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Abstract—Metastability in digital circuits is a spurious mode
of operation induced by violation of setup/hold times of stateful
components. It cannot be avoided deterministically when tran-
sitioning from continuously-valued to (discrete) binary signals.
However, in prior work (Lenzen & Medina ASYNC 2016) it
has been shown that it is possible to fully and deterministically
contain the effect of metastability in sorting networks. More
specifically, the sorting operation incurs no loss of precision,
i.e., any inaccuracy of the output originates from mapping the
continuous input range to a finite domain.

The downside of this prior result is inefficiency: for B-bit
inputs, the circuit for a single comparison contains Θ(B2) gates
and has depth Θ(B). In this work, we present an improved
solution with near-optimal Θ(B logB) gates and asymptotically
optimal Θ(logB) depth. On the practical side, our sorting
networks improves over prior work for all input lengths B > 2,
e.g., for 16-bit inputs we present an improvement of more than
70% in depth of the sorting network and more than 60% in cost
of the sorting network.

I. INTRODUCTION

In the 80’s, Marino proved that any bistable circuit can

be forced into metastability [1], an unstable equilibrium state

that is neither binary 0 nor 1 (regardless of how the voltage

thresholds for these states are chosen). Given that metastability

fundamentally disrupts the binary abstraction and, accordingly,

the operation of digital circuits, the traditional methods for

dealing with metastability are (i) to make sure that timing

violations potentially causing metastability are avoided deter-

ministically or (ii) to wait until metastability resolves with

sufficiently high probability.

Option (i) is achieved by synchronous design, but can

also be guaranteed in asynchronous circuits in many cases.

However, crossing boundaries of (unsynchronized) clock do-

mains inherently bears the risk of metastability, requiring to

resort to Option (ii). This takes the form of synchronizer

chains, which are designed to resolve metastability as fast

as possible. For instance, state-of-the-art synchronizers for

65 nm technology achieve roughly a factor e−20 decay per

nanosecond in the probability of sustained metastability (i.e.,

τ ≈ 50 ps [2]); however, there is evidence that the resolution

time will increase with further miniaturization [3].

The corresponding overhead in delay and buffer size can

be avoided if the clock sources of different domains are

∗ The proofs were omitted and will appear in the full version of the paper.
We will be happy to provide them on request.

synchronized. Unfortunately, this is not as straightforward as

it seems: Naı̈ve master-slave approaches essentially fuse all

clock domains into one and introduce a single point of failure,

negating crucial advantages of the multi-domain approach in

terms of scalability and reliability.

Clock synchronization: A promising alternative is to run a

fault-tolerant clock synchronization algorithm, like the one by

Lynch and Welch [4], [5], preserving the benefits of multiple

clock domains while removing the need for synchronizers.

Inconveniently, it turns out that this does not eliminate the

problem, but rather shifts it to the synchronization algorithm:

any clock synchronization algorithm needs to measure time

differences between the nodes executing it, which entails to

map a continuous range to a discrete binary representation;1

Marino’s impossibility result now implies that this transition

from analog to digital must incur the risk of metastability.

Naturally, one could now resort to Option (ii), synchroniz-

ers, to resolve this issue. However, this costs time! And losing

time decreases the precision of the clock synchronization algo-

rithm, which crucially relies on frequently updated information

on clock skews to correct them.

Containing metastability: We follow a novel approach

recently proposed by Friedrichs et al. [6]. They establish

a theory of metastability-containing circuits, which allows

for meaningful calculation under worst-case propagation of

metastability of inputs.

Concretely, for the above problem, in an unpublished

manuscript [7] it is shown how to perform the time mea-

surements of the synchronization algorithm such that the

measurements are encoded as Gray code values with (at most)

one metastable bit, which captures the uncertainty of the

measurement. For instance, when discretizing a time difference

of 75 ps in steps of 10 ps, one may obtain the encodings of

7 or 8 (which for a Gray code differ in exactly one bit), or

the bit string for which the bit that is different is metastable.

At the heart of the Lynch-Welch algorithm lies the operation

of sorting such input strings according to their encoded value,

and afterwards applying a respective (analog!) phase shift to

the local clock.

1Unless, of course, the algorithm is implemented in a fully analog way,
which is costly.



This enables the following separation of concerns for the

logic of the nodes executing the algorithm:

1) Measure clock differences to all other nodes (incurs

metastability as described above).

2) Sort the results in a metastability-containing way.

3) Apply a corresponding phase shift (metastability is “ab-

sorbed” by the analog correction).

Metastability-containing sorting: For this approach to

succeed it is essential that the initial inaccuracy of the

measurement is not “amplified” by the sorting logic, despite

metastability, i.e., metastability is contained. In [6], it is shown

that this is possible in principle, but the corresponding circuits

are exponentially large in the number of bits B of the Gray

code inputs. Lenzen and Medina [8] proved that one can sort

two Gray code inputs (i.e., output max{g, h} and min{g, h}
for inputs g, h) in this manner with a circuit of depth O(B)
and O(B2) gates. Feeding n inputs into an O(log n)-depth [9]

sorting network comprised of such metastability-containing

2-sort elements, yields a metastability-containing sorting net-

work of depth O(B log n) and O(B2n log n) gates.

However, the 2-sort implementation from [8] is still large

compared to standard 2-sort circuits, which have O(B) gates

and depth O(logB). Worse, the linear delay of the circuit

defeats the purpose of resorting to metastability-containing

logic, as the large computational delay eats away at the

time saved by discarding all synchronizers. This leads to the

following open question posed by Lenzen and Medina [8].

Is there a small metastability-containing 2-sort cir-

cuit of logarithmic depth?

Our Contribution: We answer this question in the af-

firmative, by devising, proving correct, and validating in

simulation a metastability-containing 2-sort circuit of depth

Θ(logB) and size Θ(B logB). Given the trivial lower bounds

of logB and B − 1 when using fan-in 2 gates, this is close

to optimal. The involved constants are moderate, leading to

circuits of sufficient performance for use in the Lynch-Welch

algorithm, cf. Table V. Plugging our circuit into (optimal depth

or size) sorting networks [10], [11], [12], we obtain efficient

combinational metastability-containing sorting circuits, cf. Ta-

ble VI.

II. ENCODINGS AND VALID INPUTS

Due to the potential presence of metastability at the input,

we need to carefully choose and make use of suitable encod-

ings. In this section, we formalize the respective notation and

summarize basic properties of the encodings.

a) Reflected Binary Gray Code: For N ∈ N, we abbre-

viate [N ] := {0, . . . , N − 1}. For convenience, bit indices

are one-based, e.g, the leftmost bit of a binary string g is

g[1], the second is g[2], etc. For 1 ≤ i ≤ j ≤ B (where

g has B bits), let g[i : j] := g[i]g[i + 1] . . . g[j]; in case

i > j, g[i : j] is the empty string. We assume that B
is a power of two. We denote the first and second halves

of the string g by g0 and g1, i.e., g0 = g[1 : B/2], and

g1 = g[B/2 + 1 : B]. Let par(g) denote the parity of the

binary string g, i.e, par(g) =
∑B

i=1 g[i] mod 2.

Fig. 1. Chip area and Propagation delay of 2-sort(B) for B ∈ {2, 4, 8, 16}.
We compare between this paper’s circuit and the 2-sort from Lenzen and
Medina [8].

TABLE I
THE STRUCTURE OF A 4-BIT REFLECTED BINARY GRAY CODE.

g0 g1 g0 g1 g0 g1 g0 g1

00 00 01 10 11 00 10 10
00 01 01 11 11 01 10 11
00 11 01 01 11 11 10 01
00 10 01 00 11 10 10 00

par(g0) = 0 par(g0) = 1 par(g0) = 0 par(g0) = 1

We denote by 〈·〉 the decoding function of a Gray code

string, i.e., for x ∈ [N ], 〈rgB(x)〉 = x. As each B-bit string is

a codeword, the code is a bijection and the decoding function

also defines the encoding function rgB : [N ] → {0, 1}B .

Intuitively, B-bit binary reflected Gray code can be re-

cursively defined as follows (where a 1-bit code is trivial).

Taking two copies rg(0) and rg(1) of rgB/2, we encode 0

as rg(0)(0) ◦ rg(1)(0). For every up-count, we increase rg(1)

until we reach the maximum value
√
N − 1 for a B/2-

bit code, i.e., rg(1)(
√
N − 1). The next up-count increases

rg(0). Afterwards, each up-count decreases rg(1), until we

reach rg(1)(0) again. This process is repeated until we reach

rg(N−1) = rg(0)(
√
N−1)◦rg(1)(0). Because rg(0) and rg(1)

are both Gray codes (i.e., each up-count changes at most one

bit), the same is true for rg. Table I illustrates this structure

at hand of a 4-bit code.

A crucial observation is that whether we are currently

“counting up” or “counting down” the rg(1)-part of the string

is given by par(rg(0)): the parity of rg(0) changes on each

of its up-counts, as exactly one bit is changed, and on every

such up-count we switch between counting rg(1) up or down,

respectively. An immediate consequence of this property is

that rg(1) always equals the maximum or minimum code

word whenever rg(0) contains a metastable bit. Our approach

leverages these insights into the structure of the code, which

we formalize mathematically in the full version of the paper.

b) Metastability Characterization of Valid Strings: Fol-

lowing [8], we define the set of valid strings that serve as

inputs to our combinational circuits. We represent metastable

bits by the symbol M. We utilize an operator that compares

two strings and returns a string matching the originals where



TABLE II
VALID INPUTS

g 〈g〉 g 〈g〉 g 〈g〉 g 〈g〉

0000 0 0110 4 1100 8 1010 12
000M 0.5 011M 4.5 110M 8.5 101M 12.5
0001 1 0111 5 1101 9 1011 13
00M1 1.5 01M1 5.5 11M1 9.5 10M1 13.5
0011 2 0101 6 1111 10 1001 14
001M 2.5 010M 6.5 111M 10.5 100M 14.5
0010 3 0100 7 1110 11 1000 15
0M10 3.5 M100 7.5 1M10 11.5 − −

they are both stable and equal, and M everywhere else.

Definition 2.1 (The ∗ operator [8]): Given B ∈ N, define

the operator ∗ : {0, 1,M}B × {0, 1,M}B → {0, 1,M}B by

∀i ∈ {1, . . . , B} : (x ∗ y)[i] :=
{

x[i] if x[i] = y[i]

M else.

As discussed earlier, we may assume that Gray code inputs

from time measurements contain at most one metastable

bit [7], and our 2-sort elements will maintain this property. In

addition, valid strings guarantee that if the single metastable

bit resolves to either 0 or 1, the resulting string encodes either

x or x+ 1 for some x, cf. Table II.

Definition 2.2 (Valid Strings [8]): Let B ∈ N and N = 2B .

Then, the set of valid strings of length B is

SB
rg := rgB([N ]) ∪

⋃

x∈[N−1]

{rgB(x) ∗ rgB(x+ 1)} .

For simplicity, the decoding function 〈·〉 is extended to also

“decode” valid strings that contain a metastable bit.

Definition 2.3 (Extended Decoding [8]): Let N = 2B for

some B ∈ N. Denote [N ]M := {z/2 | z ∈ [2N − 1]} , i.e., the

half-integers from the range [0, N − 1]. For x ∈ [N − 1], we

extend 〈·〉 to SB
rg by

〈rgB(x) ∗ rgB(x+ 1)〉 := x+ 1/2 .

Accordingly, for x ∈ [N−1] we extend rgB to [N ]M by setting

rgB(x+ 1/2) := rgB(x) ∗ rgB(x+ 1).

The following definition captures the span of values that a

valid string can attain after metastability resolves.

Definition 2.4: For g ∈ SB
rg, we define that res(g) :=

{rgB(⌊〈g〉⌋), rgB(⌈〈g〉⌉)} .

III. MODEL AND PROBLEM

As we seek to design combinational circuits that accept

valid strings as inputs, i.e., we need to specify circuit behavior

in face of metastability. In accordance with [6], [8], we assume

that gates propagate metastability to their outputs in a worst-

case manner, but taking into account logical masking: an AND

gates always outputs 0 if one of its inputs is stable 0, and an

OR gate always outputs 1 if one of its inputs is stable 1.

TABLE III
LOGICAL EXTENSIONS TO METASTABLE INPUTS OF AN AND GATE

(LEFT), AN OR GATE (CENTER), AND AN INVERTER (RIGHT).

b

a
0 1 M

0 0 0 0
1 0 1 M

M 0 M M

b

a
0 1 M

0 0 1 M

1 1 1 1
M M 1 M

a ā

0 1
1 0
M M

A. Metastability-containing Multiplexers

Our metastability-containing circuits rely on multiplexers

with a special property: if the inputs between which metastable

control bits select are identical, the output is stable. Such

metastability-containing multiplexers (CMUX) have been in-

troduced in [8]. Hence, we confine ourselves to giving the

specification of a (4 : 1) − CMUX (the only type of CMUX

we use) in Table IV. A (4 : 1)− CMUX(B) exhibits the same

behavior, but selects between B-bit input strings. Note that it

is possible to improve our circuits further by devising better

(4 : 1)− CMUX(B) implementations.

TABLE IV
OUTPUT OF A (4 : 1)− CMUX. THE CONTROL BITS ARE s AND t, THE

SELECTABLE INPUTS ARE a, b, c, d.

s
t

0 1 M

0 a b a ∗ b
1 c d c ∗ d
M a ∗ c b ∗ d a ∗ b ∗ c ∗ d

B. Problem Definition

Our goal is to compute the maximum or minimum of two

valid strings. To understand what this means, consider the

following scenario. Suppose a valid string “encodes” x+1/2
for some x ∈ [N −1], i.e., the string contains a metastable bit

that makes it uncertain whether the represented value is x or

x+1. In this case, a time-to-digital converter (TDC) generating

this string has measured a time period corresponding to at least

x and at most x+1 delay stages of the TDC. The string will

stabilize to either x or x+ 1. The stabilized string is thus off

by at most 1 w.r.t. the time period it represents.

In order to fully maintain the precision of the original

measurement, we impose the same constraint on the extensions

of max and min to valid inputs, which is formalized as

follows.

Definition 3.1 ([8]): Let N = 2B for some B ∈ N. For

g, h ∈ SB
rg, define

maxrg{g, h} := rgB(max{〈g〉, 〈h〉})
minrg{g, h} := rgB(min{〈g〉, 〈h〉}) .

For example,

• maxrg{0111, 0101} = rg4(max{5, 6}) = 0101,

• maxrg{1M10, 1111} = rg4(max{11.5, 10}) = 1M10,

• maxrg{010M, 0100} = rg4(max{6.5, 7}) = 0100.

Note that this definition entails that the results are valid strings

as well. Our goal is to find (efficient) circuits computing maxrg
and minrg.



Definition 3.2 ([8]): For B ∈ N, a (combinational)

2-sort(B) circuit is defined as follows.

• Input: g, h ∈ SB
rg ,

• Output: g′, h′ ∈ SB
rg ,

• Functionality: g′ = maxrg{g, h}, h′ = minrg{g, h}.

We remark that the results of [6] imply that this is the

most restrictive specification that coincides with max and

min on inputs without metastability and can be implemented

by a circuit in our model. That is, any further suppression

of metastability has to make use of synchronizers (which

ensure probabilistic guarantees only), use analog components,

or employ of masking registers (cf. [6]).

IV. THE CIRCUIT

The high-level idea of the circuit is to first determine which

of the strings to select in a metastability-containing manner,

represented by two control bits. It may happen that one or both

of these bits become metastable, but in this case we show in

the full version that the structure of the Gray code implies that

the input strings were almost the same, distinguished only by

which of their bits are metastable. Combining the selected

strings using a CMUX, we ensure that the stable bits shared by

both strings do not become metastable in the ouput, despite

possible metastability of the control bits.

A. Control Signal Circuit

The subcircuit computing the control bits performs a 4-

valued comparison: given stable inputs g, h, it returns 01 or 10
if 〈g〉 < 〈h〉 or 〈g〉 > 〈h〉, respectively. If g = h, it returns 00
or 11, depending on the parity of the equal strings. For inputs

with metastable strings, the behavior is most conveniently

specified by considering all possible resolutions of the inputs,

determining the respective outputs, and obtaining the output

for the original inputs as the “superposition” of all options

under the ∗ operator. For example,

• c(0111, 0101) = 01,

• c(1001, 1001) = 00,

• c(1M10, 1111) = 10 ∗ 10 = 10,

• c(010M, 0100) = 11 ∗ 01 = M1,

• c(111M, 111M) = 11 ∗ 10 ∗ 01 ∗ 00 = MM.

a) Specification:

Definition 4.1: For B ∈ N, a (combinational) cont(B)
circuit is defined as follows.

• Input: g, h ∈ SB
rg ,

• Output: c ∈ {0, 1,M}2 ,

• Functionality:

c := ∗
(g′,h′)∈res(g)×res(h)

ĉ(g′, h′) ,

where for g′, h′ ∈ {0, 1}B , ĉ(g′, h′) is defined as follows.

ĉ(g′, h′)[1] ĉ(g′, h′)[2] Semantics

0 0 g′ = h′ and par(g′) = 0
0 1 〈g′〉 < 〈h′〉
1 0 〈g′〉 > 〈h′〉
1 1 g′ = h′ and par(g′) = 1

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(c0[1], c0[2])

2

2

B

B

cont(B)

2

B/2

B/2

cont(B/2)

(1, 0)

(0, 1)

(c1[1], c1[2])

B/2

2

B/2

cont(B/2) c0[1 : 2]

c1[1 : 2]

c[1 : 2]

g0

h0

g1

h1

h[1 :B]

g[1 :B]
(4 :1)−cmux(2)

(c1[1], c1[2])

Fig. 2. Recursive implementation of cont(B) derived from Lemma 4.3.

b) Implementation: The base case is trivial.

Fact 4.2: For B = 1, the specification given in Defini-

tion 4.1 is met by the identity circuit returning output (g, h)
for inputs g, h ∈ {0,M, 1}.

For B that is a power of 2, we implement the specification

recursively. The idea is to recursively use a B/2-bit circuit

on inputs g0, h0 and g1, h1, respectively, and use the result of

the second call to resolve a tie from the first call. For keeping

track of the parity in case of a tie it is essential to use the

result of the second call correctly: if the parity of g0 = h0 is

odd, we need to negate the control bits returned by the second

call.

Lemma 4.3: Suppose B = 2i for some i ∈ N. The circuit

depicted in Figure 2 implements the specification of cont(B)
given in Definition 4.1.

Fact 4.2 and Lemma 4.3 yield the following theorem.

Theorem 4.4: For B = 2i, i ∈ N, cont(B) can be

implemented by a circuit of delay and cost:

delay(cont(B)) = log(B) · delay((4 : 1)− CMUX) ,

cost(cont(B)) = 2 · (B − 1) · cost((4 : 1)− CMUX) .

B. 2-sort(B) Implementation

Again, we observe that the base case is trivial.

Fact 4.5: For B = 1, the specification given in Defi-

nition 3.2 is met by the circuit returning AND(g, h) and

OR(g, h) for inputs g, h ∈ {0,M, 1}.

We recursively implement the sorting circuit as follows. We

determine (maxrg{g, h})0 = maxrg{g0, h0} by a recursive

call (the same for minrg). A second recursive call determines

maxrg{g1, h1} and minrg{g1, h1}. Finally, we use a call to

cont(B/2) to compute the control bits selecting which of the

strings g1, h1, maxrg{g1, h1}, and minrg{g1, h1} to select

as (maxrg{g, h})1. The correctness of this implementation is

proven in the full version of the paper.

Lemma 4.6: The circuit depicted in Figure 3 implements

the specification of 2-sort(B) given in Definition 3.2.

Note that the recursive construction requires computing

control bits in each level of the recursion. However, the
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h[1 :B]

g[1 :B]
B

B/2
g1

B/2
h1

B/2
h′1

B/2
g′1

2-sort(B/2)

B/2
g′0

B/2
h′0

B/2

B/2
g0

h0

2-sort(B/2)

B

B

B

2-sort(B)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(c0[1], c0[2])

2

g1, h1

h1, g1

g′1, h
′
1

h′1, g
′
1

(4 :1)−cmux(B)

B
h′[1 : B]

B
g′[1 : B]

g′

h′

g′0 ◦ ĝ

h′0 ◦ ĥ

ĝ, ĥ

Fig. 3. Recursive implementation of 2-sort(B). To obtain the control inputs
(c0[1], c0[2]), we feed g0 and h0 into a cont(B/2) circuit, cf. Figure 2.

respective circuit recurses on the same substrings as the sorting

circuit, and has slightly smaller delay. This enables reuse of the

outputs of the recursive calls of the control circuit as control

bits for the recursive calls of the sorting circuit. Exploiting this

insight, we arrive at a highly efficient 2-sort implementation.

Theorem 4.7: For B = 2i, i ∈ N, 2-sort(B) can be

implemented by a circuit of delay and cost:

delay(2-sort(B)) = delay(AND)

+ log(B) · delay((4 :1)−CMUX)

cost(2-sort(B)) = 2B · cost(AND)

+B logB · cost((4 :1)−CMUX)

+ 2(B − log(2B)) · cost((4 :1)−CMUX)

C. Sorting Networks

Given a metastability-containing 2-sort implementation, it

is now straightforward to sort multiple inputs using stan-

dard techniques. Taking any sorting network, we can plug

in our metastability-containing 2-sort circuit to obtain a

metastability-containing sorting network. Cost, delay, and, in

first-order approximation, area of the sorting network scale

linearly with the cost and delay of the 2-sort implementation.

Suppose the sorting network has n channels, i.e., we sort

n strings. The inputs are valid Gray code strings of length

B. The output of the sorting network are the n input strings,

sorted according to the order induced by g < h ⇔ 〈g〉 < 〈h〉.
Bundala and Závodnỳ [11] proved the optimality w.r.t. depth

of Knuth’s sorting networks [10] (i.e., n ≤ 16 channels).

Codish et. al [12] proved the optimality w.r.t. number of gates

of Knuth’s sorting networks with up to 10 channels. In our

context, we are specifically interested in sorting networks with

n = 3f +1 channels for some f ∈ N, as this is the minimum

number of nodes required to tolerate f faulty nodes in the

clock synchronization algorithm by Lynch and Welch [5].

V. SIMULATION RESULTS

A. Design Flow

We list the tools we used in the design flow: (i) De-

sign entry: Quartus, (ii) Behavioral simulation: ModelSim,

TABLE V
COMPARISON OF NUMBER OF GATES, DELAY, AND CHIP-AREA OF THE OF

2-sort(B) FROM THIS PAPER AND FROM [8], AND Binary-comp, AN

OPTIMIZED COMPARATOR TAKING BINARY INPUTS.

B Circuit # Gates Area [µm2] Delay [ps]

B = 2
This paper 34 49.42 268

[8] 34 49.42 268

Binary-comp 8 15.582 145

B = 4
This paper 160 230.3 498

[8] 188 272.118 728

Binary-comp 19 34.58 288

B = 8
This paper 504 723.52 827

[8] 856 1237.425 1684

Binary-comp 41 73.752 477

B = 16
This paper 1344 1928.262 1233

[8] 3632 5247.186 3488

Binary-comp 81 151.648 422

(iii) Synthesis: Encounter RTL Compiler (part of Cadence tool

set) with the NanGate 45 nm Open Cell Library, (iv) Place &

route: Encounter (part of Cadence tool set) with the NanGate

45 nm Open Cell Library.

B. Adaptations to the Design Flow due to Metastability

In order to preserve the metastability-containment properties

of our circuit, the optimizer in the synthesis had to be disabled.

The simplest example is our CMUX. The optimizer realizes that

a CMUX is a multiplexer and disregards additional properties

introduced by the ”redundant” gates in the CMUX. Hence, the

optimizer simply transforms a CMUX to a regular multiplexer.

A standard multiplexer may output M even if the two select

inputs are 1 in case the control signal is M.

In Figure 4, we show how badly a regular sorting net-

work behaves on inputs which contain metastable bits; shown

is the output of ModelSim. Interestingly, Quartus internally

mapped parts of the circuit to lookup-tables (LUTs) featuring

metastability-containment properties as a side effect of glitch

avoidance techniques. This resulted in metastability being

masked for many inputs. The given results were obtained by

simulating the VHDL code directly in the ModelSim tool.

C. The benchmarks

We consider four designs for comparators, two of which

meet the specification of 2-sort. (i) the 2-sort circuit by

Lenzen and Medina [8], (ii) The 2-sort(B) circuit presented

in this paper, (iii) Naive-comp(B): A Gray code comparator

which is not metastability-containing, (iv) Binary-comp(B):
A regular comparator of binary inputs. In what follows, we

elaborate on these benchmarks. The two 2-sort circuits are not

optimized and they are as they appear in the schematics given

here and in [8], respectively. The Binary-comp(B) design is

simply the VHDL comparator of two B-bit binary strings,

allowing for an estimation of the overheads introduced by

metastability-containment. Note that the Binary-comp design

is optimized for both number of gates and delay in the

RTL compiler; as discussed in the conclusion, we expect

optimized CMUX designs to dramatically reduce the respective

gaps. The Naive-comp(B) design uses the control subcircuit

cont(B), which is implemented with regular multiplexers. The

outputs of this variant of the cont(B) circuit were fed to



TABLE VI
SIMULATION RESULTS FOR METASTABILITY-CONTAINING SORTING NETWORKS WITH n ∈ {4, 7, 10} FOR B-BIT INPUTS. 10-sort# OPTIMIZES GATE

COUNT, 10-sortd DEPTH; FOR n ∈ {4, 7}, THE SORTING NETWORKS ARE OPTIMAL W.R.T. BOTH MEASURES.

B Circuit
4-sort 7-sort 10-sort# 10-sortd

# Gates Area [µm2] Delay [ps] # Gates Area [µm2] Delay [ps] # Gates Area [µm2] Delay [ps] # Gates Area [µm2] Delay [ps]

B = 2
This paper 170 247.016 846 544 790.44 1715 986 1432.62 2285 1054 1531.467 2010

[8] 170 247.016 846 544 790.44 1715 986 1432.62 2285 1054 1531.467 2010

Binary-comp 40 77.91 478 128 249.326 953 232 451.815 1284 248 483 1145

B = 4
This paper 800 1151.472 1558 2560 3684.541 3147 4640 6678.294 4207 4960 7138.74 3681

[8] 940 1360.45 2268 3008 4353.328 4584 5452 7890.372 6116 5828 8434.79 5357

Binary-comp 95 172.935 906 304 553.28 1810 551 1002.848 2429 589 1072.099 2143

B = 8
This paper 2520 3617.67 2394 8064 11576.32 4715 14616 20982.542 6252 15624 22429.176 5481

[8] 4280 6186.544 5111 13696 19796.7 10313 24824 35881.65 13771 26536 38355.66 12043

Binary-comp 205 368.641 1475 656 1179.528 2948 1189 2137.905 3945 1271 2285.514 3470

B = 16
This paper 6720 9640.75 3396 21504 30849.875 6415 38976 55916.448 8437 41664 59772.132 7458

[8] 18160 26235.755 10817 58112 83953.24 21823 105328 152165.524 29152 112592 162658.944 25484

Binary-comp 405 530.67 1298 1296 2425.99 2600 2349 4397.085 3474 2511 4700.304 3050
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Fig. 4. The top four rows give sets of valid inputs to 4-channel sorting
networks using Naive-comp(4) (left) and our 2-sort implementation (right)
for comparisons, respectively. Metastable bits M are indicated as X. Using
Naive-comp(4), all but one output bit is metastable (XXXX is depicted as a
line). Our circuit outputs the input strings, sorted according to Table II.

regular multiplexers, which output the sorted (two) inputs.

The purpose of the Naive-comp design is to demonstrate

the highly undesirable behavior of a non-containing sorting

network under valid inputs.

These four designs are used as comparators in optimal sort-

ing networks with 4, 7, and 10 input channels. For 10 channels

we considered two sorting networks: 10-sort# optimizes the

number of gates [12] and 10-sortd optimizes the depth of the

sorting network [11].

D. Summary of simulation results

Figure 4 illustrates that it is essential to utilize 2-sort circuits

to guarantee correct behavior in the presence of metastability

in the input. Table V and Table VI show the chip area,2 number

of gates,3 and the delay4 of our circuits in 45 nm technology.

The improvements are substantial. In particular, for a 10-

channel sorting network with B = 16, we obtain (i) a

62.9% improvement in gate count (comparing the network that

optimizes the number of gates), (ii) a 63.2% improvement in

chip area (comparing the network that optimizes the number

of gates), and (iii) a 70.7% improvement in delay (comparing

the network that optimizes the depth of the sorting network).

VI. DISCUSSION

In this work, we improve prior results by Lenzen and Med-

ina on metastability-containing sorting networks. We obtain

a purely combinational circuit that is asymptotically optimal

w.r.t. delay and has an exponentially smaller (logarithmic) gap

2We give the value returned by Encounter, without VDD and GND rings.
3The RTL Compiler counts an OR(3) gate as a single gate.
4We report the delay outputted by the RTL Compiler.

to optimality w.r.t. the number of transistors. We formally

show correctness alongside precise delay and cost bounds as

function of B and the properties of basic components. We

confirm these assertions by detailed simulations.

The main open questions this paper raises are:

• Are there better CMUX implementations, which would

readily improve the constants in our bounds?

• Are there other powerful basic primitives that can be

efficiently realized in a metastability-containing way?

• What is the optimum cost of the 2-sort(B) primitive?

The first question is subject to our current work. Preliminary

results indicate that transistor-level CMUX implementations

can cut down cost, delay, and area of our metastability-

containing sorting networks by factors between 2 and 3 com-

pared to the presented numbers. Comparing to the results for

(optimized!) non-containing variants, this would result in very

small overheads in terms of delay, and small overheads w.r.t.

gate count, and area corresponding to the Θ(logB) overhead

of the presented 2-sort implementation in comparison to an

optimal non-containing solution.
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