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Abstract

In their seminal paper from 2004, Kuhn, Moscibroda,
and Wattenhofer (KMW) proved a hardness result
for several fundamental graph problems in the LO-
CAL model: For any (randomized) algorithm, there
are graphs with n nodes and maximum degree ∆ on
which Ω(min{

√
log n/ log log n, log ∆/ log log ∆}) (ex-

pected) communication rounds are required to obtain
polylogarithmic approximations to a minimum vertex
cover, minimum dominating set, or maximum matching.
Via reduction, this hardness extends to symmetry bre-
aking tasks like finding maximal independent sets or
maximal matchings.

Today, more than 15 years later, there is still no
proof of this result that is easy on the reader. Setting
out to change this, in this work, we provide a simplified
proof of the main step in showing the KMW lower
bound. Our key argument is algorithmic, and it relies
on an invariant that can be readily verified from the
generation rules of the lower bound graphs.

1 Introduction and Related Work

A key property governing the complexity of distribu-
ted graph problems is their locality : the distance up to
which the nodes running a distributed algorithm need to
explore the graph to determine their local output. Un-
der the assumption that nodes have unique identifiers,
the locality of any task is at most D, the diameter of the
graph. However, many problems of interest have locality
o(D), and understanding the locality of such problems
in the LOCAL model of computation has been a main
objective of the distributed computing community since
the inception of the field.

A milestone in these efforts is the 2004 article by
Kuhn, Moscibroda, and Wattenhofer, proving a lower
bound of Ω(min{

√
log n/ log log n, log ∆/ log log ∆}) on

the locality of several fundamental graph problems [23],
where n is the number of nodes and ∆ is the maximum
degree of the input graph. The bound holds under both
randomization and approximation, and it is the first
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result of this generality beyond the classic Ω(log∗ n)
bound on 3-coloring cycles [30].

1.1 A Brief Recap of the KMW Lower Bound
In a nutshell, in [26], the authors reason as follows.

1. Define Cluster Tree (CT) graph family.
This graph family is designed such that in high-girth CT
graphs, the k-hop neighborhoods of many nodes that are
not part of a solution to, e.g., the minimum vertex cover
problem, are isomorphic to the k-hop neighborhoods of
nodes that are part of a solution.

2. Prove that high-girth CT graphs have
isomorphic node views. If a CT graph Gk has
girth at least 2k + 1, the isomorphisms mentioned in
Step 1 exist. This implies that a distributed algorithm
running for k rounds, which needs to determine the
output at nodes based on their k-hop neighborhood,
cannot distinguish between such nodes based on the
graph topology.

3. Show existence of high-girth CT graphs.
For each k ∈ N, there exists a CT graph Gk with girth
at least 2k + 1 that has sufficiently few nodes and low
maximum degree.

4. Infer lower bounds. Under uniformly random
node identifiers,1 on a CT graph with girth at least
2k+1, a k-round distributed algorithm cannot achieve a
small expected approximation ratio for minimum vertex
cover, maximum matching, or minimum dominating
set, and it cannot find a maximal independent set or
maximal matching with a small probability of failure.

The core of the technical argument lies in Step 2.
A bird’s-eye view of the reasoning for each of the steps
is as follows.

1. Define Cluster Tree (CT) graph family. We
want to have a large independent set of nodes—referred
to as cluster C0—which contains most of the nodes in
the graph. The k-hop neighborhoods of these nodes
should be isomorphic not only to each other but also to

1In the LOCAL model, nodes have unique identifiers. Without

these, even basic tasks like computing the size of the graph are
impossible.
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Figure 1: Representations of CT1, which is parametrized by β, shaded by cluster size (darker means smaller).
Cluster shapes indicate cluster position (internal or leaf ). Edge label i is short for βi, the number of neighbors
that nodes in one cluster have in another. For example, nodes in cluster C0 have β0 neighbors in cluster C1, and
nodes in cluster C1 have β1 neighbors in cluster C0.

the k-hop neighborhoods of nodes in a smaller cluster
C1. Each node in C0 should have one neighbor in C1,
and the edges between the nodes from both clusters
should form a biregular graph. In this situation, a k-
round distributed algorithm computing, e.g., a vertex
cover, cannot distinguish between the endpoints of edges
connecting C0 and C1 based on the graph topology.
This is all we need for Step 4 to succeed.

However, choosing the ratio β := |C0|/|C1| larger
than 1 entails that nodes in C1 have more neighbors
in C0 than vice versa. To maintain the indistinguis-
hability of nodes in C0 and C1 for a k-round distribu-
ted algorithm, we add clusters C2 and C3 providing the
“right” number of additional neighbors to C0 and C1,
respectively, which are by a factor of β smaller than
their neighboring cluster to keep the overall number of
non-C0 nodes small. Now the nodes in C0 and C1 have
the same number of neighbors, which implies that one
round of communication is insufficient to distinguish be-
tween them.2 See Figure 1 (p. 2) for an illustration of
the resulting structure, CT1.

Unfortunately, looking up to distance two will now
reveal the difference in degrees of neighbors: “Hiding”
the asymmetry between C0 and C1 by adding C2 and
C3 enforces a similar asymmetry between C2 and C3.
This is overcome by inductively “growing” a skeleton
tree structure on clusters, which encodes the topological

2This only applies if nodes do not know the identities of their

neighbors initially, known as KT0 (initial knowledge of topology
up to distance 0). It is common to assume KT1, i.e., nodes
do know the identifiers of their neighbors at the start of the

algorithm. However, this weakens the lower bound by one round
only, not affecting the asymptotics.

requirements for moving the asymmetry in degrees
further and further away from C0 and C1.

Because in a graph of girth at least 2k + 1, the k-
hop neighborhoods of all nodes are trees, the symmetry
in degrees thus established is sufficient to result in
isomorphic k-hop neighborhoods between nodes in C0

and C1. The growth rules of the skeleton tree are chosen
to meet the topological requirements, while increasing
degrees and the total number of nodes as little as
possible.

2. Prove that high-girth CT graphs have iso-
morphic node views. Using that k-hop neighbor-
hoods of high-girth CT graphs are trees, the task of
showing that v ∈ C0 and w ∈ C1 have isomorphic k-hop
neighborhoods boils down to finding a degree-preserving
bijection between these neighborhoods that maps v to
w. At first glance, this seems straightforward: By con-
struction, nodes in inner clusters of the skeleton tree
have degrees of β0, β1, . . . , βk towards their k + 1 ad-
jacent clusters, and for each leaf cluster that lies at
distance d ≤ k from C(v) and has a degree of βx to-
wards its parent cluster, we can find a leaf cluster with
the same degree towards its parent cluster at distance
d from C(w). Hence, mapping a node v′′ with parent
v′ to a node w′′ with parent w′ if (1) the clusters C(v′)
and C(w′) lie at the same distance d′ < k from C(v)
resp. C(w) and (2) C(v′) and C(w′) have the same out-
degree towards C(v′′) resp. C(w′′) seems to be a promi-
sing approach for finding the desired bijection.

However, when rooting the k-hop neighborhood of
v ∈ C0 (w ∈ C1) at v (w) and constructing the iso-
morphism by recursing on subtrees, for each processed
node, the image of its parent under the isomorphism has
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already been determined. The asymmetry discussed in
Step 1 also shows up here: Some children of v ∈ C0

and w ∈ C1 that are mapped to each other will have
different degrees towards their parents’ clusters. This
results in a mismatch for one pair of their neighbors
when processing a node according to the proposed stra-
tegy.

Nonetheless, it turns out that mapping such “mis-
matched” nodes to each other results in the desired
bijection. Proving this is, by a margin, the techni-
cally most challenging step in obtaining the KMW lower
bound.

3. Show existence of high-girth CT graphs.
In order to show that sufficiently small and low-degree
CT graphs Gk of girth 2k+1 exist, Kuhn et al. make use
of graph lifts.3 GraphH is a lift of graphG if there exists
a covering map from H to G, i.e., a surjective graph
homomorphism that is bijective when restricted to the
neighborhood of each node of H. These requirements
are stringent enough to ensure that a lift of a CT graph
Gk (i) is again a CT graph, (ii) has at least the same
girth, and (iii) has the same maximum degree. On the
other hand, they are lax enough to allow for increasing
the girth.4 This is exploited by a combination of several
known results as follows.

(a) Construct a low-girth CT graph Gk by connecting
nodes in clusters that are adjacent in the skeleton
tree using the edges of disjoint complete bipartite
graphs whose dimensions are prescribed by the
edge labels of the skeleton tree.5 Choose the
smallest such Gk.

(b) Embed Gk into a marginally larger regular graph,
whose degree is the maximum degree of Gk (this is
a folklore result).

(c) There exist ∆-regular graphs of girth g and fewer
than ∆g nodes [15].

(d) For any two ∆-regular graphs of n1 and n2 nodes,
there is a common lift with O(n1n2) nodes [1].

3In the original paper [23], they instead use subgraphs of a
high-girth family of graphs D(r, q) given in [28]. Utilizing lifts as

outlined here was proposed by Mika Göös and greatly simplifies

a self-contained presentation.
4For instance, the cycle C3t on 3t nodes is a lift of C3, where

the covering map sends the ith node of C3t to the (i mod 3)th

node of C3. Any graph G has an acyclic lift that is an infinite

tree T , by adding a new “copy” of node v ∈ V (G) to T for each
walk leading to v (when starting from an arbitrary fixed node of
G whose first copy is the root of T ). The challenge lies in finding
small lifts of high girth.

5E.g., the nodes in clusters C0 and C1, which themselves are

connected by an edge with labels (β0, β1) (cf. Figure 1, p. 2), are
connected using the edges of |C0|/β1 copies of Kβ0,β1 .

Apply this to the above two graphs to obtain a
high-girth lift of a supergraph of Gk.

(e) Restrict the covering map of this lift to the prei-
mage of Gk to obtain a high-girth lift of Gk, which
itself is a CT graph.

Doing the bookkeeping yields size and degree bounds
for the obtained CT graph as a function of k.

4. Infer lower bounds. With the first three steps
complete, the lower bound on the number of rounds
for minimum vertex cover approximations follows by
showing that the inability to distinguish nodes in C0

and C1 forces the algorithm to choose a large fraction
of nodes from C0, while a much smaller vertex cover
exists. The former holds because under a uniformly
random labeling, nodes in C0 and C1 are equally likely
to be selected, while each edge needs to be covered
with probability 1. Thus, at least |C0|/2 nodes are
selected in expectation. At the same time, the CT
graph construction ensures that C0 contributes the vast
majority of the nodes. Hence, choosing all nodes but
the independent set C0 results in a vertex cover much
smaller than |C0|/2. The lower bounds for other tasks
follow by similar arguments and reductions.6

1.2 Our Contribution Despite its significance,
apart from an early extension to maximum matching
by the same authors [24], the KMW lower bound has
not inspired follow-up results. We believe that one rea-
son for this is that the result is not as well-understood
as the construction by Linial [30], which inspired many
extensions [2, 8, 9, 14, 20, 21, 29, 31] and alternative
proofs [27, 36]. History itself appears to drive this point
home: In a 2010 arXiv article [25], an improvement to
Ω(min{

√
log n, log ∆}) was claimed, which was refuted

in 2016 by Bar-Yehuda et al. [7]. 2016 was also the year
when finally a journal article covering the lower bound
was published [26]—over a decade after the initial con-
struction! In the journal article, the technical core of the
proof spans six pages, involves convoluted notation, and
its presentation suffers from a number of minor errors
impeding the reader.7

6For example, as any maximal matching yields a 2-approxi-
mation to a minimum vertex cover, the minimum vertex cover
lower bound extends to maximal matching.

7The refutation of the improved lower bound in [7] came to the
attention of the authors of [26] after the article had been accepted

by J. ACM with the incorrect result; the authors were forced to
revise the article on short notice before publication, leading to the
corrected material receiving no review [22]. Taking into account

the complexity of the proof in [26], despite minor flaws, we feel
that the authors did a commendable job.
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Symbol Definition Meaning

[k] := {i ∈ N | i ≤ k} Set of positive integers not larger than k

[k]0 := {i ∈ N0 | i ≤ k} Set of nonnegative integers not larger than k

G := (V (G), E(G)) Graph with node set V (G) and edge set E(G)

G[S] := (S, {{v, w} ∈ E(G) | v, w ∈ S} Subgraph of G induced by S ⊆ V (G)

ΓG(v) := {w ∈ V (G) | {v, w} ∈ E(G)} Neighborhood of v in G (non-inclusive)

ΓkG(v) := {w ∈ V (G) | dG(v, w) ≤ k} k-hop neighborhood of v in G (inclusive)

Gk(v) := G[Γk(v)] \ {{w, u} ∈ E(G)
| dG(v, w) = dG(v, u) = k}

k-hop subgraph of a node v in G

∃pG(u,w, k) := ∃({u, v1}, {v1, v2}, . . . , {vk−1, w})
∈ E(G)k

Existence of k-hop path from u to w in G

dG(u,w) := min{k | ∃pG(u,w, k)} Distance between node u and node w in G

gG := inf{k > 0 | ∃v ∈ V (G), pG(v, v, k)} Girth of G (length of its shortest cycle)

Table 1: General notation used in this work (subscript or parenthesized G may be omitted when clear from
context).

A constructive proof of the key graph isomor-
phism. In this work, we present a novel proof for
Step 2 of the KMW bound. That is, we revise the heart
of the argument, which shows that nodes in C0 and C1

have indistinguishable k-hop neighborhoods. The proof
in [26] uses an inductive argument that is based on a
number of notation-heavy derivation rules to describe
the k-hop neighborhoods of nodes in C0 and C1 and
map subtrees of these neighborhoods onto each other.
The proofs of the derivation rules, which together ena-
ble the inductive argument, rely crucially on notation
and verbal description.

In contrast, our proof is based on a simple algo-
rithmic invariant. We give an algorithm that constructs
the graph isomorphism between the nodes’ neighbor-
hoods in the natural way suggested by the CT graph
construction. The key observation is that one succinct
invariant is sufficient to overcome the main obstacle, na-
mely the “mismatched” nodes that are mapped to each
other by the constructed isomorphism. This not only
substantially simplifies the core of the proof, it also has
explanatory power: In the proof from [26], the under-
lying intuition is buried under heavy notation and nu-
merous indices.

Simplified notation and improved visualization.
Capitalizing on the new proof of the key graph isomor-
phism, as a secondary contribution, we clean up and
simplify notation also outside of the indistinguishability
argument. We complement this effort with improved
visualizations of the utilized graph structures. Overall,
we expect these modifications to make the lower bound
proof much more accessible, and we hope to provide a
solid foundation for work extending the KMW result.

1.3 Further Related Work The KMW bound ap-
plies to fundamental graph problems that are locally

checkable in the sense of Naor and Stockmeyer [31]. Bal-
liu et al. give an overview of the known time complex-
ity classes for such problems [3–5], extending a number
of prior works [10–12, 16–19, 34], and Suomela surveys
the state of the art attainable via constant-time algo-
rithms [35]. Bar-Yehuda et al. provide algorithms that
compute (2 + ε)-approximations to minimum (weigh-
ted) vertex cover and maximum (weighted) matching
in O(log ∆/ε log log ∆) and O(log ∆/ log log ∆) deter-
ministic rounds, respectively [6, 7], demonstrating that
the KMW bound is tight when parametrized by ∆ even
for constant approximation ratios. For symmetry brea-
king tasks, the classic algorithm by Panconesi and Rizzi
[32] to compute maximal matchings and maximal inde-
pendent sets in O(log∗ n+ ∆) deterministic rounds has
recently been shown to be optimal for a wide range of
parameters [2].

1.4 Organization of this Article Since our main
contribution is a novel proof establishing the indistin-
guishability of k-hop neighborhoods of nodes in C0 and
C1, we confine the remainder of the exposition to this to-
pic; readers interested in a complete and self-contained
presentation are invited to an extended version of this
article on arXiv [13].

After introducing basic graph theoretical concepts
and notation in Section 2, we define the lower bound
graphs in Section 3.1. This sets the stage for our main
contribution: In Section 3.2, we prove the indistinguis-
hability of the k-hop neighborhoods of nodes in the clus-
ters C0 and C1 under the assumption of high girth.

2 Preliminaries

The basic graph theoretic notation used in this work is
summarized in Table 1 (p. 4); all our graphs are finite
and simple.
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We operate in the LOCAL model of computation,
our presentation of which follows Peleg [33]. The LO-
CAL model is a stylized model of network communi-
cation designed to capture the locality of distributed
computing. In this model, a communication network is
abstracted as a simple graph G = (V,E), with nodes
representing network devices and edges representing bi-
directional communication links. To eliminate all com-
putability restrictions that are not related to locality,
the model makes the following assumptions:

– Network devices have unique identifiers and unli-
mited computation power.

– Communication links have infinite capacity.
– Computation and communication takes place in

synchronous rounds.
– All network devices start computing and commu-

nicating at the same time.
– There are no faults.

In each round, a node can

1. perform an internal computation based on its cur-
rently available information,

2. send messages to its neighbors,
3. receive all messages sent by its neighbors, and
4. potentially terminate with some local output.

A k-round distributed algorithm in the LOCAL
model can be interpreted as a function from k-hop
subgraphs to local outputs:

Definition 2.1. (k-round distributed algo-
rithm) A k-round distributed algorithm A is a
function mapping k-hop subgraphs Gk(v), labeled by
unique node identifiers (and potentially some local
input), to local outputs. For a randomized algorithm,
nodes are also labeled by (sufficiently long) strings of
independent, unbiased random bits.

We assume that at the start of the algorithm, nodes
do not know their incident edges. Assuming that nodes
do know these edges in the beginning weakens the lower
bound by one round only, not affecting the asymptotics.

The key concept used to show that a graph problem
is difficult to solve (exactly or approximately) for a k-
round distributed algorithm in the LOCAL model is the
k-hop indistinguishability of nodes’ neighborhoods.8

8LOCAL algorithms may also make use of nodes’ local inputs

and identifiers. However, so far, the KMW construction has been
applied to tasks without additional inputs only. For such tasks,
assigning node identifiers uniformly at random translates the

stated purely topological notion of indistinguishability to identical
distributions of k-hop subgraphs labeled by identifiers.

Definition 2.2. (k-hop indistinguishability in G)
Two nodes v and w in G are indistinguishable to a k-
round distributed algorithm ( k-hop indistinguishable) if
and only if there exists an isomorphism φ : V (Gk(v))→
V (Gk(w)) with φ(v) = w.

Accordingly, our goal in Section 3.2 will be to establish
that the nodes in C0 and C1 are k-hop indistinguisha-
ble.

3 Cluster Trees

Cluster Trees (CTs) are the main concept in the deri-
vation of the KMW bound. For k ∈ N, the Cluster Tree
skeleton CTk describes sufficient constraints on the to-
pology of graphs Gk (beyond high girth, which ensures
that the k-hop neighborhoods of all nodes are trees) to
enable the indistinguishability proof in Section 3.2.

Definition 3.1. (Cluster Trees) For k ∈ N, a
cluster tree skeleton ( CT skeleton) is a tree CTk =
(Ck,Ak), rooted at C0 ∈ Ck, which describes constraints
imposed on a corresponding CT graph Gk.

– For each cluster9 C ∈ Ck, there is a corresponding
independent set in Gk.

– An edge connecting clusters C and C ′ in CTk is
labeled with {(C, x), (C ′, y)} for x, y ∈ N. This
expresses the constraint that in Gk, C and C ′ must
be connected as a biregular bipartite graph, where
each node in C has x neighbors in C ′ and each node
in C ′ has y neighbors in C. We say that C (C ′) is
connected to C ′ (C) via outgoing label x (y).

– Gk contains no further nodes or edges.

Note that CTk imposes many constraints on Gk. Choo-
sing the size of C0 determines the number of nodes and
edges in Gk, and node degrees are fully determined by
CTk as well. However, there is substantial freedom re-
garding how to realize the connections between adjacent
clusters. As mentioned earlier, this permits leveraging
graph lifts to obtain cluster tree graphs Gk of high girth
in Step 3 of the KMW construction.

3.1 Construction of Cluster Tree Skeletons De-
finition 3.1 (p. 5) does not detail the structure of CTk.
To specify this structure, we use the following termino-
logy.

Definition 3.2. (Cluster position, level, and
parent) A leaf cluster C in CTk has position leaf, while
internal clusters have position internal. The level of C

9“Cluster” here is used in the sense of “associated set of nodes,”

referring to its role in Gk. We use the term to refer to both nodes
in CTk and the corresponding independent sets in Gk.
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is its distance to C0. The parent cluster of C 6= C0 is
its parent in CTk.

Given β ≥ 2(k + 1), the structure of CTk is now
defined inductively. The base case of the construction
is CT1.

Definition 3.3. (Base case CT1) CT1 = (C1,A1),
where C1 := {C0, C1, C2, C3} and

A1 :={{(C0, β
0), (C1, β

1)}, {(C0, β
1), (C2, β

2)},
{(C1, β

0), (C3, β
1)}}.

Based on CTk−1, for k ≥ 2, CTk is grown as follows.

Definition 3.4. (Growth rules for CTk given
CTk−1)

1. To each internal cluster C in CTk−1, at-
tach a new neighboring cluster C ′ via an edge
{(C, βk), (C ′, βk+1)}.

2. To each leaf cluster C in CTk−1 that is connected to
its parent cluster via outgoing label βq, add a total
of k neighboring clusters: one cluster C ′ with an
edge {(C, βp), (C ′, βp+1)} for each p ∈ [k]0 \ {q}.

Note that with this definition, CTk is a regular tree
but a CT graph Gk is not regular. Figure 1 (p. 2)
shows CT1 in its hierarchical and flat representations,
and flat representations of CT2 and CT3 are given in
Figure 2 (p. 7) to illustrate the growth process.10 In
all figures, we write i for outgoing label βi to reduce
visual clutter, and in the flat representations, outgoing
labels are depicted like port numbers, i.e., the edge label
corresponding to C is depicted next to C.

3.2 Indistinguishability given High Girth As
observed by Kuhn et al. [23, 26], showing k-hop indis-
tinguishability becomes easier when the nodes’ k-hop
subgraphs are trees, i.e., the girth is at least 2k+1. No-
tably, in a CT graph Gk with g ≥ 2k+1, the topology of
a node’s k-hop subgraph is determined entirely by the
structure of the skeleton CTk. Hence, we will be able
to establish the following theorem without knowing the
details of Gk.

Theorem 3.1. (k-hop indistinguishability of no-
des in C0 and C1) Let Gk be a CT graph of girth
g ≥ 2k + 1. Then any v0 ∈ C0 and v1 ∈ C1 are k-hop
indistinguishable.

10The labels of the edges connecting leaf clusters in CT3 to
the rest of CT3 are omitted in the drawing. They are such that
every internal cluster has outgoing labels {βi | i ∈ [3]0}, and if a

leaf cluster C is connected to an internal cluster C′ with label βi

outgoing from C′, then C has outgoing label βi+1.

By Definition 2.2 (p. 5), v0 ∈ C0 and v1 ∈ C1

are k-hop indistinguishable if and only if there exists
an isomorphism φ : V (Gkk(v0)) → V (Gkk(v1)) with
φ(v0) = v1. We prove the theorem constructively by
showing the correctness of Algorithm 1 (p. 8), which
purports to find such an isomorphism.

Algorithm 1 (p. 8) implements a coupled depth-first
search on the k-hop subgraphs of v0 ∈ C0 and v1 ∈ C1.
Its main function, FindIsomorphism(Gk, k, v0, v1), re-
ceives a CT graph Gk with high girth, along with the
parameter k, and one node from each of C0 and C1

as input, and it outputs the φ we are looking for. To
obtain φ, FindIsomorphism maps v0 to v1 and then
calls the function Walk(v0, v1, ⊥, k) before it returns
φ. The Walk function extends φ by mapping the newly
discovered nodes in the neighborhoods of its first two
input parameters (v and w := φ(v), initially: v0 and
v1) to each other with the help of the function Map.
The third parameter of Walk (prev, initially: ⊥) en-
sures that we only define φ for newly discovered nodes,
while the fourth parameter (depth, initially: k) controls
termination when Walk calls itself recursively on the
newly discovered neighbors (and the newly discovered
neighbors of these neighbors, and so on) until the entire
k-hop subgraph of v0 has been visited.

The tricky part now is to ascertain that the inter-
play between the functions Walk and Map makes φ a
bijection from V (Gkk(v0)) to V (Gkk(v1)), i.e., nodes that
are paired up always have the same degree. Here, the re-
presentation of node neighborhoods used by the Walk
function is key, which is based on the insight that the
set of nodes neighboring v (resp. w) can be partitioned
by the outgoing labels in CTk through which neighbo-
ring nodes are discovered from v (w). Since these labels
lie in {βi | i ∈ [k + 1]0}, Walk represents the neig-
hborhood of v (w) as a list Nv (Nw) of k + 2 (possibly
empty) lists (Algorithm 1, l. 9–13, p. 8). The list at
index i holds all previously undiscovered nodes (we re-
quire v′ 6= prev and w′ 6= φ(prev)) connected to v (w)
via v’s (w’s) outgoing label βi, in arbitrary order.

The Walk function passes Nv and Nw to the
function Map (Algorithm 1, l. 14, p. 8), which sets
φ(Nv[i][j]) := Nw[i][j] where possible (Algorithm 1,
l. 19–21, p. 8). It then treats the special case that some
nodes in Nv and Nw remain unmatched (Algorithm 1,
l. 22–25, p. 8). By construction, without this special
case, the φ returned by FindIsomorphism is already
an isomorphism between the subgraphs of Gkk(v0) and
Gkk(v1) induced by the nodes of the domain for which φ
is defined (and their images under φ). However, we still
need to show that our special case suffices to extend this
restricted isomorphism to a full isomorphism between
Gkk(v0) and Gkk(v1). To facilitate our reasoning, we
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Figure 2: Representations of CT2 and CT3, colored by cluster types; grey: internal, black: first growth rule,
green: second growth rule.

introduce cluster identities:

Definition 3.5. (Cluster identity C(v)) Given a
node v in a CT graph Gk, we refer to its cluster in CTk
as its cluster identity, denoted as C(v). For example,
for v0 ∈ C0 and v1 ∈ C1, we have C(v0) = C0,
C(v1) = C1, and C(v0) 6= C(v1).

Our argument will crucially rely on the concepts of
node position and node history :

Definition 3.6. (Node position) For i ∈ {0, 1}, the
position of a node v in Gkk(vi) is the position of its
cluster C(v) in the CT skeleton ( internal or leaf).

Definition 3.7. (Node history) For i ∈ {0, 1}, the
history of a node v 6= vi in Gkk(vi) is the outgoing label
of the edge connecting C(v) to C(prev), i.e., βx if the
corresponding edge is {(C(v), βx), (C(prev), βx

′
)}.

We begin with a simple observation:

Lemma 3.1. (Variables determining node neig-
hborhoods) For v in Gkk(v0) \ {v0}, let w := φ(v).
When Map is called with parameters Nv and Nw (Al-
gorithm 1 l. 14, p. 8), the numbers of nodes in Nv[i]
and Nw[i] for i ∈ [k + 1]0 are uniquely determined the
position and the history of v and w. If v and w agree
on position and history, len(Nv[i]) = len(Nw[i]) for
all i ∈ [k + 1]0. If v and w agree on position internal
but disagree on history, where v has history βx and w

has history βy, we have len(Nv[i]) = len(Nw[i]) for all
i ∈ [k + 1]0 \ {x, y}, len(Nv[x]) = len(Nw[x]) − 1, and
len(Nv[y])− 1 = len(Nw[y]).

Proof. If u ∈ {v, w} has position internal, we know
that C(u) has outgoing labels {βi | i ∈ [k]0} by the
construction of the CT skeleton. Denoting by z ∈ {x, y}
the exponent of u’s history, we have that there are βi

nodes in Nu[i] for i ∈ [k]0 \ {z}, βz − 1 nodes in Nu[z]
(as prev or φ(prev) are removed, respectively), and zero
nodes in Nu[k + 1].

If u ∈ {v, w} has position leaf, all nodes in Nu
belong to the same cluster C ′, u has βz neighbors in
this cluster, and prev (resp. φ(prev)) lies in this cluster
as well. Hence, len(Nu[z]) = βz − 1 and len(Nu[i]) = 0
for all i ∈ [k + 1]0 \ {z}.

From these observations, the claims of the lemma
follow immediately.

Using Lemma 3.1 (p. 7), we can rephrase the task
of proving Theorem 3.1 (p. 6) as a simple condition on
the pairs of nodes on which Walk is called recursively.

Corollary 3.1. (Sufficient condition for cor-
rectness of Algorithm 1) Given a CT graph Gk
with girth at least 2k+ 1, if all pairs of nodes created by
Map on which Walk is called recursively (i) agree on
position and history or (ii) agree on position internal,
Algorithm 1 (p. 8) produces an isomorphism between
Gkk(v0) and Gkk(v1).
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Algorithm 1: Find an isomorphism
φ : V (Gkk(v0))→ V (Gkk(v1))

1 Function FindIsomorphism(Gk, k, v0, v1):
Input: A CT graph Gk with g ≥ 2k + 1,

k ∈ N, v0 ∈ C0, v1 ∈ C1

Output: Isomorphism
φ : V (Gkk(v0))→ V (Gkk(v1))

2 φ← empty map
3 φ(v0)← v1
4 Walk(v0, v1, ⊥, k)
5 return φ

6 Function Walk(v, w, prev, depth):
7 if depth = 0 then
8 return

9 Nv ← empty list of length k + 2
10 Nw ← empty list of length k + 2
11 for i← 0 to k + 1 do

// if edge βi does not exist,

Nv[i] (resp. Nw[i]) is empty

12 Nv[i]← list of new nodes v′ 6= prev
found using edge βi from v

13 Nw[i]← list of new nodes w′ 6= φ(prev)
found using edge βi from w

14 Map(Nv, Nw)
15 for i← 0 to k + 1 do
16 for v′ in Nv[i] do
17 Walk(v′, φ(v′), v, depth− 1)

18 Function Map(Nv, Nw):
19 for i← 0 to k + 1 do

// zip(·, ·) yields element tuples

until the shorter list ends

20 for v′, w′ in zip(Nv[i], Nw[i]) do
21 φ(v′)← w′

// len(·) returns the length of a list

22 if ∃ i ∈ [k + 1]0 : len(Nv[i]) 6= len(Nw[i])
then
// we will prove that

len(Lv[i]) = len(Lw[i]) for

i ∈ [k + 1]0 \ {iv, iw}
23 iv ← i ∈ [k + 1]0 : len(Nv[i]) =

len(Nw[i]) + 1
24 iw ← i ∈ [k + 1]0 : len(Nv[i]) + 1 =

len(Nw[i])
// L[i][−1] retrieves the last

element from list i in L
25 φ(Nv[iv][−1])← Nw[iw][−1]

Proof. Due to the assumed high girth, Algorithm 1
(p. 8) produces an isomorphism between Gkk(v0) and
Gkk(v1) if φ

∣∣
Nv

(i.e., φ with its domain restricted to the

neighborhood of v) is a bijection from Nv to Nφ(v) for

all v in Gkk(v0) with d(v, v0) < k. For v0 and φ(v0) = v1,
this holds because they both have βi neighbors in the
clusters connected to them via outgoing edge label βi for
i ∈ [k]0, i.e., len(Nv[i]) = len(Nw[i]) for i ∈ [k]0 (and
len(Nv[k + 1]) = len(Nw[k + 1]) = 0). Hence, Map
ensures that φ(Nv) = Nw. For nodes v 6= v0 and w :=
φ(v) paired by Map that agree on position and history,
Lemma 3.1 (p. 7) shows that len(Nv[i]) = len(Nw[i])
for all i ∈ [k + 1]0, so again Map succeeds. The last
case is that v and w agree on position internal. In this
case, applying Lemma 3.1 (p. 7) and noting that Map
takes care of the resulting mismatch in list lengths in
Lines 22–25 proves that Map succeeds here, too.

The next step in our reasoning is to craft an al-
gorithmic invariant establishing the preconditions of
Corollary 3.1 (p. 7). Reflecting the inductive con-
struction of cluster trees, we will prove it inductively.
To this end, for i ∈ [k], we interpret CTi as a subgraph
of CTk by simply stripping away all clusters that were
added after constructing CTi.

Recall that Gkk(v0) and Gkk(v1) are trees, because
the girth of Gk is at least 2k + 1. Treating these trees
as rooted at v0 and v1, respectively, Algorithm 1 (p. 8)
maps nodes at depth d in Gkk(v0) to nodes at depth d in
Gkk(v1). Accordingly, the following notion will be useful.

Definition 3.8. (Node parent) For v ∈ Gkk(vi),
i ∈ {0, 1}, with d(vi, v) > 0, the parent of v in Gkk(vi),
denoted pi(v), is the node through which v is discovered
from vi in Algorithm 1 (p. 8).

We are now ready to state the main invariant of
Algorithm 1 (p. 8).

Definition 3.9. (Main Invariant of Algo-
rithm 1) For 0 < d < k, suppose that v and w := φ(v)
lie at distance d from v0 and v1, respectively. Then
exactly one of the following holds:

1. C(v), C(w) ∈ CTd, and v and w agree on history
or both have history ≤ βd+1.

2. There is some i with d < i ≤ k such that
C(v), C(w) ∈ CTi \ CTi−1, v and w agree on
history, and C(v) and C(w) are connected from
CTi−1 with outgoing labels (βj

′
, βj

′+1) for the same
j′ ∈ [i]0.

Intuitively, the first case tracks how asymmetry
propagates through the construction, and counts down
how many levels of the iterative construction remain
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that hide it: If there is a mismatch in history, it is
confined to CTd, i.e., not only C(v), C(w) ∈ CTd, but
also the history of v and w has labels corresponding to
CTd.

However, we need to take into account that at-
taching leaf clusters to internal clusters by the first
growth rule is needed, as otherwise “older” clusters
could be easily recognized without having to inspect
the far-away clusters added by the second growth rule.
These leaves then recursively sprout their own subtrees,
which again sprout their own subtrees, and so on. If the
recursive construction of the isomorphism visits such
clusters before reaching distance k from root C0 (resp.
C1), by design, it enters subtrees of CTk that started
to grow in the same iteration. Thus, these subtrees
are completely symmetric, and they are entered with
matching history. This is captured by the second case
of the invariant. The intuition of the invariant and its
interplay with Corollary 3.1 (p. 7) are illustrated in
Figure 3 (p. 10).

Recall that the growth rules only attach leaves,
and do so for each cluster. Hence, the clusters in
CTk−1 are exactly the internal clusters in CTk, while
CTk \ CTk−1 contains all leaves. Thus, in the first case
of the invariant, v and w agree on position internal,
and in the second case, they agree on position and
history. Therefore, Theorem 3.1 (p. 6) follows from
Corollary 3.1 (p. 7) once the invariant is established.

Having carved out the crucial properties of the
construction in this invariant, we can now complete the
proof of the theorem with much less effort than in [26].

Lemma 3.2. (Main invariant holds) Algorithm 1
(p. 8) satisfies the invariant stated in Definition 3.9
(p. 8).

Proof. We prove the claim for fixed k by induction
on d. For v and w := φ(v) at distance d = 1 from
v0 = p0(v) and v1 = p1(w), respectively, v and w are
matched in the initial call to Walk with v0 and v1 as
arguments. In this call, len(Nv0 [i]) = len(Nv1 [i]) for
all i ∈ [k + 1]0, i.e., only nodes corresponding to the
same outgoing labels get matched. Inspecting CT1 and
taking into account the CT growth rules, we see that
for i ∈ {0, 1}, the matched nodes lie in clusters that
are present already in CT1 and have outgoing labels of
at most β2 (i.e., the first case of the invariant holds),
while for i > 1 = d, both nodes lie in clusters from
CTi \ CTi−1 with outgoing labels of βi+1 and their
clusters are connected from CTi−1 with outgoing labels
(βi, βi+1) (i.e., the second case of the invariant holds).

For the inductive step, assume that the invariant
is established up to distance d for 1 ≤ d < k − 1, and

consider v, w := φ(v) at distance d+ 1 from v0 and v1,
respectively. We apply the invariant to v′ := p0(v) and
w′ := p1(w) and distinguish between its two cases.

(1) Suppose that C(v′), C(w′) ∈ CTd, and v′ and
w′ agree on history or both have history ≤ βd+1. As
d < k, we know that v′ and w′ agree on position inter-
nal. By Lemma 3.1 (p. 7), the call to Walk on v′ and
w′ thus satisfies that len(Nv′ [i]) = len(Nw′ [i]) for all
i ∈ [k+1]0 \{j, j′}, where βj , βj

′
for j, j′ ≤ d+1 are the

histories of v′ and w′, respectively. If C(v) ∈ CTd+1,
Lemma 3.1 (p. 7) entails that v ∈ Nv′ [i] for some
i ≤ d + 1, and Walk chooses w = φ(v) from Nw′ [i′]
for some i′ ≤ d+ 1. Due to the CT growth rules, since
C(v′), C(w′) ∈ CTd, the incident edges of C(v′) and
C(w′) with outgoing labels of at most βd+1 lead to
clusters in CTd+1, and the history of nodes discovered
by traversing these edges is at most βd+2. Hence, if
C(v) ∈ CTd+1, it follows that the first case of the
invariant holds for v and w. If C(v) /∈ CTd+1, we have
that C(v) ∈ CTi \ CTi−1 for some i > d + 1, yielding
len(Nv′ [i]) = len(Nw′ [i]), and thus, w ∈ Nw′ [i]. As
C(v′) and C(w′) are internal clusters in CTd+1, we can
conclude that both C(v) and C(w) have been added to
the cluster tree in the ith construction step using growth
rule 1. Hence, we get that C(v), C(w) ∈ CTi \ CTi−1
with v and w agreeing on history βi+1, and since
C(v′), C(w′) ∈ CTd ⊆ CTi−1, C(v′) and C(w′) are
connected from CTi−1 with outgoing labels (βi, βi+1),
and the second case of the invariant holds for v and w.

(2) Assume that there is some i with d < i ≤ k such
that C(v′), C(w′) ∈ CTi \ CTi−1, v′ and w′ agree on
history, and C(v′) and C(w′) are connected from CTi−1
with outgoing labels (βj

′
, βj

′+1) for the same j′ ∈ [i]0.
Since C(v′) and C(w′) were added in the same growth
round, v′ and w′ also agree on position, so v ∈ Nv′ [j] and
w ∈ Nw′ [j] for the same j ∈ [k+1]0 by Lemma 3.1 (p. 7),
and similarly, as C(v′) and C(w′) are both added when
forming CTi from CTi−1 and connected from CTi−1
with the same labels, v and w agree on history. Hence,
if j 6= j′ + 1, then C(v), C(w) ∈ CTi′+1 \ CTi′ for
some i′ ≥ i + 1, C(v) and C(w) are connected from
CTi with the same labels, and since i + 1 > d + 1,
the second case of the invariant holds for v and w. If
j = j′ + 1, C(v) = C(p0(v′)) and C(w) = C(p1(w′)).
As Walk mapped v′ to w′, we have that p0(v′) was
mapped to φ(p0(v′)) = p1(w′), where p0(v′) and p1(w′)
lie at distance d − 1 from v0 and v1, respectively.
Applying the invariant to these nodes, the first case
and the second case with i′ ≤ d + 1 both imply that
C(v), C(w) ∈ CTd+1, establishing the first case of the
invariant for v and w. And if the second case applies
with i′ > d + 1, then the second case of the invariant
holds for v and w.
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(a) d = 1 from v0 and v1: for the blue nodes, the first case of the invariant holds with agreement on history ; for the orange
nodes, the first case of the invariant holds without agreement on history ; and for the green nodes, the second case of the
invariant holds.
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(b) d = 2 from orange nodes at distance d = 1: because the invariant holds for d = 1, Corollary 3.1 (p. 7) ensures that
Algorithm 1 (p. 8) produces an isomorphism between G2

2(v0) and G2
2(v1) by mapping exactly one node in G2

2(v0) discovered
via the solid blue arrow to one node in G2

2(v1) discovered via the solid green arrow (Algorithm 1, p. 8, l. 22–25).

Figure 3: Illustration of Definition 3.9 (p. 8) for CT2. Cluster colors, shapes, and borders drawn as in Figure 2
(p. 7). Nodes v0 ∈ C0 and v1 ∈ C1 are depicted as medium-size circles; representatives of nodes seen via a certain
outgoing edge are depicted as small circles and connected to their parents by arrows. Node and arrow colors show
outgoing edge labels (e.g., blue nodes are seen via the outgoing edge β0); dashed arrows indicate that βi − 1,
rather than βi, nodes are discovered via the outgoing label indicated by the arrow color.

With this result, we can summarize:

Proof of Theorem 3.1 (p. 6). Follows from the correct-
ness of Algorithm 1 (p. 8) for CT graphs Gk with girth
≥ 2k + 1, established via Lemma 3.2 (p. 9) and Corol-
lary 3.1 (p. 7).
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