, assume that `e ≤ 1

40β in the following.
As shown in Lemma 13, in each iteration the parts (V ◦u )u∈C satisfy that V ◦u ⊆ Vu. Thus,

if v ∈ Vx and w ∈ Vy for some x, y ∈ C after Line 8, e can be only cut by v ending up in
Cx, while w does not, or w ending up in Cy, while v does not. Lemma 10 shows that the
probability for either event is bounded by O

(
`e logn

∆

)
, independently of the subgraph the

calls to Algorithm 1 are executed on.
Combining this observation with the fact that, in each iteration in which e is still present

by Lemma 11 it ends up in some part with probability at least p ∈ Ω(1), we can bound the
probability that e is cut by

∞∑
i=1

(1− p)i−1O

(
`e logn

∆

)
= O

(
`e logn
p∆

)
= O

(
`e logn

∆

)
. J
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The Load Bound

As the trees added to the output in a single iteration are subtrees of the same shortest path
tree, these trees are disjoint. Hence, the bound on the number of iterations also bounds
the number of trees in which an edge may participate and thus the load of that edge in the
output decomposition D. This concludes the proof of Theorem 1.

5 Sampling from Low Stretch Tree Embeddings

Consider some graph G = (V,E, `) with positive edge lengths. We say that graph G′ =
(V ′, E′, `′) with V ′ ⊇ V dominates G if dG′(u, v) ≥ dG(u, v) for every two vertices u, v ∈ V .
In that case, we define the stretch of edge e = {u, v} ∈ E in G′ to be

strG′(e) = dG′(u, v)
`e

.

Our goal in this section is to construct random dominating trees of a given graph
G = (V,E, `) that guarantee low expected stretch for each edge in E. The dominating trees
we construct, referred to hereafter as virtual trees, are not spanning trees of G, because they
may include vertices and edges that do not belong to V and E, respectively. Nevertheless, they
admit some useful characteristics. Specifically, we consider two types of virtual (dominating)
trees: projected trees (a special case of the path embeddable trees of [15, 16]) addressed
in Section 5.2 and hierarchically well separated trees (HSTs) addressed in Section 5.3. In
both cases, the respective constructions are based on recursive applications of the graph
decomposition technique presented in Section 4, generating a hierarchical version of TSDs as
presented in Section 5.1.

5.1 Hierarchical Decompositions
A hierarchical tree-supported decomposition (HTSD) D of a graph G is a sequence D =
(D0, D1, . . . , Dk) of TSDs that satisfies (i) D0 = {V }; (ii) Dk = {{v} | v ∈ V }; and (iii) for
every 1 ≤ i ≤ k and C ∈ Di, there exists some C ′ ∈ Di−1 such that C ⊆ C ′. The TSDs
D0, D1, . . . , Dk are referred to as the levels of D and the parameter k is referred to as its
depth. The load of edge e ∈ E in D is defined to be loadD(e) =

∑k
i=0 loadDi(e).

The real sequence d = (d0, d1, . . . , dk) is said to be diameter bounding for the HTSD
D if diam(Di) ≤ di for every 0 ≤ i ≤ k. Of particular interest are HTSDs that admit a
geometrically decreasing diameter bounding sequence, namely a sequence d = (d0, d1, . . . , dk)
that satisfies di ≤ α · di−1, 1 ≤ i ≤ k, for some constant α > 1.

Consider some HTSD D = (D0, D1, . . . , Dk) of G with a geometrically decreasing diameter
bounding sequence d = (d0, d1, . . . , dk). Edge e = {u, v} ∈ E is said to be decoupled on level
0 ≤ i ≤ k − 1 if u and v belong to the same cluster in level i and to different clusters in level
i+ 1, that is e ∈ Ecut(Di+1)− Ecut(Di). In that case, we define the stretch of e in D with
respect to d to be

strD,d(e) = di
`e
.

I Theorem 16. There exists a (randomized) algorithm that, given a graph G = (V,E, `) with
positive integral edge lengths and aspect ratio σ = `max

`min
, constructs a random HTSD D of G

with the following guarantees: (1) the depth of D is nO(1) w.h.p.; (2) D admits a geometrically
decreasing diameter bounding sequence d = (d0, d1, . . . , dk) w.h.p.; (3) loadD(e) = O(log σ)
for every edge e ∈ E w.h.p.; and (4) ED[strD,d(e)] = O(log2 n) for every edge e ∈ E.
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Proof. We first present the construction of the (random) HTSD D = (D0, D1, . . . , Dk)
and its geometrically decreasing diameter bounding sequence d = (d0, d1, . . . , dk) and then
establish their desired properties.

Let D0 = {V }. Construct a 2-approximate SSSP tree T0 of G and set d0 = diam(T0).
Assume by induction that we have already constructed the TSD Di, i ≥ 0, with clusters
C1
i , . . . , C

q
i and corresponding supporting trees T 1

i , . . . , T
q
i . Set

di = max
{

diam(T ji ) | j = 1, . . . , q
}

to be the maximum diameter of the trees supporting Di’s clusters. If di = 0, i.e., all clusters
in Di are singletons, then we set k = i and the construction of D and d is completed.
Otherwise, we call

ts_decompose
(
G(Cji ),∆i+1

)
, j = 1, . . . , q ,

where ∆i+1 = di
2 , and take Di+1 to be the union of the clusters returned by these q calls.

To analyze this construction, we first observe that since di+1 ≤ ∆i+1 ≤ di/2 for every
0 ≤ i ≤ k − 1, it follows that

k ≤ O(log σ) .

Moreover, each di corresponds to the diameter of some approximate SSSP tree w.h.p., thus it
provides a constant approximation for the actual distance in G between some pair of nodes.
As there are

(
n
2
)
< n2 such node pairs, we conclude that the depth of d = (d0, d1, . . . , dk)

satisfies

k ≤ O
(
n2)

w.h.p.
For the expected stretch bound, consider some edge e ∈ E of length `e ∈ Z>0. As long as

ts_decompose is invoked with diameter bound ∆i > 6n`e, the length of e is reset (see line 3
in Algorithm 2), ensuring that e is not decoupled on that level. For each level i such that
∆i ≤ 6n`e, Corollary 15 guarantees that the probability that e is decoupled on level i is at
most

O

(
`e · log(n)

∆i

)
≤ O

(
`e · log(n)

di

)
.

Taking ie to be the smallest i ≥ 0 such that ∆i ≤ 6n`e and i′e to be the smallest i such that
∆i ≤ `e logn, we can bound the expected stretch of e in D with respect to d as

ED[strD,d(e)] ≤
k−1∑
i=0

Pr(e is decoupled on level i) · di
`e

≤
i′e−1∑
i=ie

O

(
`e · log(n)

di

)
· di
`e

+
k−1∑
i=i′e

O(1) · di
`e

≤ (i′e − ie) ·O(logn) +O(1) ,

where the last transition holds as the sequence d is geometrically decreasing. Since ∆i+1 ≤
di/2 ≤ ∆i/2 for every i, it follows, by the definitions of ie and i′e, that i′e − ie ≤ O(logn),
thus yielding the desired bound ED[strD,d(e)] ≤ O(log2 n).
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It remains to show that the load of every edge e ∈ E in D is O(log σ) w.h.p. To that end,
recall that in Section 4 we proved that the load on edge e in the TSD Di is stochastically
dominated by a geometric random variable with parameter Ω(1). The claim follows recalling
that the depth k ≤ O(log σ) as the sum of k such random variables is O(k) w.h.p. J

We note that a crucial point is, of course, that the algorithm can be implemented
efficiently due to relying on approximate SSSP computations only. However, as the resulting
complexities are model-specific, the respective discussion is postponed to Section 6.

5.2 Embedding into a Random Projected Tree
Consider some graph G = (V,E, `). Graph G′ = (V ′, E′, `′) with V ′ ⊇ V is said to be a
projected graph of G if there exists a mapping π : V ′ → V so that
(a) π(v) = v for every v ∈ V ;
(b) if e′ = {u′, v′} ∈ E′, then π(e′) := {π(u′), π(v′)} ∈ E; and
(c) `′(e′) = `(e) for every e ∈ E and e′ ∈ E′ such that π(e′) = e.
The load of edge e ∈ E under the projected graph G′ of G (with respect to π) is defined to
be the size of its preimage under π, denoted by loadG′(e) = |{e′ ∈ E′ | π(e′) = e}|. Notice
that, by definition, every projected graph of G dominates G. Observe also that `′ is fully
determined by π and `, hence we may omit it from the notation in the following. Our goal
in this section is to prove the following theorem.

I Theorem 17. There exists a (randomized) algorithm that, given a graph G = (V,E, `)
with poly(n)-bounded edge lengths, constructs a random projected tree T of G that satisfies
the following guarantees for every edge e ∈ E: (1) loadT (e) = O(log σ) w.h.p.; and (2)
ET [strT (e)] = O(log2 n).

Theorem 17 is established by combining Theorem 16 with the following lemma.

I Lemma 18. There exists an algorithm that given a graph G = (V,E, `), a HTSD D of G,
and a geometrically decreasing diameter bounding sequence d for D, constructs a projected
tree T = (VT , ET , `T ) of G such that loadT (e) = loadD(e) and strT (e) = O(strD,d(e)) for
each e ∈ E.

The rest of Section 5.2 is dedicated to proving Lemma 18. This is done by a series of
graph transformations that results in the desired projected tree T . Let k be the depth of
D = (D0, D1, . . . , Dk). For 0 ≤ i ≤ k, let Hi = (V Hi , EHi ) be the forest obtained by taking
the (graph) union over all level i supporting trees of D, where each level i supporting tree
TC = (UC , FC) contributes its own (distinct) copies of the vertices in UC and edges in FC
(this means, in particular, that |V Hi | =

∑
C∈Di |UC | and |E

H
i | =

∑
C∈Di |FC |). Define the

function πHi : V Hi → V by mapping each vertex v ∈ V Hi to the vertex πHi (v) ∈ V from which
it originates, recalling that TC is a subgraph of G. Although the preimage of vertex u ∈ V
under πHi may consist of several vertices, it includes exactly one vertex vi ∈ UC , where C is
the (unique) level i cluster that contains v. We hereafter refer to this vertex vi as the level i
clone of v.

Recalling that the level k clusters of D are singletons, we identify the vertices in V Hk
with their images under (the bijection) πHk so that V Hk = V . Let H = (V H , EH) be the
forest obtained by taking the (graph) union over H0, H1, . . . ,Hk and let πH : V H → V be
the function defined by mapping each vertex v ∈ V Hi , 0 ≤ i ≤ k, to πH(v) = πHi (v). Notice
that H is a projected graph of G realized by πH and that loadH(e) = loadD(e) for every
edge e ∈ E. It remains to show that we can turn H into a projected tree T = (VT , ET ) by
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connecting its connected components without increasing the load on the edges while ensuring
that the stretch of every edge e ∈ E in T is at most O(1) times larger than its stretch in D
with respect to d.

Given a level 0 ≤ i ≤ k and a level i cluster C, we refer to the vertex with smallest ID in
C as the leader of cluster C, denoted by λ(C). Notice that every vertex v ∈ V is a leader of
its level k cluster and that if v is the leader of its level i cluster, then it is also the leader of
its level j cluster for all i ≤ j ≤ k.

We now construct a projected tree T = (V T , ET ) of G from H in two additional steps.
First, we connect each connected component TC of Hi, 1 ≤ i ≤ k, to the unique connected
component TC′ of Hi−1 that satisfies C ′ ⊇ C. Assuming that the leader of cluster C is
v = λ(C), this connection is realized by augmenting H with a 0-length edge that connects
vi with vi−1, i.e., the level i and level i − 1 clones of v. (Note that vi−1 is not necessarily
the leader of cluster C ′.) We call this new edge connecting vi and vi−1 a vertical edge and
denote the set of all vertical edges added to H during this step of the construction by E↑.
Observe that the graph obtained from H by augmenting it with the vertical edges is a tree
denoted hereafter by T ↑ = (V H , EH ∪E↑). This holds since starting from the forest H, we
connected each connected component in level 1 ≤ i ≤ k to a connected component in level
i− 1 using a single vertical edge and since H0 is a tree.

The next and final step simply contracts all vertical edges in T ↑, resulting in the tree
T = (V T , ET ). Since the vertical edge {vi, vi−1} ∈ E↑ connects the clones vi and vi−1 of the
same vertex v ∈ V , it follows that both endpoints of the vertical edge are mapped to v under
πH . Accordingly, we readily obtain a projection πT : V T → V from πH by mapping each
vertex vT ∈ V T to πH(v′), where v′ ∈ V H is any node that participated in the contraction
that created vT . Finally, note that there is a natural bijection b : EH → ET between edges
in H and T , as T is obtained by first augmenting H with E↑ of vertical edges and then
contracting these edges. By construction, we have πT (b(e)) = πH(e) for all e ∈ EH . In
particular, T is indeed a projected tree of G and loadT (e) = loadH(e) = loadD(e) for all
e ∈ E.

It remains to prove that strT (e) = O(strD,d(e)) for every edge e = {x, y} ∈ E. Since T is
obtained from T ↑ by contracting 0-length edges, it follows that dT↑(x, y) = dT (x, y), hence
it suffices to prove that strT↑(e) = O(strD,d(e)). To this end, fix some node v ∈ V and let
Ci ∈ Di, 0 ≤ i ≤ k, be the (unique) level i cluster that contains v. Let λ(i) = λ(Ci) be the
leader of Ci and denote the level j clone of λ(i) by λj(i).

I Remark 19. For every 0 ≤ i ≤ k, we have dT↑(v, λi(i)) ≤
∑k−1
j=i dj .

Proof. By induction on i. The base case i = k holds since every vertex is the leader of its
(singleton) level k cluster, hence λi(i) = v. For the inductive step from i+ 1 to 0 ≤ i ≤ k− 1,
we notice that

dT↑ (v, λi(i)) = dT↑ (v, λi+1(i+ 1)) + dT↑ (λi+1(i+ 1), λi(i+ 1)) + dT↑ (λi(i+ 1), λi(i)) .

Recalling that λi+1(i+ 1) and λi(i+ 1) are connected in T ↑ by a vertical edge, we conclude
that dT↑ (λi+1(i+ 1), λi(i+ 1)) = 0. Moreover, since λi(i+ 1) and λi(i) belong to the same
level i cluster Ci ∈ Di, their distance in T ↑ is equal to their distance in the supporting tree of
Ci whose diameter is bounded by di, hence dT↑ (λi(i+ 1), λi(i)) ≤ di. The assertion follows
by the inductive hypothesis ensuring that dT↑ (v, λi+1(i+ 1)) ≤

∑k−1
j=i+1 dj . J

Now, consider some edge e = {u, v} ∈ E and let 0 ≤ i ≤ k − 1 be the level on which e
is decoupled. Let C ∈ Di to be the level i cluster that contains u and v and let w be the
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level i clone of the leader λ(C) of C. Remark 19 guarantees that dT↑(u,w) ≤
∑k−1
j=i dj and

dT↑(v, w) ≤
∑k−1
j=i dj , hence

dT↑(u, v) ≤ 2
k−1∑
j=i

dj = O(di) ,

where the last transition holds since d = (d0, d1, . . . , dk) is geometrically decreasing. The
proof of Lemma 18 is completed by the definitions of strD,d(e) = di

`e
and strT↑(e) = d

T↑ (u,v)
`e

.

5.3 Embedding into a Random HST
In this section we show how to construct an embedding into a random hierarchically 2-
separated dominating tree (HST) with small expected stretch from the projected trees
constructed in the previous section.

I Definition 20 (Hierarchically Separated Trees). An embedding of a weighted graph G =
(V,E, `) into a (rooted) tree T = (V T , ET , `T ) is given by a one-to-one mapping ι : V → V T .
For k > 1, the tree is hierarchically k-separated, if for each internal non-root node, the
weight of edges connecting it to its children is exactly by factor k smaller than the weight of
the edge connecting it to its parent. The stretch of edge e = {u, v} ∈ E w.r.t. T is defined as
strT (e) := dT (ι(u),ι(v))

`e
.

We note that our definition of hierarchical well-separation is (formally) weaker than that
of hierarchically well-separated trees from the literature [7], as we dropped the requirement
that the tree is balanced, i.e., all leaves are in the same depth. However, this can be easily
achieved, and our construction does so without modification.

Construction

We construct our HST from a projected tree (see Section 5.2). The construction of T =
(V T , ET , `T ) is straightforward. Let D = (D0, . . . , Dk) be the HTSD from which the projected
tree was constructed. We recall that we had assigned a leader λ(C) to each cluster C, namely
the smallest ID vertex in C. We construct V T simply as the multiset4 of leaders of all
clusters in D. Note that the nodes constructed for level k clusters, correspond, one-to-one,
to the original nodes V of the graph. This enables us to define an embedding ι : V → V T

as required in Definition 20. We construct the set of edges ET as follows: Let λ ∈ V T be
a node corresponding to an arbitrary level i cluster C with i < k. We introduce an edge
e := {λ(C), λ(C ′)}, for every level i + 1 cluster C ′ that cluster C decomposes into, i.e.,
C ′ ⊆ C. We assign length `Te := di to such an edge e between nodes corresponding to level
i and level i+ 1 clusters. Rooting the tree at the node in V T corresponding to the leader
of the (unique) level 0 cluster V , it is clear that the resulting tree T = (V T , ET , `T ) is a
hierarchically 2-separated tree of depth k.

Regarding distances, we get essentially the same result as for the projected tree we could
have constructed. Denote for v ∈ V by λ(i) the leader of the unique level i cluster Ci ∈ Di

such that v ∈ Ci and denote by λT (i) ∈ V T its copy in T corresponding to Ci.

I Remark 21. For every 0 ≤ i ≤ k, we have dT (v, λT (i)) =
∑k−1
j=i dj .

4 For each cluster C a node v ∈ V is leader of, there is a separate copy of v.
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Proof. dT (v, λT (i)) =
∑k−1
j=i `

T
{λT (j),λT (j+1)} =

∑k−1
j=i dj . J

I Corollary 22. T is a dominating hierarchically 2-separated tree with ET [strT (e)] = O(log2 n)
for each edge e ∈ E.

Proof. As discussed, T is hierarchically 2-separated by construction and we have the desired
embedding ι : V → V T . By Remarks 19 and 21, distances between leaves of T are at least as
large as in the projected tree constructed in Section 5.2, which dominates G. The stretch
bound follows analogous to Section 5.2, where Remark 19 takes the place of Remark 21. J

We remark that this establishes a straightforward relation between our projected trees and
the HSTs constructed here. The HST edges are realized by the corresponding paths in the
projected tree. In particular, while the HST may incur large loads on some graph edges,
the “more fine-grained” view provided by the projected tree shows that a low-load mapping
of paths in the HST to the original graph is feasible. On the other hand, this relation also
demonstrates that a projected tree “behaves” like an HST due to the geometrically decreasing
diameter bounding sequence of the underlying HTSD.

5.4 Bounding the p-Stretch
Cohen et al. [16] introduced the notion of p-stretch.

I Definition 23 (p-Stretch). For a graph G, an embedding of G into T , and a real p ∈ (0, 1],
the p-stretch of an edge e = {u, v} ∈ E is given by

(
dT (u,v)
`e

)p
. Analogously, we define the

p-stretch of an HTSD for edge e as
(
di
`e

)p
, where i is the level on which e is decoupled.

Note that the 1-stretch coincides with the definition of the standard stretch defined at the
beginning of this section. Our constructions meet a stronger bound of O(logn) on the
p-stretch for p < 1, owed to the fact that for p < 1 larger stretch is weighed less.

I Lemma 24. For p ∈ (0, 1), the tree embeddings presented in Sections 5.2 and 5.3 satisfy
that for each edge e ∈ E the expected p-stretch is O(logn).

Proof. When bounding the stretch in the proof of Theorem 16, we summed over all levels of
the decomposition. Recall that the probability to decouple edge e on level i is, by Corollary 15,
O
(
`e·logn
di

)
. Denote by ie the level such that die ≤ `e < 2die . If i > ie, then the stretch of e

w.r.t. the HTSD is smaller than 1. For p < 1, the sum now can thus be bounded as

k∑
i=1

O

(
`e · logn

di

)
·
(
di
`e

)p
= O

(
1 + logn ·

(
`e
die

)1−p
·
ie∑
i=1

(
die
di

)1−p
)

= O

(
1 + logn ·

ie∑
i=1

(
1
2

)(1−p)(ie−i)
)

= O(logn),

where the final step exploits that the sum is a geometric series due to 1− p > 0. J

6 Implementation in Different Models

In this section, we describe how to implement the above techniques in the CONGEST, PRAM,
and multipass streaming models. These should be considered as exemplary computational
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models and it seems likely that our techniques transfer to other models in which a discrepancy
between exact and approximate SSSP computations exist. Under the CONGEST model, some
effort is needed in order to transfer the (1+ε)-approximate SSSP result to (1+ε)-approximate
SSSP in super-source graphs (see Definition 2); this transformation is immediate under the
PRAM and multipass streaming models.

For simplicity, we assume throughout this section that the edge lengths in the input
graph G = (V,E, `) are integers in the range [1, nO(1)]. This means, in particular, that we
do not have to worry about 0-length edges in the blurring procedure (Algorithm 1).

6.1 CONGEST Model
In the CONGEST model of computation [44], every node is a computing unit (of unlimited
computational power) and is labeled by a unique O(logn)-bit identifier. Computation
proceeds in synchronous rounds, in each of which a node (1) performs local computations, (2)
sends O(logn)-bit messages to its neighbors, and (3) receives the messages that its neighbors
sent. Initially, every node in the input graph G = (V,E, `) knows its identifier and its incident
edges together with their length. We note that the restriction to polynomially bounded edge
lengths implies that distances can be encoded using O(logn) bits.

At termination every node needs to know its part of the output. For the task of
constructing the random TSD, this means that every node v ∈ V knows (1) the ID of its
own cluster’s leader (i.e., the vertex with minimum ID, see Section 5.2); (2) the ID of the
leader of cluster C if v ∈ UC , that is, if v participates in the supporting tree TC of cluster C;
and (3) its incident edges in TC for each supporting tree TC in which v participates. For the
task of constructing the random HTSD, v should hold that knowledge for every level of the
hierarchy. As discussed in Section 5, this also provides the nodes with all what they need in
order to reconstruct the resulting projected tree or HST.

In order to avoid confusion with the weighted diameter diam(G), in what follows, we use
hop(G) to denote the “unweighted” diameter of G, also called the hop diameter.

The following corollary discusses how to compute (1 + ε)-approximate SSSP in a super-
source graph H of a graph G in the CONGEST model. We assume that each node v ∈ V
initially knows which of its incident edges in G are in H, whether it is connected to s, and,
if so, the length `({s, v}).

I Corollary 25 (of [12]). Let ε = 1
polylogn . Then (1 + ε)-approximate SSSP in super-source

graphs can be solved in Õ(
√
n+ hop(G)) rounds w.h.p. in the CONGEST model.

Proof. The algorithm from [12] consists of three main steps:
1. Let S be a set composed of s and Θ̃(

√
n) nodes sampled uniformly at random. Let each

node v ∈ S learn a (1 + ε
3 )-approximation to the minimum length of Õ(

√
n)-hop paths to

each sampled node w ∈ S (if no such node exists, any result of at least d(v, w) is fine,
including ∞). For each finite value, nodes on a (unique) path in G learn about them
being part of this path and the next node on it.

2. Simulate a broadcast congested clique5 (1 + ε/3)-approximate SSSP algorithm on the
(virtual) graph on S with edge lengths given by the result from the previous step (∞
means no edge).

5 The broadcast congested clique is the special case of the Congest model restricted to complete graphs
and, for each round, nodes sending the same message to each of their neighbors.
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3. Run Õ(
√
n) iterations of single source Bellman-Ford on G, where the distance values of

nodes in S are initialized to the distances obtained from the previous step.
Assuming w.l.o.g. that ε ≤ 1, this yields (1 + ε)-approximate distances to s. As the first
step yields suitable routing information and the result of the second (i.e., an approximate
SSSP-tree on the virtual graph) is global knowledge, nodes can locally determine their parent
in the output tree T .

We adapt the algorithm to super-source graphs as follows.
1. The first step is based on a pipelined version of the (multi-source) Bellman-Ford algorithm

that also works on directed graphs [39, Corollary 5.8]. Formally, we orient all edges of s
towards it (no other change is made). Then we can easily simulate the procedure on the
resulting graph, as all communication by s over one of its edges can be inferred from its
length (which is known to the recipient).
Note that the result is not exactly the same as that of the first step above: all paths
containing s as non-starting node have been removed. However, the decisive property of
the constructed graph is that it preserves G-distances to s up to a factor of 1 + ε. The
virtual graph also needs to be undirected, which is achieved by dropping the directionality
of the computed distances.

2. The simulation of the broadcast congested clique algorithm in the Congest model is based
on making all communication global knowledge. Using pipelining over a BFS tree, the
input of s in the virtual graph (i.e., its incident edges and their lengths) can be made
global knowledge in Õ(

√
n+ hop(G)) rounds. Together, this implies that all nodes can

locally simulate s.
3. Simulating the communication by s in the third step of the algorithm, which is a standard

Bellman-Ford computation, is straightforward.
As all steps can be adjusted preserving the guarantees of the algorithm and the asymptotic
running time is increased by additive Õ(

√
n+ hop(G)) only, the result now follows from [12].

J

This leads to the following result for Algorithm 1 from Section 3. As it is basically
a sequence of approximate SSSP computations, a running time bound is immediate from
Corollary 25.

I Corollary 26. Suppose α = 1
polylogn and ρ = nO(1). Then Algorithm 1 can be executed in

the CONGEST model in Õ(
√
n+ hop(G)) rounds w.h.p.

Proof. The while loop terminates after at most dlog1/α ρ = O(logn)e iterations. In each
iteration, r[i] can be chosen by an arbitrary node (e.g. the one with lowest identifier) and
broadcasted via a BFS tree in O(hop(G)) rounds. Each node then can infer from the result
from the previous iteration (or the input if i = 1) whether it is part of B[i−1]. Nodes adjacent
to B[i−1] can learn about this in one communication round and infer the length of the edge
connecting them to s[i] in G[i]. Thus, all that remains is the approximate SSSP computation,
which can be performed in the stated running time by Corollary 25 w.h.p. The Õ-notation
absorbs the O(logn)-factor from the number of loop iterations. J

We turn to Algorithm 2 from Section 4. As each iteration can be performed within
Õ(
√
n + hop(G)) rounds w.h.p., this implies a bound on the running time of the overall

algorithm.

I Corollary 27. There exists a (randomized) CONGEST algorithm that given a graph G =
(V,E, `) with poly(n)-bounded edge lengths and a real parameter ∆ > 0, constructs a random
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TSD D of G with the following guarantees in Õ(
√
n+hop(G)) rounds w.h.p.: (1) diam(D) ≤ ∆

w.h.p.; (2) maxe∈E{loadD(e)} ≤ O(logn) w.h.p.; and (3) Pr [e ∈ Ecut(D)] ≤ O
(
`e·logn

∆

)
for every edge e ∈ E.

Proof. All computations in Algorithm 2 with the exception of the approximate SSSP
computations and the call to blur are local. By Corollary 26, the stated running time bound
follows for a single iteration of the while loop. Here we use that the instances of blur can be
run in parallel by Lemma 13: As Cu ⊆ Vu, we can delete all edges which are not connecting
two nodes within the same Vu for some u and then run a single (1 + ε)-approximate SSSP
instance, where we identify the super-sources of all calls to blur. Therefore, Corollary 12
and a union time bound yield the claim. J

We now turn to the techniques from Section 5. As the recursive calls for each level of the
decomposition hierarchy when computing an HTSD can be executed concurrently with a
single call to the approximate SSSP subroutine, we obtain the following result.

I Corollary 28. There exists a (randomized) CONGEST algorithm that, given a graph
G = (V,E, `) with poly(n)-bounded edge lengths, constructs a random HTSD D of G with
the following guarantees in Õ(

√
n+ hop(G)) rounds w.h.p.: (1) the depth of D is O(logn);

(2) D admits a (deterministic) geometrically decreasing diameter bounding sequence d w.h.p.;
(3) loadD(e) = O(logn) for every edge e ∈ E w.h.p.; and (4) ED[strD,d(e)] = O(log2 n) for
every edge e ∈ E.

Proof. For each of the O(logn) levels of the decomposition, the recursive SSSP calls for each
of the clusters can be merged into a single one by identifying their super-sources. The claim
hence follows from Theorem 16 and Corollary 27. J

From the hierarchical decomposition, we obtain embeddings into projected trees and hier-
archically 2-separated trees as described in Sections 5.2 and 5.3.

I Corollary 29. There exists a (randomized) CONGEST algorithm that, given a graph
G = (V,E, `) with poly(n)-bounded edge lengths, constructs a random projected tree T of
G in Õ(

√
n+ hop(G)) rounds that satisfies the following guarantees for every edge e ∈ E:

(1) loadT (e) = O(logn) w.h.p.; and (2) ET [strT (e)] = O(log2 n).

Proof. We obtain an HTSD using Corollary 28. Inspection of the construction in Section 5.2
reveals that all operations are local once we identify the leaders of clusters. This is, e.g.,
achieved by rooting all supporting trees at the respective cluster’s leader, which can be done
by using the Garay-Kutten-Peleg minimum spanning tree algorithm [27, 38] to compute a
spanning forest ofH. As the load of each edge isO(logn), the algorithm onH can be simulated
at a multiplicative overhead of O(logn), resulting in running time Õ(

√
n+ hop(G)). J

I Corollary 30. There exists a (randomized) CONGEST algorithm that, given a graph
G = (V,E, `) with poly(n)-bounded edge lengths, constructs an embedding into a random
dominating hierarchically 2-separated tree T of G in Õ(

√
n+ hop(G)) rounds with expected

stretch ET [strT (e)] = O(log2 n) for each edge e ∈ E.

Proof. Analogous to Corollary 29. J
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6.2 PRAM Model
In the PRAM model, multiple processors share a random access memory to jointly solve
a computational problem. Various contention models exist for concurrent access to the
same memory cell by multiple processors, but are equivalent up to small (sub-logarithmic)
factors in complexity, so we assume that there is no contention. Then we can view the
computation as a DAG whose nodes represent elementary computational steps and edges
dependencies. The input is represented by the sources of the DAG. The crucial complexity
measures are work, the total size of the DAG (or, equivalently, the sequential complexity of
the computation) and depth, the maximum length of a path in the DAG (or, equivalently,
the time to complete the computation with an unbounded number of processors executing
steps at unit speed).

We use a result on approximate SSSP computations due to Cohen, who introduced hop
sets for this purpose. Following standard notation, we use m := |E|, where G = (V,E, `) is
the input graph.

I Corollary 31 (of [14, 20]). Let ε0 > 0 be a constant and ε = 1
polylogn . Then (1 + ε)-

approximate SSSP in super-source graphs can be solved in O(m1+ε0) work and polylogn time
w.h.p.

We remark that the assumption that the graph G is connected implies mε0 ≥ Ω(nε0) and
thus the term mε0 can absorb polylogn factors.

Following the same route as for the CONGEST model, we obtain a string of corollaries.
As coordination between processes is easier in the PRAM model, in most cases the results
are immediate.

I Corollary 32. Suppose α = 1
polylogn , ρ = nO(1), and ε0 is a constant. Then Algorithm 1

can be executed in the PRAM model with depth polylogn and work O(m1+ε0) w.h.p.

I Corollary 33. Fix any constant ε0 > 0. There exists a (randomized) PRAM algorithm of
depth polylogn and work O(m1+ε0) that, for a graph G = (V,E, `) with poly(n)-bounded
edge lengths and a real parameter ∆ > 0, constructs a random TSD D of G with the following
guarantees: (1) diam(D) ≤ ∆ w.h.p.; (2) maxe∈E{loadD(e)} ≤ O(logn) w.h.p.; and (3)
Pr [e ∈ Ecut(D)] ≤ O

(
`e·logn

∆

)
for every edge e ∈ E.

Combining this corollary with Theorem 16, we obtain the following result.

I Corollary 34. Fix any constant ε0 > 0. There exists a (randomized) PRAM algorithm of
depth polylogn and work O(m1+ε0) that, for a graph G = (V,E, `) with poly(n)-bounded
edge lengths, constructs a random HTSD D of G with the following guarantees w.h.p.: (1)
the depth of D is O(logn); (2) D admits a (deterministic) geometrically decreasing diameter
bounding sequence d w.h.p.; (3) loadD(e) = O(logn) for every edge e ∈ E w.h.p.; and (4)
ED[strD,d(e)] = O(log2 n) for every edge e ∈ E.

I Corollary 35. Fix any constant ε0 > 0. There exists a (randomized) PRAM algorithm of
depth polylogn and work O(m1+ε0) that, given a graph G = (V,E, `) with poly(n)-bounded
edge lengths, constructs a random projected tree T of G that satisfies the following guarantees
for every edge e ∈ E: (1) loadT (e) = O(logn) w.h.p.; and (2) ET [strT (e)] = O(log2 n).

Proof. Again, the main step after obtaining an HTSD is to identify cluster leaders. This
can be easily done by pointer jumping within the stated complexity bounds. J
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I Corollary 36. Fix any constant ε0 > 0. There exists a (randomized) PRAM algorithm of
depth polylogn and work O(m1+ε0) that, given a graph G = (V,E, `) with poly(n)-bounded
edge lengths, constructs an embedding into a random dominating hierarchically 2-separated
tree T of G with expected stretch ET [strT (e)] = O(log2 n) for each edge e ∈ E.

6.3 Semi-Streaming Model
In the streaming model [32, 41], the input graph is given as a stream of edges without
repetitions. The performance of an algorithm is measured by the space it uses, whereby
space is organized in memory words of O(logn) bits. In the multipass streaming model, the
input is presented to the algorithm in several such passes, and the goal is to keep both
the number of required passes and the space consumption small. For algorithms for graph
problems, it is usual to assume arbitrary arrival order of the edges. The special case where
the computational problem takes an n-vertex graph as input and the amount of memory is
Õ(n) is also known as the semi-streaming model [23]. All our results in this subsection are
for this setting.

I Corollary 37 (of [12]). In the semi-streaming model, (1 + ε)-approximate SSSP in super-
source graphs can be solved in polylogn passes w.h.p. for any ε = 1

polylogn .

All computational steps that are not SSSP computations can be either directly executed
in memory (because only graphs of size Õ(n) are involved) or easily performed by storing
polylogn words for each node and streaming once (e.g., finding cluster leaders). Thus,
corollaries analogous to the CONGEST and PRAM models are immediate.

I Corollary 38. Suppose α = 1
polylogn , ρ = nO(1). Then Algorithm 1 can be executed in the

semi-streaming model with polylogn passes w.h.p.

I Corollary 39. There exists a (randomized) semi-streaming algorithm that given a graph
G = (V,E, `) with poly(n)-bounded edge lengths and a real parameter ∆ > 0, constructs a
random TSD D of G with the following guarantees in polylogn passes w.h.p.: (1) diam(D) ≤
∆ w.h.p.; (2) maxe∈E{loadD(e)} ≤ O(logn) w.h.p.; and (3) Pr [e ∈ Ecut(D)] ≤ O

(
`e·logn

∆

)
for every edge e ∈ E.

I Corollary 40. There exists a (randomized) semi-streaming algorithm that given a graph
G = (V,E, `) with poly(n)-bounded edge lengths, constructs a random HTSD D of G with
the following guarantees in polylogn passes w.h.p.: (1) the depth of D is O(logn); (2) D
admits a (deterministic) geometrically decreasing diameter bounding sequence d w.h.p.; (3)
loadD(e) = O(logn) for every edge e ∈ E w.h.p.; and (4) ED[strD,d(e)] = O(log2 n) for
every edge e ∈ E.

Corollary 40 readily implies semi-streaming algorithms that construct low stretch projected
trees and dominating hierarchically 2-separated trees in polylogn passes w.h.p. However,
one can, in fact, obtain such constructions in a single pass by (i) partitioning the edges to
(O(logn) many) length classes; (ii) using known techniques to construct a spanner with O(n)
edges and O(logn) stretch for each length class; and (iii) construct the desired low stretch
trees for the graph obtained from the union of these spanners in an offline fashion, observing
that this graph has O(n logn) edges.6

6 We thank an anonymous ITCS 2020 reviewer for pointing out this simple alternative construction.
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7 Related Work

Low diameter graph decompositions with small edge cutting probabilities (or with small
weight) play a major role in many algorithmic applications. These include the construction
of low stretch spanning trees [2, 3, 4, 11, 18] and low distortion probabilistic embeddings of
metric spaces into hierarchically well-separated trees [7, 8, 9, 22], fast approximate solvers of
symmetric diagonally dominant linear systems [15, 36, 37, 47], constructing graph spanners
[42, 45], and spectral sparsification [33, 35]. The literature in this field being vast, we can
only give an incomplete review of it. We first focus on related work in distributed and parallel
models of computation, as these results are closest to ours, and then turn to the related work
in the streaming model. Our discussion of the related work in the former models starts with
reviewing the literature on low diameter graph decompositions, and then it turns to their
applications, focusing on low average stretch spanning trees and tree embeddings.

Low Diameter Graph Decompositions

In the LOCAL and CONGEST models of distributed computation7 low diameter graph
decompositions for unweighted graphs, i.e., G = (V,E,1), play a special role as they can
be leveraged to design fast algorithms for a large class of problems. More precisely, the
decomposition task is complete for a certain class of local problems [30], where a problem is
called local if it does not require Ω(hop(G)) rounds of communication (recall the definition
of the hop diameter hop(G) from Section 6.1). Here, hop(G) is of relevance even in problems
where the input graph is weighted, as communication over large hop distances is an inherent
obstacle to small running times in distributed algorithms.

Several distributed decomposition algorithms with round complexities of polylogn and
small edge cut probabilities are known for the unweighted case [19, 40, 43].8 However,
the weighted setting considered in this work is fundamentally different. A lower bound
of hop(G) is trivial, i.e., the task is not local: intuitively, decoupling hop distance from
graph distance implies that finding close-by nodes may require communication over hop(G)
hops. In the LOCAL model, this bound is trivially tight, as nodes can learn about the entire
graph in hop(G) rounds. In the CONGEST model, a reduction from 2-party communication
complexity shows a lower bound of Ω

( √
n

logn

)
rounds for computing an (r, λ)-decomposition

for any non-trivial values of r and λ. This lower bound even holds if hop(G) = O(logn) [46].9

Miller et al. [43] show how to compute low diameter graph decomposition with small
edge cutting probabilities in unweighted graphs in the PRAM model. Their approach relies
on exact SSSP computations. Given the current discrepancy in the state of the art of exact
and approximate SSSP in the PRAM model, it thus cannot lead to satisfying bounds in the
weighted setting.

7 See Section 6.1 for the formal definition of CONGEST. The LOCAL model is identical, except that it
does not restrict message sizes to O(logn).

8 Some works only care about the chromatic number of the graph resulting from contracting clusters.
However, the cited works achieve this by cutting few edges only.

9 A low-diameter decomposition can be used to determine whether or not there is a light s-t cut in the
family of lower bound graphs from [46]; s and t end up in the same cluster if and only if there is no
light cut between them, as otherwise their distance is large.
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Low Stretch Spanning Trees

Nevertheless, there has been some work applying decompositions in the vein of Miller et al. in
order to obtain low average stretch10 spanning trees for weighted graphs. A construction by
Alon et al. [4] reduces weighted graphs to unweighted (multi)graphs. As a result Blelloch et
al. [13] were able to give an efficient PRAM construction of low stretch spanning trees based
on the decomposition technique by Miller et al. As shown by Blelloch et al., computation
of such trees is of use for efficient PRAM solvers for symmetric diagonally dominant linear
systems. A similar connection was exploited by Ghaffari et al. [29], who transferred the
approach of Blelloch et al. to the CONGEST model, obtaining a low average stretch tree
construction that they leveraged for approximate maximum flow computations. A downside
of the aforementioned approaches is that the construction by Alon et al. suffers from a poor
average stretch of 2Θ(

√
logn log logn), resulting in respective overheads in work and depth

resp. round complexity in the two models when applying the computed trees in further
computations.

For the CONGEST model, Becker et al. [11] gave a construction of low-average stretch
spanning trees that combines the decomposition technique of Miller et al. with the star
decomposition technique of Elkin et al. [18]. This approach achieves polylogn average
stretch. Again, the complexity of their approach is essentially determined by an exact
SSSP computation. Thus, the resulting algorithm is round-optimal up to polylogarithmic
factors in the unweighted case (i.e., the running time is hop(G) polylogn), while essentially
matching the round complexity of exact SSSP in the weighted case. Exact SSSP computation
in the CONGEST model is still not too well understood, with the best upper bound of
Õ(min{

√
nhop(G),

√
nhop(G)1/4 + n3/5 + hop(G)}) [25] still being polynomially far from

the Ω̃(
√
n+ hop(G)) lower bound.

Tree Embeddings

We apply our decomposition technique in order to obtain a metric tree embedding, following
the same route as Bartal [7], obtaining the same O(log2 n) bound on the expected stretch
(note that the bound in [7] holds for any edge lengths whereas in the current paper, we
make the simplifying assumption that the ratio of the maximum to minimum edge length
is poly(n)). Bartal later improved this bound to O(logn log logn) [8] and subsequently to
asymptotically optimal O(logn) [9]. Although we cannot readily apply the same techniques,
Bartal’s work suggests that future improvements to our stretch bound are feasible.

Fakcharoenphol et al. [22] achieved the O(logn) stretch bound earlier, following a different
approach in which the graph is not (explicitly) decomposed. However, at its core the main
idea is very similar: randomization is leveraged to keep the probability of “cutting” edges
proportional to their length based on the subtractive form of the triangle inequality. Also here,
PRAM and CONGEST algorithms have been developed that try to mitigate the bottleneck
imposed by exact SSSP computations. In the CONGEST model, it is straightforward to
implement the algorithm from [22] with a round complexity that is (up to a factor of O(logn))
equal to the running time of the Bellman-Ford algorithm [34]. However, shortest paths may
have hop length up to n− 1, resulting in a running time far from the Ω̃(

√
n+ hop(G)) lower

bound. Ghaffari and Lenzen broke down shortest paths by sampling a “skeleton” of Θ̃(
√
n)

nodes uniformly, computing a spanner (refer to the sequel of this section for the definition of
a spanner) of a graph representing the induced metric, computing a tree embedding of this

10The ratio of distance in the tree to edge length, averaged over all edges.
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spanner, and finally extending this embedding to one of the original graph with modified
weights via a Bellman-Ford computation. This can be seen as distorting the original distance
metric such that it becomes sufficiently simple to solve exact SSSP fast, resulting in a round
complexity of Õ(n0.5+ε + hop(G)) for stretch O(ε−1 logn). In particular, by setting ε = 1

logn ,
the stretch and running time bounds match our results. However, Ghaffari and Lenzen do
not guarantee bounded load. We also note that their approach is inherently limited to stretch
Ω(log2 n) when requiring a running time bound within polylogn of the lower bound, as both
spanners with a near-linear number of edges and metric tree embedding must incur Ω(logn)
stretch each.

Friedrichs and Lenzen [26] provide fast PRAM and CONGEST algorithms for tree embed-
dings with stretch O(logn). The main difference to [31] is the use of hop sets [14] to provide
“shortcuts” for distance computation that are not present in the original graph. Again,
distances are then distorted by metric embeddings such that exact distance computation by a
Bellman-Ford style computation becomes efficient. This leads to a 2O(

√
logn)(

√
n+ hop(G))-

round algorithm in CONGEST and a PRAM algorithm of depth polylogn and work O(m1+ε)
(for any fixed constant ε > 0), where m is the number of edges and Ω(m) a trivial lower
bound on the work. While the stretch guarantee is better than in our case, it should be
noted that also here fundamental barriers limit this technique: lower bounds on the size
of hop sets due to Abboud et al. [1] imply that any hop-set based approach must incur
running time resp. work overheads of 2Ω(

√
logn). Although in the PRAM model we suffer the

same work overhead by relying on hop-sets for the currently best known approximate SSSP
algorithms [14, 20], our result shows that one can trade the additional log-factor in stretch
for a logarithmic load bound that the method of Friedrichs and Lenzen cannot guarantee.

Streaming Algorithms

To the best of our knowledge, constructions of low diameter decompositions with small
edge cutting probabilities have not been addressed so far in the semi-streaming literature.
A related graph theoretic object whose construction has been studied in the context of
streaming algorithms is spanners. Similarly to low (average) spanning trees, spanners also
provide a sparse distance preserving representation of the graph, only that they are not
required to be trees. On the other hand, their notion of distance preservation is stronger in
the sense that it is required to hold in the worst case, rather than on average. Specifically,
a κ-spanner of graph G = (V,E, `) is a spanning subgraph of G that guarantees a stretch
bound of at most κ for every edge in E. One is typically interested in constructing κ-spanners
with a small number of edges, where O(n1+2/(κ+1)) edges is the asymptotically tight bound.
Streaming constructions of sparse spanners exist only for unweighted graphs [10, 17, 23], as
there, the distance computations are typically restricted to the sparse subgraph maintained
by the algorithm. A related notion in unweighted graphs, which has also been studied in the
streaming literature [21], is an (α, β)-spanner, where the distance between vertices u, v ∈ V
in the spanner is required to be at most α · dG(u, v) + β for every u, v ∈ V .

References

1 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear
additive spanners. SIAM J. Comput., 47(6):2203–2236, 2018.

2 Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning trees. In 49th
Annual IEEE Symposium on Foundations of Computer Science, FOCS, pages 781–790, 2008.

ITCS 2020



50:28 Low Diameter Decompositions by Approximate Distances

3 Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning
tree. In Proceedings of the 44th Symposium on Theory of Computing Conference, STOC, pages
395–406, 2012.

4 Noga Alon, Richard M. Karp, David Peleg, and Douglas B. West. A graph-theoretic game
and its application to the k-server problem. SIAM J. Comput., 24(1):78–100, 1995.

5 Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804–823, 1985.
6 Baruch Awerbuch and David Peleg. Sparse partitions (extended abstract). In 31st Annual

Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24,
1990, Volume II, pages 503–513, 1990.

7 Yair Bartal. Probabilistic approximations of metric spaces and its algorithmic applications. In
37th Annual Symposium on Foundations of Computer Science, FOCS, pages 184–193, 1996.

8 Yair Bartal. On approximating arbitrary metrices by tree metrics. In Proceedings of the
Thirtieth Annual ACM Symposium on the Theory of Computing, STOC, pages 161–168, 1998.

9 Yair Bartal. Graph decomposition lemmas and their role in metric embedding methods. In
Algorithms - ESA 2004, 12th Annual European Symposium, pages 89–97, 2004.

10 Surender Baswana. Streaming algorithm for graph spanners - single pass and constant
processing time per edge. Inf. Process. Lett., 106(3):110–114, 2008.

11 Ruben Becker, Yuval Emek, Mohsen Ghaffari, and Christoph Lenzen. Distributed algorithms
for low stretch spanning trees. In 33rd International Symposium on Distributed Computing,
DISC, 2019. To appear.

12 Ruben Becker, Andreas Karrenbauer, Sebastian Krinninger, and Christoph Lenzen. Near-
optimal approximate shortest paths and transshipment in distributed and streaming models.
In 31st International Symposium on Distributed Computing, DISC 2017, October 16-20, 2017,
Vienna, Austria, pages 7:1–7:16, 2017.

13 Guy E. Blelloch, Anupam Gupta, Ioannis Koutis, Gary L. Miller, Richard Peng, and Kanat
Tangwongsan. Nearly-linear work parallel sdd solvers, low-diameter decomposition, and
low-stretch subgraphs. Theory of Computing Systems, 55(3):521–554, 2014.

14 Edith Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. J. ACM, 47(1):132–166, 2000.

15 Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B.
Rao, and Shen Chen Xu. Solving SDD linear systems in nearly mlog1/2n time. In Symposium
on Theory of Computing, STOC, pages 343–352, 2014.

16 Michael B. Cohen, Gary L. Miller, Jakub W. Pachocki, Richard Peng, and Shen Chen Xu.
Stretching stretch. CoRR, abs/1401.2454, 2014.

17 Michael Elkin. Streaming and fully dynamic centralized algorithms for constructing and
maintaining sparse spanners. ACM Trans. Algorithms, 7(2):20:1–20:17, 2011.

18 Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning
trees. SIAM J. Comput., 38(2):608–628, 2008.

19 Michael Elkin and Ofer Neiman. Distributed strong diameter network decomposition: Extended
abstract. In Proceedings of the 2016 ACM Symposium on Principles of Distributed Computing,
pages 211–216, 2016.

20 Michael Elkin and Ofer Neiman. Hopsets with constant hopbound, and applications to
approximate shortest paths. In IEEE 57th Annual Symposium on Foundations of Computer
Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,
pages 128–137, 2016.

21 Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1+epsilon, beta)-spanners
in the distributed and streaming models. Distributed Computing, 18(5):375–385, 2006.

22 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004.

23 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.



R. Becker, Y. Emek and C. Lenzen 50:29

24 Sebastian Forster and Gramoz Goranci. Dynamic low-stretch trees via dynamic low-diameter
decompositions. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019., pages 377–388, 2019.

25 Sebastian Forster and Danupon Nanongkai. A faster distributed single-source shortest paths
algorithm. In 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pages 686–697, 2018.

26 Stephan Friedrichs and Christoph Lenzen. Parallel metric tree embedding based on an algebraic
view on moore-bellman-ford. J. ACM, 65(6):43:1–43:55, 2018.

27 Juan A Garay, Shay Kutten, and David Peleg. A sublinear time distributed algorithm for
minimum-weight spanning trees. SIAM Journal on Computing, 27(1):302–316, 1998.

28 Mohsen Ghaffari and Bernhard Haeupler. Distributed algorithms for planar networks ii:
Low-congestion shortcuts, mst, and min-cut. In Proceedings of the Twenty-seventh Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 202–219, 2016.

29 Mohsen Ghaffari, Andreas Karrenbauer, Fabian Kuhn, Christoph Lenzen, and Boaz Patt-
Shamir. Near-optimal distributed maximum flow. SIAM Journal on Computing, 47(6):2078–
2117, 2018.

30 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the Complexity of Local Distributed
Graph Problems. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2017, pages 784–797, 2017.

31 Mohsen Ghaffari and Christoph Lenzen. Near-optimal distributed tree embedding. In
Distributed Computing - 28th International Symposium, DISC, pages 197–211, 2014.

32 Monika Rauch Henzinger, Prabhakar Raghavan, and Sridhar Rajagopalan. Computing on
data streams. In External Memory Algorithms, Proceedings of a DIMACS Workshop, New
Brunswick, New Jersey, USA, May 20-22, 1998, pages 107–118, 1998.

33 Michael Kapralov and Rina Panigrahy. Spectral sparsification via random spanners. In
Innovations in Theoretical Computer Science 2012, Cambridge, MA, USA, January 8-10, 2012,
pages 393–398, 2012.

34 Maleq Khan, Fabian Kuhn, Dahlia Malkhi, Gopal Pandurangan, and Kunal Talwar. Efficient
distributed approximation algorithms via probabilistic tree embeddings. Distributed Computing,
25(3):189–205, 2012.

35 Ioannis Koutis. Simple parallel and distributed algorithms for spectral graph sparsification. In
26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’14, Prague,
Czech Republic - June 23 - 25, 2014, pages 61–66, 2014.

36 Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m log n time solver for SDD linear
systems. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011, pages 590–598, 2011.

37 Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving SDD
linear systems. SIAM J. Comput., 43(1):337–354, 2014.

38 Shay Kutten and David Peleg. Fast Distributed Construction of Smallk-Dominating Sets and
Applications. Journal of Algorithms, 28(1):40–66, 1998.

39 Christoph Lenzen, Boaz Patt-Shamir, and David Peleg. Distributed distance computation
and routing with small messages. Distributed Computing, 2018.

40 Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993.

41 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20, 2014.
42 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved parallel algorithms

for spanners and hopsets. In Proceedings of the 27th ACM on Symposium on Parallelism
in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015, pages
192–201, 2015.

43 Gary L. Miller, Richard Peng, and Shen Chen Xu. Parallel graph decompositions using random
shifts. In 25th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’13,
Montreal, QC, Canada - July 23 - 25, 2013, pages 196–203, 2013.

ITCS 2020



50:30 Low Diameter Decompositions by Approximate Distances

44 D. Peleg. Distributed Computing: A Locality-Sensitive Approach. Discrete Mathematics and
Applications. Society for Industrial and Applied Mathematics, 2000.

45 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989.

46 Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman, Danupon Nanongkai, Gopal
Pandurangan, David Peleg, and Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM J. Comput., 41(5):1235–1265, 2012.

47 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 81–90, 2004.


	Introduction
	Our Contribution
	Structure of this Paper

	Preliminaries
	Blurry Ball Growing
	Tree-Supported Decomposition
	Sampling from Low Stretch Tree Embeddings
	Hierarchical Decompositions
	Embedding into a Random Projected Tree
	Embedding into a Random HST
	Bounding the p-Stretch

	Implementation in Different Models
	CONGEST Model
	PRAM Model
	Semi-Streaming Model

	Related Work

