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ABSTRACT
In this work, we use algebraic methods for studying distance
computation and subgraph detection tasks in the congested
clique model. Specifically, we adapt parallel matrix multipli-
cation implementations to the congested clique, obtaining
an O(n1−2/ω) round matrix multiplication algorithm, where
ω < 2.3728639 is the exponent of matrix multiplication. In
conjunction with known techniques from centralised algorith-
mics, this gives significant improvements over previous best
upper bounds in the congested clique model. The highlight
results include:

– triangle and 4-cycle counting in O(n0.158) rounds, im-

proving upon the O(n1/3) triangle counting algorithm
of Dolev et al. [DISC 2012],

– a (1 + o(1))-approximation of all-pairs shortest paths

in O(n0.158) rounds, improving upon the Õ(n1/2)-round
(2+o(1))-approximation algorithm of Nanongkai [STOC
2014], and

– computing the girth in O(n0.158) rounds, which is the
first non-trivial solution in this model.

In addition, we present a novel constant-round combinatorial
algorithm for detecting 4-cycles.

Categories and Subject Descriptors
F.1.1 [Computation by Abstract Devices]: Models of
Computation; F.2.0 [Analysis of Algorithms and Prob-
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lem Complexity]: General; G.2.2 [Mathematics of Com-
puting]: Discrete Mathematics—Graph Theory
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tation

1. INTRODUCTION
Algebraic methods have become a recurrent tool in cen-

tralised algorithmics, employing a wide range of techniques
(e.g., [10–16, 21–23, 27, 29, 30, 44, 45, 51, 59, 72, 73]). In
this paper, we bring techniques from the algebraic toolbox to
the aid of distributed computing, by leveraging fast matrix
multiplication in the congested clique model.

In the congested clique model, the n nodes of a graph
G communicate by exchanging messages of O(logn) size in

Running time

Problem This work Prior work

mat. mult. (semiring) O(n1/3) —
mat. mult. (ring) O(n0.158) O(n0.373) [26]

triangle counting O(n0.158) O(n1/3/ logn) [25]

4-cycle detection O(1) O(n1/2/ logn) [25]

4-cycle counting O(n0.158) O(n1/2/ logn) [25]

k-cycle detection 2O(k)n0.158 O(n1−2/k/ logn) [25]
girth O(n0.158) —

APSP:

weighted, directed O(n1/3 logn) —
· weighted diameter U O(Un0.158) —
· (1 + o(1))-approx. O(n0.158) —

· (2 + o(1))-approx. Õ(n1/2) [58]

APSP:
unweighted, undirected O(n0.158) —

· (2 + o(1))-approx. Õ(n1/2) [58]

Table 1: Our results versus prior work, using ω <
2.3729 [34]; Õ hides polylogarithmic factors.



a fully-connected synchronous network; initially, each node
is aware of its neighbours in G. In comparison with the
traditional CONGEST model [61], the key difference is that
a pair of nodes can communicate directly even if they are not
adjacent in graph G. The congested clique model masks away
the effect of distances on the computation and focuses on
the limited bandwidth. As such, it has been recently gaining
increasing attention [25, 26, 37, 38, 47, 50, 52, 58, 60, 64], in
an attempt to understand the relative computational power
of distributed computing models.

The key insight of this paper is that matrix multiplication
algorithms from parallel computing can be adapted to obtain
an O(n1−2/ω) round matrix multiplication algorithm in the
congested clique, where ω < 2.3728639 is the matrix mul-
tiplication exponent [34]. Combining this with well-known
centralised techniques allows us to use fast matrix multipli-
cation to solve various combinatorial problems, immediately
giving O(n0.158)-time algorithms in the congested clique for
many classical graph problems. Indeed, while most of the
techniques we use in this work are known beforehand, their
combination gives significant improvements over the best pre-
viously known upper bounds. Table 1 contains a summary
of our results, which we overview in more details in what
follows.

1.1 Matrix Multiplication in the Congested
Clique

As a basic primitive, we consider the computation of the
product P = ST of two n×n matrices S and T on a congested
clique of n nodes. We will tacitly assume that the matrices
are initially distributed so that node v has row v of both
S and T , and it will receive row v of P in the end. Recall
that the matrix multiplication exponent ω is defined as the
infimum over σ such that the product of two n× n matrices
can be computed with O(nσ) arithmetic operations; it is
known that 2 ≤ ω < 2.3728639 [34], and it is conjectured,
though not unanimously, that ω = 2.

Theorem 1. The product of two n × n matrices can be
computed in a congested clique of n nodes in O(n1/3) rounds

over semirings. Over rings, O(n1−2/ω+ε) rounds suffice (for
any constant ε > 0).

Theorem 1 follows by adapting known parallel matrix
multiplication algorithms for semirings [1, 55] and rings [7,
53, 56, 71] to the clique model, via the routing technique
of Lenzen [47]. In fact, with little extra work one can show
that the resulting algorithm is also oblivious, that is, the
communication pattern is predefined and does not depend on
the input matrices. Hence, the oblivious routing technique
of Dolev et al. [25] suffices for implementing these algorithms.

The above addresses matrices whose entries can be encoded
with O(log n) bits, which is sufficient for dealing with integers

of absolute value at most nO(1). In general, if b bits are
sufficient to encode matrix entries, the bounds above hold
with a multiplicative factor of b/ log n; for example, working

with integers with absolute value at most 2n
ε

merely incurs
a factor nε overhead in running times.

Distributed matrix multiplication exponent. Analogously
to the matrix multiplication exponent, we denote by ρ the
exponent of matrix multiplication in the congested clique
model, that is, the infimum over all values σ such that there

exists a matrix multiplication algorithm in the congested
clique running in O(nσ) rounds. In this notation, Theorem 1
gives us

ρ ≤ 1− 2/ω < 0.15715 ;

prior to this work, it was known that ρ ≤ ω − 2 [26].
For the rest of this paper, we will – as is convention for

centralised algorithmics – slightly abuse notation by writing
nρ for the complexity of matrix multiplication in the con-
gested clique. This hides factors of O(nε) resulting from the
fact that ρ is defined as infimum of an infinite set. We also
use Õ and Ω̃ notation to hide polylogarithmic factors.

Lower bounds for matrix multiplication. Our results are
optimal in the sense that for any sequential matrix multi-
plication implementation, no scheme simulating it on the
congested clique can give a faster algorithm than the con-
struction underlying Theorem 1; this follows from known
results for parallel matrix multiplication [2, 8, 42, 70]. More-
over, we note that for the broadcast congested clique model,
where each node is required to send the same message to all
nodes in any given round, recent lower bounds [39] imply

that matrix multiplication requires Ω̃(n) rounds.

1.2 Applications in Cycle Detection and
Counting

Our first application of fast matrix multiplication is to the
problems of triangle counting [43] and 4-cycle counting.

Corollary 2. On directed and undirected graphs, count-
ing triangles and 4-cycles takes O(nρ) rounds.

For ρ ≤ 1−2/ω, this is an improvement upon the previously

best known O(n1/3)-round triangle detection algorithm of
Dolev et al. [25]. In particular, we disprove the conjecture
of Dolev et al. [25] that any deterministic oblivious algorithm

for detecting triangles requires Ω̃(n1/3) rounds.
When only detection of cycles is required, we observe that

combining fast distributed matrix multiplication with the
well-known technique of colour-coding [5] allows to detect

k-cycles in Õ(nρ) rounds for any constant k. This improves
upon the subgraph detection algorithm of Dolev et al. [25],

which requires Õ(n1−2/k) rounds for detecting (arbitrary)
subgraphs of k nodes.

Corollary 3. For any graph, the existence of k-cycles
can be detected in 2O(k)nρ logn rounds.

For the specific case of k = 4, we provide a novel algorithm
that does not use matrix multiplication and detects 4-cycles
in only O(1) rounds.

Theorem 4. On undirected graphs, the existence of 4-
cycles can be detected in O(1) rounds. If such a cycle exists,
one such cycle can also be reported in O(1) rounds.

1.3 Applications in Girth Computation
We compute the girth of a graph by leveraging a known

trade-off between the girth and the number of edges of the
graph [54]. Roughly, we detect short cycles fast, and if they
do not exist then the graph must have sufficiently few edges
to be learned by all nodes. As far as we are aware, this is
the first algorithm to compute the girth in this setting.



Theorem 5. For undirected graphs, the girth can be com-
puted in Õ(nρ + no(1)) rounds.

A similar result on directed girth follows by adapting an
algorithm by Itai and Rodeh [43].

Corollary 6. For directed graphs, the girth can be com-
puted in Õ(nρ) rounds.

1.4 Applications in Distance Computation
The all-pairs shortest paths problem (APSP) likewise ad-

mits algorithms based on matrix multiplication. The basic
idea is to compute the nth power of the input graph’s weight
matrix over the min-plus semiring, by iteratively computing
squares of the matrix [28, 33, 57].

Corollary 7. For directed graphs with integer weights
in {−M,−M + 1, . . . ,M}, APSP can be computed in O(n1/3

(logn+ logM)) rounds.

We can leverage fast ring matrix multiplication to improve
upon the above result; however, the use of ring matrix mul-
tiplication necessitates some trade-offs or extra assumptions.
For example, for unweighted and undirected graphs, it is
possible to recover the exact shortest paths from powers of
the adjacency matrix over the Boolean semiring [66].

Corollary 8. For undirected, unweighted graphs, APSP
can be computed in Õ(nρ) rounds.

For small integer weights, we use the well-known idea of
embedding a min-plus semiring matrix product into a matrix
product over a ring; this gives a multiplicative factor to the
running time proportional to the length of the longest path.

Corollary 9. For directed graphs with positive integer
weights and weighted diameter U , APSP can be computed in
Õ(Unρ) rounds.

While this is relevant only for graphs of a small weighted
diameter, the idea can be combined with weight rounding [58,
65, 76] to obtain a fast approximate APSP algorithm without
such limitations.

Corollary 10. For directed graphs with integer weights

in {0, 1, . . . , 2n
o(1)

}, APSP can be approximated within a

factor of 1 + o(1) in O(nρ+o(1)) rounds.

This improves on a (2 + o(1))-approximation algorithm in

Õ(n1/2) rounds by Nanongkai [58].

1.5 Additional Related Work
Computing distances in graphs, such as the diameter, all-

pairs shortest paths (APSP), and single-source shortest paths
(SSSP) are fundamental problems in most computing settings.
The reason for this lies in the abundance of applications
of such computations, evident also by the huge amount of
research dedicated to it [19, 20, 31, 35, 36, 68, 69, 74–77].

In particular, computing graph distances is vital for many
distributed applications and, as such, has been widely stud-
ied in the CONGEST model of computation [61], where n
processors located in n distinct nodes of a graph G com-
municate over the graph edges using O(logn)-bit messages.
Specifically, many algorithms and lower bounds were given

for computing and approximating graph distances in this
setting [24, 32, 40, 41, 46, 48, 49, 58, 62, 63]. Some lower
bounds apply even for graphs of small diameter; however,
these results boil down to graphs with bottleneck edges limit-
ing the amount of information that can be exchanged between
different parts of the graph quickly.

The intuition that the congested clique model would ab-
stract away distances and bottlenecks and bring to light only
the congestion challenge has proven inaccurate. Indeed, a
number of tasks have been shown to admit sub-logarithmic
or even constant-round solutions, exceeding by far what is
possible in the CONGEST model with only low diameter.
The pioneering work of Lotker et al. [52] shows that a mini-
mum spanning tree (MST) can be computed in O(log log n)
rounds; this result was later improved by Pemmaraju and
Sardeshmukh [64], showing that MST can be constructed
in O(log log logn) rounds. Hegeman et al. [38] show how
to construct a 3-ruling set, with applications to maximal
independent set and an approximation of the MST in certain
families of graphs; sorting and routing have been recently ad-
dressed by various authors [47, 50, 60]. A connection between
the congested clique model and the MapReduce model is dis-
cussed by Hegeman and Pemmaraju [37], where algorithms
are given for colouring problems. On top of these positive
results, Drucker et al. [26] recently proved that essentially
any non-trivial unconditional lower bound on the congested
clique would imply novel circuit complexity lower bounds.

The same work also points out the connection between fast
matrix multiplication algorithms and triangle detection in the
congested clique. Their construction yields an O(nω−2+ε)-
round algorithm for matrix multiplication over rings in the
congested clique model, giving also the same running bound
for triangle detection; if ω = 2, this gives ρ = 0, matching our
result. However, with the currently best known centralised
matrix multiplication algorithm, the running time of the
resulting triangle detection algorithm is O(n0.3729) rounds,
still slower than the combinatorial triangle detection of Dolev
et al. [25], and if ω > 2, the solution presented in this paper
is faster.

2. MATRIX MULTIPLICATION
ALGORITHMS

In the congested clique matrix multiplication, we want to
compute the product P = ST of two n×n matrices S = (Sij)
and T = (Tij) on a congested clique with n nodes; the local
input for each node v ∈ V is the row v of both S and T ,
and the at the end of the computation each node v ∈ V will
output the row v of P .

Theorem 1. The product of two n × n matrices can be
computed in a congested clique of n nodes in O(n1/3) rounds

over semirings. Over rings, O(n1−2/ω+ε) rounds suffice (for
any constant ε > 0).

Theorem 1 follows by simulating known parallel matrix
multiplication algorithms in the congested clique model us-
ing the routing schemes of Dolev et al. [25] or Lenzen [47].
Roughly speaking, the idea in both of these algorithms is to
reduce the n× n matrix product into n products of smaller
matrices, where each product is handled locally by a single
node.

The first part of the theorem follows from the so-called
parallel 3D matrix multiplication algorithm [1, 55], essentially



a parallel implementation of the school-book solution, which
splits the multiplied matrices into n1/3 · n1/3 = n2/3 blocks
of size n2/3 × n2/3. Since each block needs to be multiplied
by n1/3 other blocks, we need n1/3 nodes to hold a copy of
each block. This allows us to distribute the multiplications
such that each node locally multiplies a single pair of blocks.
Communicating the input blocks and collecting the entries of
the output matrix takes O(n1/3) rounds, as each node needs

to collect and send information about n4/3 entries.
For the second part of the theorem, we use a known re-

sult [17] that says that any O(nσ) matrix multiplication
algorithm can be converted into a bilinear matrix multiplica-
tion algorithm with running time of O(nσ+ε), for any ε > 0.
In a bilinear matrix multiplication algorithm, such as the
algorithm of Strassen [67], the matrix product is computed
by first computing m < n3 linear combinations of entries of
both matrices, then performing m multiplications of pairs of
linear combinations, and finally computing the output matrix
entries as linear combinations of the multiplication outputs.
This can be computed over a ring, and can be obtained by
recursively performing the above on a partition of the matrix
into blocks, giving the speed-up in running time.

We then use a scheme that allows to adapt any bilinear
matrix multiplication algorithm into a fast parallel matrix
multiplication algorithm [7, 53, 56, 71]. Hence, with some
additional details, the result is obtained by using an O(nσ)
centralised bilinear matrix multiplication algorithm to reduce
the n×n product to n products of n1−1/σ×n1−1/σ matrices.
Communicating these smaller matrices of n2−2/σ entries
between the nodes takes only O(n1−2/σ) rounds using Dolev
et al. [25] or Lenzen [47].

We refer the reader to the full version of the paper [18] for
additional details.

3. UPPER BOUNDS

3.1 Subgraph Detection and Counting
The subgraph detection and counting algorithms we present

are mainly based on applying the fast matrix multiplication
to the adjacency matrix A of a graph G = (V,E), defined as

Auv =

{
1 if (u, v) ∈ E ,
0 if (u, v) /∈ E ,

where we assume that for undirected graphs edges {u, v} ∈ E
are oriented both ways.

Counting triangles and 4-cycles. For counting triangles,
that is, 3-cycles, we use a technique first observed by Itai and
Rodeh [43]. That is, in an undirected graph with adjacency
matrix A, the number of triangles is known to be 1

6
tr(A3),

where the trace tr(S) of a matrix S is the sum of its diagonal
entries Suu. Similarly, for directed graphs, the number of
triangles is 1

3
tr(A3).

Alon et al. [6] generalise the above formula to counting
undirected and directed k-cycles for small k. For example,
the number of 4-cycles in an undirected graph is given by

1

8

[
tr(A4)−

∑
v∈V

(
2(deg(v))2 − deg(v)

)]
.

Likewise, if G is a loopless directed graph and we denote
for v ∈ V by δ(v) the number of nodes u ∈ V such that

{(u, v), (v, u)} ⊆ E, then the number of directed 4-cycles in
G is

1

4

[
tr(A4)−

∑
v∈V

(
2(δ(v))2 − δ(v)

)]
.

Combining these observations with Theorem 1, we immedi-
ately obtain Corollary 2:

Corollary 2. On directed and undirected graphs, count-
ing triangles and 4-cycles takes O(nρ) rounds.

We note that similar trace formulas exists for counting
k-cycles for k ∈ {5, 6, 7}, requiring only computation of small
powers of A and local information. We omit the detailed
discussion of these in the context of the congested clique; see
Alon et al. [6] for details.

Detecting k-cycles. For detection of k-cycles we leverage
the colour-coding techniques of Alon et al. [5] in addition to
the matrix multiplication. Again, the distributed algorithm
is a straightforward adaptation of a centralised one.

Fix a constant k ∈ N. Let c : V → [k] be a labelling (or
colouring) of the nodes by k colours, such that node v knows
its colour c(v); it should be stressed here that the colouring
need not to be a proper colouring in the sense of the graph
colouring problem. As a first step, we consider the problem
of finding a colourful k-cycle, that is, a k-cycle such that
each colour occurs exactly once on the cycle. We present
the details assuming that the graph G is directed, but the
technique works in an identical way for undirected graphs.

Lemma 11. Given a graph G = (V,E) and a colouring
c : V → [k], a colourful k-cycle can be detected in O

(
3knρ

)
rounds.

Proof. For each subset of colours X ⊆ [k], let C(X) be

a Boolean matrix such that C
(X)
uv = 1 if there is a path of

length |X| − 1 from u to v containing exactly one node of

each colour from X, and C
(X)
uv = 0 otherwise. For a singleton

set {i} ⊆ [k], the matrix C({i}) contains 1 only on the main
diagonal, and only for nodes v with c(v) = i; hence, node v
can locally compute the row v of the matrix from its colour.
For a non-singleton colour set X, we have that

C(X) =
∨
Y⊆X

|Y |=d|X|/2e

C(Y )AC(X\Y ) , (1)

where the products are computed over the Boolean semiring
and ∨ denotes element-wise logical or. Thus, we can compute
C(X) for all X ⊆ [k] by applying (1) recursively; there is a
colourful k-cycle in G if and only if there is a pair of nodes

u, v ∈ V such that C
([k])
uv = 1 and (v, u) ∈ E.

To leverage fast matrix multiplication, we simply perform
the operations stated in (1) over the ring Z and observe that
an entry of the resulting matrix is non-zero if and only if
the corresponding entry of C(X) is non-zero. The applica-
tion of (1) needs two matrix multiplications for each pair
(Y,X) with Y ⊆ [k] and |Y | = d|X| /2e = dk/2e. The
number of such pairs is bounded by 3k; to see this, note
that the set {(Y,X) : Y ⊆ X ⊆ [k]} can be identified with
the set {0, 1, 2}k of trinary strings of length k via the bi-
jection w1w2 . . . wk 7→ ({i : wi = 0}, {i : wi ≤ 1}), and the
set {0, 1, 2}k has size exactly 3k. Thus, the total number of
matrix multiplications used is at most O(3k).



We can now use Lemma 11 to prove Theorem 3; while we
cannot directly construct a suitable colouring from scratch
for an uncoloured graph, we can try an exponential in k
number of colourings to find a suitable one.

Corollary 3. For any graph, the existence of k-cycles
can be detected in 2O(k)nρ logn rounds.

Proof. To apply Lemma 11, we first have to obtain a
colouring c : V → [k] that assigns each colour once to at least
one k-cycle in G, assuming that one exists. If we pick a
colour c(v) ∈ [k] for each node uniformly at random, then
for any k-cycle C in G, the probability that C is colourful
in the colouring c is k!/kk > e−k. Thus, by picking ek logn
uniformly random colourings and applying Lemma 11 to each
of them, we find a k-cycle with high probability if one exists.

This algorithm can also be derandomised using standard
techniques. A k-perfect family of hash functions H is a
collection of functions h : V → [k] such that for each U ⊆ V
with |U | = k, there is at least one h ∈ H such that h
assigns a distinct colour to each node in U . There are known
constructions that give such families H with |H| = 2O(k) log n
and these can be efficiently constructed [5]; thus, it suffices
to take such an H and apply Lemma 11 for each colouring
h ∈ H.

3.2 Detecting 4-Cycles
We have seen how to count 4-cycles with the help of matrix

multiplication in O(nρ) rounds. We now show how to detect
4-cycles in O(1) rounds. The algorithm does not make direct
use of matrix multiplication algorithms. However, the key
part of the algorithm can be interpreted as an efficient routine
for sparse matrix multiplication, under a specific definition
of sparseness.

Let

P (X,Y, Z) =

{(x, y, z) ∈ X × Y × Z : {x, y} ∈ E, {y, z} ∈ E}

consist of all distinct 2-walks (paths of length 2) from X
through Y to Z. We use the shorthand notation v for {v}
and ∗ for V ; for example, P (x, ∗, ∗) consists of all walks of
length 2 from node x. There exists a 4-cycle if and only if
|P (x, ∗, z)| ≥ 2 for some x 6= z.

On a high level, the algorithm proceeds as follows.

1. Each node x computes |P (x, ∗, ∗)|. If |P (x, ∗, ∗)| ≥ 2n−
1, then there exists some z 6= x such that |P (x, ∗, z)| ≥
2, thus a 4-cycle exists and the algorithm stops.

2. Otherwise, each node x finds P (x, ∗, ∗) and checks if
there exists some z 6= x satisfying |P (x, ∗, z)| ≥ 2.

The first phase is easy to implement in O(1) rounds. The key
idea is that if the algorithm does not stop in the first phase,
then the total volume of P (∗, ∗, ∗) is sufficiently small and
we can afford to gather P (x, ∗, ∗) for each node x in O(1)
rounds.

We now present the algorithm in more detail. We write
N(x) for the neighbours of node x. To implement the first
phase, each node y broadcasts deg(y) = |N(y)| to all other
nodes; we have

|P (x, ∗, ∗)| =
∑

y∈N(x)

deg(y).

To find a 4-cycle, each node x broadcasts a single bit
indicating whether |P (x, ∗, ∗)| ≥ 2n− 1; let x be a specific

node fulfilling the inequality, e.g. the one with the smallest
identifier. Each node y broadcast a bit indicating if it is a
neighbor of x, and now a node z with two common neighbors
with x, y and y′, can find a cycle (x, y, z, y′, x).

Now let us explain the second phase. Each node y is
already aware of N(y) and hence it can construct P (∗, y, ∗) =
N(y)× {y} ×N(y). Our goal is to distribute the set of all
2-walks ⋃

y

P (∗, y, ∗) = P (∗, ∗, ∗) =
⋃
x

P (x, ∗, ∗)

so that each node x will know P (x, ∗, ∗). Due to the first
phase, we have∑

y

deg(y)2 =
∑
y

|P (∗, y, ∗)| =
∑
x

|P (x, ∗, ∗)| < 2n2.

Using this bound, we obtain the following lemma.

Lemma 12. It is possible to find sets A(y) and B(y) for
each y ∈ V such that the following holds:

• A(y) ⊆ V , B(y) ⊆ V , and |A(y)| = |B(y)| ≥ deg(y)/8,
• the tiles A(y)×B(y) are disjoint subsets of the square
V × V .

Moreover, this can be done in O(1) rounds in the congested
clique.

Proof. Let f(y) be deg(y)/4 rounded down to the nearest
power of 2, and let k be n rounded down to the nearest power
of 2. We have

∑
y f(y)2 ≤

∑
deg(y)2/16 < n2/8 < k2. Now

it is easy to place the tiles of dimensions f(y)× f(y) inside
a square of dimensions k × k without any overlap with the
following iterative procedure:

• Before step i = 1, 2, . . . , we have partitioned the square
into sub-squares of dimensions k/2i−1 × k/2i−1, and
each sub-square is either completely full or completely
empty.
• During step i, we divide each sub-square in 4 parts, and

fill empty squares with tiles of dimensions f(y) = k/2i.
• After step i, we have partitioned the square in sub-

squares of dimensions k/2i× k/2i, and each sub-square
is either completely full or completely empty.

This way we have allocated disjoint tiles A(y) × B(y) ⊆
[k]× [k] ⊆ V × V for each y, with |A(y)| = |B(y)| = f(y) ≥
deg(y)/8.

To implement this in the congested clique model, it is
sufficient that each y broadcasts deg(y) to all other nodes,
and then all nodes follow the above procedure to compute
A(y) and B(y) locally.

Now, we use the tiles A(y)×B(y) to implement the second
phase of 4-cycle detection. For convenience, we use the
following notation for each y ∈ Y :

• The sets NA(y, a) for a ∈ A(y) form a partition of N(y)
such that |NA(y, a)| ≤ 8.
• The sets NB(y, b) for b ∈ B(y) form a partition of N(y)

such that |NB(y, b)| ≤ 8.

Note that we can assume that A(y) and B(y) are globally
known by Lemma 12. Hence a node can compute NA(y, a)
and NB(y, b) if it knows N(y).

With this notation, the algorithm proceeds as follows (see
Figure 1):
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Figure 1: 4-cycle detection: how P (∗, ∗, ∗) is parti-
tioned among the nodes.

1. For all y ∈ V and a ∈ A(y), node y sends NA(y, a) to
a. This step can be implemented in O(1) rounds.

2. For each y and each pair (a, b) ∈ A(y)×B(y), node a
sends NA(y, a) to b. Note that for each (a, b) there is
at most one y such that (a, b) ∈ A(y) × B(y); hence
over each edge we send only O(1) messages. Therefore
this step can be implemented in O(1) rounds.

3. At this point, each b ∈ V has received a copy of N(y)
for all y with b ∈ B(y). Node b computes

W (y, b) = N(y)× {y} ×NB(y, b) ;

W (b) =
⋃

y : b∈B(y)

W (y, b) .

This is local computation; it takes no communication
rounds.

We now give a lemma that captures the key properties of
the algorithm.

Lemma 13. The sets W (b) form a partition of P (∗, ∗, ∗).
For each b we have |W (b)| = O(n).

Proof. For the first claim, observe that the sets P (∗, y, ∗)
for y ∈ V form a partition of P (∗, ∗, ∗), the sets W (y, b) for
b ∈ B(y) form a partition of P (∗, y, ∗), and each set W (y, b)
is part of exactly one W (b).

For the second claim, let Y consist of all y ∈ V with
b ∈ B(y). As the tiles A(y)×B(y) are disjoint for all y ∈ Y ,
and all y ∈ Y have the common value b ∈ B(y), it has to
hold that the sets A(y) are disjoint subsets of V for all y ∈ Y .
Therefore∑

y∈Y

|N(y)| =
∑
y∈Y

deg(y) ≤
∑
y∈Y

8|A(y)| ≤ 8|V | = 8n .

With |NB(y)| ≤ 8 we get

|W (b)| =
∑
y∈Y

|W (y, b)| ≤ 8
∑
y∈Y

|N(y)| ≤ 64n ,

which completes the proof.

Now we are almost done: we have distributed P (∗, ∗, ∗)
evenly among V so that each node only holds O(n) elements.
Finally, we use the dynamic routing scheme [47] to gather
P (x, ∗, ∗) at each node x ∈ V ; each node needs to send and
receive O(n) words, and therefore O(1) rounds suffice. If
a 4-cycle exists, any node x in it can now detect it from
P (x, ∗, ∗).

Theorem 4. On undirected graphs, the existence of 4-
cycles can be detected in O(1) rounds. If such a cycle exists,
one such cycle can also be reported in O(1) rounds.

3.3 Girth
Recall that the girth g of a graph G = (V,E) is the length

of the shortest cycle in G. For undirected girth, we leverage
the fast cycle detection algorithm and the following lemma
giving a trade-off between the girth and the number of edges.
A similar approach of bounding from above the number
of edges of a graph that contains no copies of some given
subgraph was taken by Drucker et al. [26].

Lemma 14 ([54, pp. 362–363]). A graph with girth g

has at most n1+1/b(g−1)/2c + n edges.

If the graph is dense, then by the above lemma it must have
small girth and we can use fast cycle detection to compute it;
otherwise, the graph is sparse and we can learn the complete
topology.

Theorem 5. For undirected graphs, the girth can be com-
puted in Õ(nρ + no(1)) rounds.

Proof. Assume for now that ρ > 0, and fix ` = d2 + 2/ρe.
Each node collects all graph degrees and computes the to-
tal number of edges. If there are at most n1+1/b`/2c + n =
O(n1+ρ) edges, we can collect full information about the
graph structure to all nodes in O(nρ) rounds using an algo-
rithm of Dolev et al. [25], and each node can then compute
the girth locally. Otherwise, by Lemma 14, the graph has
girth at most `. Thus, for k = 3, 4, . . . , `, we try to find a
k-cycle using Corollary 3, in ` · 2O(`)nρ log n = Õ(nρ) rounds.
When such a cycle is found for some k, we stop and return
k as the girth. Finally, if ρ = 0, we pick ` = log logn, and
both cases take no(1) rounds.

For a directed graph, the girth is defined as the length of
the shortest directed cycle; the main difference comparing
to the undirected case is that directed girth can be 1 or 2.
While the trade-off of Lemma 14 cannot be used for directed
graphs, we can use a simpler technique of Itai and Rodeh
[43].

Let G = (V,E) be a directed graph; we can assume that
there are no self-loops in G, as otherwise girth is 1 and we can
detect this with local computation. Let B(i) be a Boolean
matrix defined as

B(i)
uv =

{
1 if there is a path from u to v of length ≤ i,
0 otherwise.

Clearly, we have that B(1) = A. Moreover, if i = j + k, we
have

B(i) =
(
B(j)B(k)) ∨A , (2)

where the matrix product is over the Boolean semiring and
∨ denotes element-wise logical or.

Corollary 15. For directed graphs, the girth can be com-
puted in Õ(nρ) rounds.

Proof. It suffices to find the smallest ` such that there
is v ∈ V with B

(`)
vv = 1; clearly ` is then the girth of graph

G. We first compute B(1) = A,B(2), B(4), B(8), . . . using (2)

with j = k = i/2 until we find i such that B
(i)
vv = 1 for some



v ∈ V . We then know that the girth is between i and i/2; we
can perform binary search on this interval to find the girth,
using (2) to evaluate the intermediate matrices. This requires
O(logn) calls to the matrix multiplication algorithm.

3.4 All-pairs Shortest Paths from Matrix
Multiplication

Matrix multiplication can be used to compute the shortest
path distances via iterated squaring of the weight matrix W
– entry Wuv is the weight of the edge (u, v) or ∞ if the edge
does not exist – over the min-plus semiring [28, 33, 57]. That
is, the matrix product is the distance product, also known as
the min-plus product or tropical product, defined as

(S ? T )uv = min
w

(
Suw + Twv

)
.

Given a graph G = (V,E) with weight matrix W , the nth

distance product power Wn gives the actual distances in G
as d(v, u) = Wn

vu. Computing Wn can be done with dlog ne
distance products by iteratively squaring W , that is, we
compute W 2i = W i ? W i, for values of i that are powers of
2. Using this basic idea, we can compute all-pairs shortest
path distances in various settings:

– For general weights, we compute the distance product
using semiring matrix multiplication (Corollary 7).

– For unweighted and undirected graphs, we use a slightly
different recursive technique of Seidel [66], which allows
deducing distances in G based on those of the square
graph G2 (Corollary 8).

– If the weights are bounded by a small integer M , we
can compute the distance product in O(Mnρ) rounds
by embedding the min-plus semiring into a suitable
ring (Corollary 9).

– For approximate APSP, we adapt a lemma of Zwick [76]
to show that we can compute a (1 + δ)-approximate
distance product in O(nρ/δ) rounds for any δ > 0
(Corollary 10).

These algorithms can also be extended to compute full short-
est path information by modifying the distance product
algorithms so that they provide witnesses; an index w is a
witness for uv if (S ?T )uv = Suw+Twv. The semiring matrix
multiplication can be directly modified to provide witnesses,
and for distance product algorithms based on fast matrix
multiplication known techniques from the centralised setting
can be applied [4, 66, 76]

For more details on the APSP algorithms, see the full
version of this paper [18].

4. LOWER BOUNDS

Lower bounds for matrix multiplication implementa-
tions. While proving unconditional lower bounds for matrix
multiplication in the congested clique model seems to be
beyond the reach of current techniques, as discussed in Sec-
tion 1.5, it can be shown that the results given in Theorem 1
are essentially optimal distributed implementations of the
corresponding centralised algorithms. To be more formal, let
C be an arithmetic circuit for matrix multiplication; we say
that an implementation of C in the congested clique model
is a mapping of the gates of C to the nodes of the congested
clique. This naturally defines a congested clique algorithm

for matrix multiplication, with communication cost given by
the wires in C between gates assigned to different nodes.

Various authors, considering different parallel models, have
shown that in any implementation of the trivial Θ(n3) ma-
trix multiplication on a parallel machine with P processors
there is at least one processor that has to send or receive
Ω(n2/P 2/3) matrix entries [2, 42, 70]. As these models can
simulate the congested clique, a similar lower bound holds for
congested clique implementations of the trivial O(n3) matrix
multiplication. In the congested clique, each processor sends
and receives Θ̃(n) messages per round and P = n, yielding a

lower bound of Ω̃(n1/3) rounds.
The trivial Θ(n3) algorithm is optimal for circuits using

only semiring addition and multiplication. The task of n× n
matrix multiplication over the min-plus semiring can be
reduced to APSP with a constant blowup [3, pp. 202–205],
hence the above bound applies also to any APSP algorithm
that only uses minimum and addition operations. Thus,
current techniques for similar problems, like the one used
in the fast MST algorithm of Lotker et al. [52], cannot be
extended to solve APSP.

Corollary 16. Any implementation of the trivial Θ(n3)
matrix multiplication and any APSP algorithm which only
sums weights and takes the minimum of such sums require
Ω̃(n1/3) communication rounds in the congested clique model.

However, known results on centralised APSP and distance
product computation give reasons to suspect that this bound
can be broken if we allow subtraction; in particular, translat-
ing the recent result of Williams [74] might allow for running

time of order n1/3/2Ω(
√

logn) for APSP in the congested
clique.

Concerning fast matrix multiplication algorithms, Ballard
et al. [8] have proven lower bounds for parallel implementa-
tions of Strassen-like algorithms. Their seminal work is based
on building a DAG representing the linear combinations of
the inputs before the block multiplications, and the linear
combinations of the results of the multiplications (“decoding”)
as the output matrix. The parallel computation induces an
assignment of the graph vertices to the processes, and the
edges crossing the partition represent the communication.
Using an expansion argument, Ballard et al. show that in
any partition a graph representing an Ω(nσ) algorithm there

is a process communicating Ω(n2−2/σ) values. See also [9]
for a concise account of the technique.

The lower bound holds for Strassen’s algorithm, and for
a family of similar algorithms, but not for any matrix mul-
tiplication algorithm [8, §5.1.1]. A matrix multiplication
algorithm is said to be Strassen-like if it is recursive, its de-
coding graph discussed above is connected, and it computes
no scalar multiplication twice. As each process communicates
at most O(n) values in a round, the implementation of an

Ω(nσ) strassen-like algorithm must take Ω(n1−2/σ) rounds.

Corollary 17. Any implementation of a Strassen-like
matrix multiplication algorithm using Ω(nσ) element multi-

plications requires Ω̃(n1−2/σ) communication rounds in the
congested clique model.

Lower bound for broadcast congested clique. Recall that
the broadcast congested clique is a version of the congested



clique model with the additional constraint that all n − 1
messages sent by a node in a round must be identical.

Holzer and Pinsker [39] show that computing any approx-
imation better than factor 2 to all-pairs shortest paths in
weighted graphs takes Ω̃(n) rounds in the congested clique.
As discussed in Section 3.4, õ(n)-round matrix multiplica-
tion algorithms imply õ(n)-round algorithms for (1 + o(1))-
approximate weighted APSP.

Corollary 18. In the broadcast congested clique model,
matrix multiplication over the Boolean semiring and APSP
algorithms require Ω̃(n) communication rounds.

We remark that the restriction “over the Boolean semiring”
refers to the issue that, in principle, it is possible that ma-
trix multiplication exponents may be different for different
underlying semirings. However, at the very least the lower
bound also applies to matrix multiplication over integers and
rationals, as well as the min-plus semiring, as in all cases
a Boolean matrix multiplication algorithm trivially follows.
We stress that this bound holds without any assumptions on
the algorithm itself.

5. CONCLUSIONS
In this work, we demonstrate that algebraic methods –

especially fast matrix multiplication – can be used to design
efficient algorithms in the congested clique model, resulting
in solutions that outperform all previous combinatorial al-
gorithms. Moreover, we have certainly not exhausted the
known centralised literature of algorithms based on matrix
multiplication, so similar techniques should also give im-
provements for other problems. It remains open whether
corresponding unconditional lower bounds exist; however,
suspicion grows that these would imply strong lower bounds
for centralised algorithms, and will thus be highly challenging
to prove.

While the present work focuses on a fully connected com-
munication topology (clique), we expect that the same tech-
niques can be applied more generally in the usual CONGEST
model. For example, fast triangle detection in the CONGEST
model is trivial in those areas of the network that are sparse.
Only dense areas of the network are non-trivial, and in those
areas we may have enough overall bandwidth for fast matrix
multiplication algorithms. On the other hand, there are
non-trivial lower bounds for distance computation problems
in the CONGEST model [24], though significant gaps still
remain [58].
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