Fault-tolerant Algorithms for Tick-Generation
in Asynchronous Logic:
Robust Pulse Generation [Extended Abstract]*

Danny Dolev!, Matthias Fiigger?, Christoph Lenzen', and Ulrich Schmid?

! Hebrew University of Jerusalem, Jerusalem, Israel
{dolev,clenzen}@cs.huji.ac.il

2 Vienna University of Technology, Vienna, Austria
{fuegger,s}@ecs.tuwien.ac.at

Abstract. The advances of deep submicron VLSI technology pose new
challenges in designing robust systems, which can in principle be ad-
dressed by approaches established in fault-tolerant distributed systems
research. This paper is the first step in an attempt to develop a very
robust high-precision clocking system for hardware designs like systems-
on-chip for critical applications. It is devoted to the design and the cor-
rectness proof of a novel Byzantine fault-tolerant self-stabilizing pulse
synchronization protocol, which facilitates a direct implementation in
standard asynchronous digital logic. Despite the severe implementation
constraints, it offers optimal resilience and smaller complexity than all
existing pulse synchronization protocols.

Keywords: clock synchronization, Byzantine faults, self-stabilization

1 Introduction & Related Work

With today’s deep submicron technology running at GHz clock speeds [19], dis-
seminating the high-speed clock throughout a very large scale integrated (VLSI)
circuit, with negligible skew, is difficult and costly [2,3,11,23,27]. Systems-on-
chip are hence increasingly designed globally asynchronous locally synchronous
(GALS) [4], where different parts of the chip use different local clock signals.
Two main types of clocking schemes for GALS systems exist, namely, (i) those
where the local clock signals are unrelated, and (ii) multi-synchronous ones that
provide a certain degree of synchrony between local clock signals [28,31].

GALS systems clocked by type (i) permanently bear the risk of metastable
upsets when conveying information from one clock domain to another. To explain
the issue, consider a physical implementation of a bistable storage element, like
a register cell, which can be accessed by read and write operations concurrently.

* The full paper is available at the arxiv [9]. This work has been supported by the
Swiss National Science Foundation (SNSF), by the Austrian Science Foundation
(FWF) project FATAL (P21694), and by by the Israeli Science Foundation (ISF)
Grant number 1685/07. Danny Dolev is Incumbent of the Berthold Badler Chair.

It can be shown that two operations occurring very closely to each other can
cause the storage cell to attain neither of its two stable states for an unbounded
time [22]. Although the probability of a single upset is very small, one has to
take into account that every bit of transmitted information across clock domains
is a candidate for an upset. Elaborate synchronizers [8,20,26] are the only means
for achieving an acceptably low probability for metastable upsets here.

This problem can be circumvented in clocking schemes of type (ii): Common
synchrony properties offered by multi-synchronous clocking systems are bounded
precision, i.e., bounded maximum offset in the number of clock transitions of any
two local clock signals, and bounded accuracy, i.e., bounded difference of the local
clock rate and the rate of progress of real time. Type (ii) clocking schemes are
particularly beneficial from a designers point of view, since they combine the
convenient local synchrony of a GALS system with a global time base across
the whole chip. It has been shown in [25] that these properties indeed facilitate
metastability-free high-speed communication across clock domains.

The decreasing structure sizes of deep submicron technology also resulted in
an increased likelihood of chip components failing during operation: Reduced
voltage swing and smaller critical charges make circuits more susceptible to
ionized particle hits, crosstalk, and electromagnetic interference [5,17]. Fault-
tolerance hence becomes an increasingly pressing issue in chip design. Unfor-
tunately, faulty components may behave non-benign in many ways. They may
perform signal transitions at arbitrary times and even convey inconsistent infor-
mation to their successor components if their outgoing communication channels
are affected by a failure. This forces to model faulty components as unrestricted,
i.e., Byzantine, if a high fault coverage is to be guaranteed.

The DARTS fault-tolerant clock generation approach [14,16] developed by
some of the authors of this paper is a Byzantine fault-tolerant multi-synchronous
clocking scheme. DARTS comprises a set of modules, each of which generates a
local clock signal for a single clock domain. The DARTS modules (nodes) are
synchronized to each other to within a few clock cycles. This is achieved by
exchanging binary clock signals only, via single wires. The basic idea behind
DARTS is to employ a simple fault-tolerant distributed algorithm [32]—based
on Srikanth & Toueg’s consistent broadcasting primitive [29]—implemented in
asynchronous digital logic. An important property of the DARTS clocking scheme
is that it guarantees that no metastable upsets occur during fault-free executions.
For executions with faults, metastable upsets cannot be ruled out: Since Byzan-
tine faulty components are allowed to issue unrelated read and write accesses by
definition, the same arguments as for clocking schemes of type (i) apply. How-
ever, in [12], it was shown that the probability of a Byzantine component leading
to a metastable upset of DARTS can be made arbitrarily small.

Although both theoretical analysis and experimental evaluation revealed
many attractive additional features of DARTS, like guaranteed startup, automatic
adaption to current operating conditions, etc., there is room for improvement.
The most obvious drawback of DARTS is its inability to support late joining
and restarting of nodes, and, more generally, its lack of self-stabilization prop-

erties. If, for some reasons, more than a third of the DARTS nodes ever become
faulty, the system cannot be guaranteed to resume normal operation even if all
failures cease. Even worse, simple transient faults such as radiation- or crosstalk-
induced additional (or omitted) clock ticks accumulate over time to arbitrarily
large skews in an otherwise benign execution.

Byzantine-tolerant self-stabilization, on the other hand, is the major strength
of a number of protocols [1,6,10,18,21] primarily devised for distributed systems.
Of particular interest in the above context is the work on self-stabilizing pulse
synchronization, where the purpose is to generate well-separated anonymous
pulses that are synchronized at all correct nodes. This facilitates self-stabilizing
clock synchronization, as agreement on a time window permits to simulate a syn-
chronous protocol in a bounded-delay system. Beyond optimal (i.e., [n/3] — 1,
c.f. [24]) resilience, an attractive feature of these protocols is a small stabiliza-
tion time [1,6,18,21], which is crucial for applications with stringent availability
requirements. In particular, [1] synchronizes clocks in expected constant time in
a synchronous system. Given any pulse synchronization protocol stabilizing in a
bounded-delay system in expected time T, this implies an expected (T + O(1))-
stabilizing clock synchronization protocol.

Note that existing synchronization algorithms, in particular those that do not
rely on pulse synchronization, have deficiencies rendering them unsuitable in our
context. For example, they have exponential convergence time [10], require the
relative drift of the nodes’ local clocks to be very small [7,21], provide low syn-
chronization precision [21] or make use of linear-sized messages [6]. Furthermore,
standard distributed systems’ models do not account for metastability.

In this paper, we describe and prove correct the novel FATAL pulse syn-
chronization protocol, which facilitates a direct implementation in standard
asynchronous digital logic. It self-stabilizes within O(n) time with probability
1 — 2"~/ in the presence of up to f = [n/3] — 1 Byzantine faulty nodes, and is
metastability-free by construction after stabilization in failure-free runs. While
executing the protocol, non-faulty nodes broadcast a constant number of bits
in constant time. In terms of distributed message complexity, this implies that
stabilization is achieved after broadcasting O(n) messages of size O(1), improv-
ing by factor £2(n) on the number of bits transmitted by previous algorithms.?
The protocol can sustain large relative clock drifts of more than 10%, which is
crucial if the local clock sources are simple ring oscillators (uncompensated ring
oscillators suffer from clock drifts of up to 9% [30]). If the number of faults is not
overwhelming, i.e., a majority of at least n — f nodes continues to execute the
protocol in an orderly fashion, recovering nodes and late joiners (re)synchronize
in constant time. All this is achieved against a powerful adversary that, at time
t, knows the whole history of the system up to time ¢t 4+ ¢ (where ¢ > 0 is
infinitesimally small) and does not need to choose the set of faulty nodes in
advance.

3 We remark that [21] achieves the same complexity, but considers a much simpler
model. In particular, all communication is restricted to broadcasts, i.e., all nodes
observe the same behaviour of a given other node, even if it is faulty.

2 Model

Our formal framework will be tied to the peculiarities of hardware designs, which
consist of modules that continuously® compute their output signals based on
their input signals. Following [13,15], we define (the trace of) a signal to be a
timed event trace over a finite alphabet S of possible signal states: Formally,
signal 0 C S x R{. All times and time intervals refer to a global reference time
taken from R{, that is, signals describe the system’s behavior from time 0 on.
The elements of ¢ are called events, and for each event (s,t) we call s the state
of event (s,t) and t the time of event (s,t). In general, a signal o is required to
fulfill the following conditions: (i) for each time interval [t~,¢+] C R of finite
length, the number of events in ¢ with times within [¢7,¢"] is finite, (ii) from
(s,t) € o and (¢',t) € o follows that s = s/, and (iii) there exists an event at
time 0 in o.

Note that our definition allows for events (s,t) and (s,t’') € o, where t < ¢/,
without having an event (s',t"”) € o with s’ # s and ¢t <’ < t'. In this case, we
call event (s,t") idempotent. Two signals o and ¢’ are equivalent, iff they differ
in idempotent events only. We identify all signals of an equivalence class, as they
describe the same physical signal. Each equivalence class [o] of signals contains a
unique signal o¢ having no idempotent events. We say that signal o switches to
s at time ¢ iff event (s,t) € 0. The state of signal o at time t € R, denoted by
o(t), is given by the state of the event with the maximum time not greater than
t.% Because of (i), (ii) and (iii), o(t) is well defined for each time t € R{. Note
that o’s state function in fact depends on [o] only, i.e., we may add or remove
idempotent events at will without changing the state function.

Distributed System. A distributed system is a finite set of n nodes V =
{1,...,n}. Each node ¢ comprises a number of input ports, namely S; ; for each
node j, an output port S;, and a set of local ports, introduced later on. An
ezecution of the distributed system assigns to each port of each node a signal.
For convenience of notation, for any port p, we refer to the signal assigned to
port p simply by signal p. We say that node i is in state s at time ¢ iff S;(¢) = s
and that node i switches to state s at time t iff signal S; switches to s at time ¢.

To enable nodes to communicate (that is, exchange their state), we assume
the existence of channels between them: for each pair of nodes i, j, output port .S;
is connected to input port S;; by a FIFO channel from ¢ to j with mazimum delay
d > 0.5 Note that this includes a channel from i to i itself. The channel from node
i to j is said to be correct during [¢t~,¢T] iff there exists a function 7; ; : Rf — R,
called the channel’s delay function, such that: (i) 7; ; is continuous and strictly
increasing, (ii) V¢t € [t7,¢t7]: 0 < 7, ;(t) — t < d, and (iii) for each t € [t~,t 7],
(s,t) € S < (S,Ti)_jl(t)) € S;, where 77! is the inverse of 7|y 4], Le., T
restricted to [¢7,¢"]. Node ¢ observes node j in state s at time ¢ if S; ;(t) = s.

4 In sharp contrast to classic distributed computing models, there is no computation-
ally complex discrete zero-time state-transition here.

5 Whenever referring to o, we will talk of the signal, not the state function.

5 W.r.t. O-notation, we normalize d € O(1), as all time bounds depend linearly on d.

Clocks and Timeouts. Nodes are never aware of the current reference time
and we also do not require it to resemble Newtonian “real” time. Rather we allow
for physical clocks that run arbitrarily fast or slow, as long as their speeds are
close to each other in comparison. One may hence think of the reference time as
progressing at the speed of the currently slowest correct clock. In this framework,
nodes essentially make use of bounded clocks with bounded drift.

Formally, clock rates are within [1, 4] (with respect to reference time), where
¥ > 1 is constant and ¥ — 1 is the (mazimum) clock drift. A clock C is a
continuous, strictly increasing function C' : Rg — Rg mapping reference time to
local time. Clock C is said to be correct during [t~,t*] C Ry iff we have for any
t,th et ,tT)],t <t that ' —t < C(¢') — C(t) < I(t' —t). Each node comprises
a set of clocks assigned to it, which allow the node to estimate the progress of
reference time.

Instead of directly accessing their clocks, nodes have so-called timeout ports
of watchdog timers. A timeout is a triple (T, s,C), where T € R, s € S, and C
is a clock, say of node i. Each timeout (T, s, C) has a corresponding timeout port
Timer ¢, being part of node i’s local ports. Signal (T, s, C') is Boolean, that is,
its possible states are from the set {0, 1}. We say that timeout (7}, s, C) is correct
during [t~,tT] C R{ iff clock C is correct during [t~ ¢*] and the following holds:

1. For each time t; € [t7,t"] when node i switches to state s, there is a time
t € [ts, 7:,:(ts)] such that (T,s,C) is reset, i.e., (0,t) € Timer , ¢. This is a
one-to-one correspondence, i.e., (T s, C') is not reset at any other times.

2. For a time t € [t~,¢T], denote by #; the supremum of all times from [t~
when (T, s, C) is reset. Then it holds that (1,t) € Timer s ¢ iff ¢(t) —c(to) =
T. Again, this is a one-to-one correspondence.

We say that timeout (T, s, C) ezpires at time ¢ iff Timer s ¢ switches to 1 at
time ¢, and it 4s expired at time ¢ iff Timer s ¢(t) = 1. We will omit the clock C
from the notation and simply write (T, s) for both the timeout and its signal.

A randomized timeout is a triple (D, s, C'), where D is a bounded random dis-
tribution on RS’ , s € Sis astate, and C is a clock. Its corresponding timeout port
Timep 5 c behaves very similar to the one of an ordinary timeout, except that
whenever it is reset, the local time that passes until it expires next—provided
that it is not reset again before that happens—follows the distribution D. For
the purpose of this abstract, we give a simplified formal definition here. A ran-
domized timeout (D, s, C) is correct during [t~,¢T] C R, if C is correct during
[t7,¢T] and the following holds:

1. For each time t; € [t7,t"] when node i switches to state s, there is a time
t € [ts, Ti,i(ts)] such that (D, s, C) is reset, i.e., (0,t) € Timep 5. This is a
one-to-one correspondence, i.e., (D, s, C) is not reset at any other times.

2. For a time ¢ € [t—,t1], denote by to the supremum of all times from [t~ ¢]
when (D, s, C) is reset. Let u: Rf — R{ denote the density of D. Then

t
P[Timep s ¢ switches to 1 during [to,t]] = / w(C(t) = C(t)) dr.

to

We will apply the same notational conventions to randomized timeouts as we do
for regular timeouts.

We remark that these definitions allow for different timeouts to be driven by
the same clock, implying that an adversary may derive some information on the
state of a randomized timeout before it expires from the node’s behaviour, even
if it cannot directly access the values of the clock driving the timeout. This is
crucial for efficient implementability, as nodes require one clock only.

Memory Flags Another kind of node i’s local ports are memory flags. For
each state s € S and each node j € V, memory flag Mem; ; is a local port of
node i. It is used to memorize whether node ¢ has observed node j in state s
since the last reset of the flag. We say that node ¢ memorizes node j in state s
at time ¢ if Mem, ; ,(t) = 1. Formally, we require that signal Mem, ; , switches
to 1 at time ¢ iff node 7 observes node j in state s at time ¢ and Mem; ; 5 is not
already in state 1. The times when Mem; ; , is reset, i.e., when signal Mem; ;
switches to 0, are specified by node i’s state machine, which is introduced next.

State Machine It remains to specify how nodes switch states and when
they reset memory flags. We do this by means of state machines that may attain
states from the finite alphabet S. Node i’s state machine is specified by (i) the
set S, (ii) a function tr, called the transition function, from 7 C S? to the set
of Boolean predicates on the alphabet consisting of expressions “p = s” (used
for expressing guards), where p is a local or input port of ¢ and s is a possible
state of signal p, and (iii) a function re, called the reset function, from 7 to the
power set of the node’s memory flags.

Intuitively, the transition function specifies the conditions (guards) under
which a node switches states, and the reset function determines which memory
flags to reset upon the state change. Formally, let P be a predicate on node i’s
input and local ports. We define P holds at time t by structural induction: If
P is an element of the above alphabet, i.e., p = s, then P holds at time t iff
p(t) = s. Otherwise, if P is of the form —P;, P; A Py, or Py V Py, we define P
holds at time t in the straightforward manner.

We say node i follows its state machine during [t~,t 7] iff the following holds:
Assume node 7 observes itself in state s € S at time ¢t € [t 7, 7], i.e., S;;(t) = s.
Then, for each (s,s’) € 7, both:

1. Node i switches to state s’ at time ¢ iff ¢r(s, s’) holds at time ¢ and i is not
already in state s’.7
2. Node i resets memory flag m at some time within [¢, 7 ;(¢)] iff m € re(s, s)

and ¢ switches to state s’ at time ¢. This correspondence is one-to-one.

A node may also run several state machines in parallel. In this case, .S; simply
is the product of the individual machine’s output signals, and the different state
machines interact by means of the delayed signal S; ; only.

A node is defined to be non-faulty during [t—,¢T] iff during [¢t,¢ 1] all its
timeouts and randomized timeouts are correct and it follows (all of) its state
machine(s). In contrast, a faulty node may change states arbitrarily. While a

7 If more than one guard tr(s,s’) can be true concurrently, break ties arbitrarily.

faulty node may be forced to send consistent states to all other nodes if its
channels remain correct, there is no way to guarantee that this still holds if
channels are faulty.®

Metastability In our discrete system model, the effect of metastability is
captured by the lacking capability of state machines to instantaneously take on
new states: Node ¢ decides on state transitions based on the delayed status of
port S; ; instead of its “true” current state S;. This non-zero delay from S; to
S; i bears the potential for metastability, as a successful state transition can only
be guaranteed if the transition guard remains stable during this delay at least.
Hence, we define that node i € V' is metastability-free during [t~,tT] with respect
to one of its state machines M, iff for any time ¢t € [t~,¢"] when 4 switches to a
state s of M, the infimum ¢’ of times in (,¢7] when i switches to some state s’
of M satisfies t’' > 1; ;(%).

3 The FATAL Pulse Synchronization Protocol

In this section, we present our self-stabilizing pulse generation algorithm, which
will be stated in terms of state machines, as introduced in the previous section. Its
goal is to generate synchronized, well-separated pulses that occur upon switching
to a distinguished state accept. For a set of nodes W C V and a set F of channels,
we formally define an algorithm to be a (W, E)-stabilizing pulse synchronization
protocol with skew X and accuracy bounds T—,TT stabilizing within time T with
probability p iff the following holds: Given that during [t~,¢T] D [t7, ¢~ +T + X]
nodes in W are non-faulty and channels in E correct, with probability at least p
atime ty € [t~, ¢~ + 7] exists so that, denoting by #;(k) the k' time when node i
switches to accept after t; (¢;(k) = oo if no such time exists), for all 4, 5 € W, and
keN, (i) t;(1) € (ts,ts + X), (id) [t:i(k) — t; (k)| < X if max{t;(k),t;(k)} <tT,
and (i1) T~ < |t;(k+ 1) — (k)| < T if t;(k) + T+ < tT.

Since the ultimate goal of the pulse generation algorithm is to stabilize a
system of DARTS clocks, we introduce an additional port DARTS;, for each node
1, which is driven by node i’s DARTS instance. As for other state signals, its output
raises flag Mem; parTs, to which for simplicity we refer to as DARTS; as well.
Note that the DARTS signals are of no concern to the liveliness or stabilization
of the pulse algorithm itself; rather, they are control signals from the DARTS
components that help in adjusting the frequency of pulses to the speed of the
DARTS clocks once the system as a whole has become stable. Details can be found
in [9].

Basic Cycle. The full algorithm makes use of a rather involved interplay
between conditions on timeouts, states, and thresholds to converge to a safe state
despite a limited number of faulty components. As our approach is difficult to
present in a bulk, we break it down into pieces. Moreover, to facilitate giving
intuition about the key ideas of the algorithm, in this section we assume that
there are f < n/3 faulty nodes, and all the remaining n — f nodes are non-faulty

8 Note that a single physical fault may cause such a behaviour.

(T, accept)

(20d, suspect)
and in suspect
and not *

>f+1
Tecover or

(75 and
DARTS)) | > f+1
or Ty or | join and

>f+1 not in
propose dormant
zn—f
join or
OZ;TZi):jpct *(((Ts, active)

accept and in active)

accept or

>n— f propose (((Ty, passive)
or accept or > f+1 join)
propose and not in
dormant))

Fig. 1. Overview of the core routine of node i’s self-stabilizing pulse algorithm.

within [0, c0) (where of course the time 0 is unknown to the nodes). We further
assume that channels between non-faulty nodes (including loopback channels)
are correct within [0, o). First, we present the basic cycle that is repeated every
pulse once a safe configuration is reached. It consists of the states accept, sleep,
sleep — waking, waking, ready, and propose in the given order (see Fig. 1).

We employ graphical representations of the state machine of each node i €
V. States are represented by circles containing their names, while transition
(s,s') € T is depicted as an arrow from s to s’. The guard tr(s,s’) is written
as a label next to the arrow, and the reset function’s value re(s, s’) is depicted
in a rectangular box on the arrow. To keep labels simple we make use of ab-
breviations. We write T instead of (7', s) if s is the state that node i leaves if
the condition involving (7', s) is satisfied. Threshold conditions like “> f + 1
s”, where s € S, abbreviate Boolean predicates that reach over all of node i’s
memory flags Mem; ; 5, where j € V, and are defined in a straightforward man-
ner. If in such an expression we connect two states by “or”, e.g., “>n — f s or
s'” for s, € S, the summation considers flags of both types s and s’. Thus, it
is equivalent to 3 ;.\ max{Mem; ; s, Mem; ;+} > f + 1. For any state s € S,
the condition S; ; = s, (respectively, =(S; ; = s)) is written in short as “j in s”
(respectively, “j not in 7). If j = 4, we simply write “(not) in s”. We write
“true” instead of a condition that is always true. Finally, re(-,) always requires
to reset all memory flags of certain types, hence we write, for example, propose
if all flags Memy; j propose are to be reset.

‘We now briefly introduce the basic flow of the algorithm once it stabilizes, i.e.,
once all n — f non-faulty nodes are well-synchronized. Recall that the remaining
up to f < |[n/3] faulty nodes may produce arbitrary signals on their outgoing
channels. A pulse is locally triggered by switching to state accept. Thus, assume
that at some time all non-faulty nodes switch to state accept within a time
window of 2d, i.e., a valid pulse is generated. Supposing that 77 > 39d, these

nodes will observe, and thus memorize, each other and themselves in state accept
before T expires. This makes timeout 73 the critical condition for switching to
state sleep. From state sleep, they will switch to states sleep — waking, waking,
and finally ready, where the timeout (7%, accept) is determining the time this
takes, as it is considerably larger than ¢(+2)T;. The intermediate states serve
the purpose of achieving stabilization, hence we leave them out for the moment.
Note that upon switching to state ready, nodes reset their propose flags and
DARTS;. Thus, they essentially ignore these signals between the most recent time
they switched to propose before switching to accept and the subsequent time
when they switch to ready. This ensures that nodes do not take into account
outdated information for the decision when to switch to state propose. Hence,
it is guaranteed that the first node switching from state ready to state propose
again does so because Ty expired or because T3 expired and its DARTS memory
flag is true. Due to the constraint min{75, T4} > J(T> +4d), we are sure that all
non-faulty nodes observe themselves in state ready before the first one switches to
propose. Hence, no node deletes information about nodes that switch to propose
again after the previous pulse. No non-faulty node can switch to state accept
before it memorizes at least n — f nodes in state propose, as the accept flags are
reset upon switching to state waking. Therefore, at least n — 2f > f + 1 non-
faulty nodes are in state propose when the first node switches to accept again.
Hence, the rule that nodes switch to propose if they memorize f 4 1 nodes in
states propose will take effect, i.e., the remaining non-faulty nodes in state ready
switch to propose after less than d time. Another d time later all non-faulty
nodes in state propose will have become aware of this and switch to state accept
as well, as the threshold of n — f nodes in states propose or accept is reached.
Thus the cycle is complete and the reasoning can be repeated inductively.

Main Algorithm. We proceed by describing the main routine of the pulse
algorithm in full. Alongside the main routine, several other state machines run
concurrently and provide additional information to be used during recovery.

The main routine is graphically presented in Fig. 1, together with a very sim-
ple second component whose sole purpose is to simplify the otherwise overloaded
description of the main routine. Except for the states recover and join and ad-
ditional resets of memory flags, the main routine is identical to the basic cycle.
The purpose of the two additional states is the following: Nodes switch to state
recover once they detect that something is wrong, that is, non-faulty nodes do
not execute the basic cycle as outlined in Section 3. This way, non-faulty nodes
will not continue to confuse others by sending for example state signals propose
or accept despite clearly being out-of-sync. There are various consistency checks
that nodes perform during each execution of the basic cycle. For example, no
non-faulty node may be in state propose for more than a certain amount of
time before switching to state accept. Therefore, nodes will switch from propose
to recover when timeout T5 expires. Similarly, when in state ready, nodes ex-
pect others not to be in state accept for more than a short period of time, as
a non-faulty node switching to accept should imply that every non-faulty node
switches to propose and then to accept shortly thereafter. This is expressed by

the second state machine comprising two states only. If a node is in state ready
and memorizes f + 1 nodes in state accept, it switches to suspect. Subsequently,
if it remains in state ready until a timeout of 29d expires, it will switch to state
recover.

Nodes can join the basic cycle again via the second new state, called join.
Since the Byzantine nodes may “play nice” towards f + 1 or more nodes still
executing the basic cycle, making them believe that system operation continues
as usual, it must be possible to join the basic cycle again without having a
majority of nodes in state recover. On the other hand, it is crucial that this
happens in a sufficiently well-synchronized manner, as otherwise nodes could
drop out again because the various checks of consistency detect an erroneous
execution of the basic cycle.

In part, this issue is solved by an additional agreement step. In order to enter
the basic cycle again, nodes need to memorize n — f nodes in states join (the
respective nodes detected an inconsistency), propose (these nodes continued to
execute the basic cycle), or accept (there are executions where nodes reset their
propose flags because of switching to join when other nodes already switched to
accept). Since there are thresholds of f 4+ 1 nodes memorized in state join both
for leaving state recover and switching from ready to join, all nodes will follow
the first one switching from join to propose quickly, just as with the switch from
propose to accept in an ordinary execution of the basic cycle. However, it is
decisive that all nodes are in states that permit to participate in this agreement
step in order to guarantee success of this approach.

As a result, still a certain degree of synchronization needs to be established
beforehand, both among nodes that still execute the basic cycle and those that do
not. For instance, if at the point in time when a majority of nodes and channels
become non-faulty, some nodes already memorize nodes in join that are not,
they may switch to state join and subsequently propose prematurely, causing
others to have inconsistent memory flags as well. Again, Byzantine faults may
sustain this amiss configuration of the system indefinitely.

So why did we put so much effort in “shifting” the focus to this part of the
algorithm? The key advantage is that nodes outside the basic cycle may take into
account less reliable information for stabilization purposes. They may take the
risk of metastable upsets (as we know it is impossible to avoid these during the
stabilization process, anyway) and make use of randomization. In fact, to make
the above scheme work, it is sufficient that all non-faulty nodes agree on a point
in time to reset the memory flags for states join and sleep — waking as well as
certain timeouts, while guaranteeing that no node is in these states close to the
respective reset times. Except for state sleep — waking, all of these timeouts,
memory flags, etc. are not part of the basic cycle at all, thus nodes may enforce
consistent values for them when they agree on such a resynchronization point.
Conveniently, the use of randomization also ensures that it is quite unlikely that
nodes are in state sleep — waking close to a resynchronization point, as the
consistency check of having to memorize n — f nodes in state accept in order to

switch to state sleep guarantees that the time windows during which non-faulty
nodes may switch to sleep make up a small fraction of all times only.

Consequently, the remaining components of the algorithm deal with agreeing
on resynchronization points and utilizing this information in an appropriate way
to ensure stabilization of the main routine. We describe this connection to the
main routine first. It is done by another, quite simple state machine, which runs
in parallel alongside the core routine. It is the machine having three states that
is depicted in the upper left corner of Fig. 2.

Its purpose is to reset memory flags in a consistent way and to determine
when a node is permitted to switch to join. In general, a resynchronization point
(locally observed by switching to state resync) triggers the reset of the join and
sleep — waking flags. If there are still nodes executing the basic cycle, a node
may become aware of it by observing f+1 nodes in state sleep — waking at some
time. In this case it switches from state passive, which it entered at the point
in time when it locally observed the resynchronization point, to state active,
which enables an earlier transition to state join. This is expressed by the rather
involved transition rule ¢r(recover, join): T is much smaller than T7, but Tg is
of no concern until the node switches to state active and resets Tg.”

It remains to explain how nodes agree on resynchronization points.

Resynchronization Algorithm. The resynchronization routine is specified
in Fig. 2 as well. It is a lower layer that the core routine uses for stabilization
purposes only. It provides some synchronization that is very similar to that of
a pulse, except that such “weak pulses” occur at random times, and may be
generated inconsistently after the algorithm as a whole has stabilized. Since the
main routine operates independently of the resynchronization routine once the
system has stabilized, we can afford the weaker guarantees of the routine: If it
succeeds in generating a “good” resynchronization point merely once, the main
routine will stabilize deterministically.

Definition 1 (Resynchronization Points). Given W C V, time t is a W-
resynchronization point iff each node in W switches to state supp — resync in
the time interval (t,t 4+ 2d). A W -resynchronization point is called good if no
node from W switches to state sleep during (t — (9 4+ 3)T4,t) and no node is in
state join during [t — T\ — d,t + 4d).

In order to clarify that despite having a linear number of states (supp;, i € V),
this routine can be implemented using constant-bit channels only, we generalize
our description of state machines as follows. If a state is depicted as a circle
separated into an upper and a lower part, the upper part denotes the local state,
while the lower part indicates the signal state to which it is mapped. A node’s
memory flags then store the respective signal states only, i.e., remote nodes do
not distinguish between states that share the same signal.

The basic idea behind the resynchronization algorithm is the following: Every
now and then, nodes will try to initiate agreement on a resynchronization point.

9 The condition “not in dormant” ensures that the transition is not performed because
of being in state resync a long time ago, while there was no recent switch to resync.

in resync

join,
Isleep — wukingl

not in resync

*(i in nit and **(j in init and

@\ (Ra, supp j))

(R, supp 1))

not in

> f+1
sleep —waking

>n—f supp

supp

Ry l true sync\ 49d [resync
states supp 1,....n
(i.e, one for each node)

Fig. 2. Resynchronization algorithm of node 3.

This is the purpose of the small state machine in the lower left corner of Fig. 2. As
the time when a node switches to init is determined by the randomized timeout
R3, which we choose to be distributed over a large interval, it is impossible to
predict when it will expire, even with full knowledge of the execution up to the
current point in time.

Consider now the state machine displayed on the right of Fig. 2. To under-
stand how the routine is intended to work, assume that at the time ¢ when a
non-faulty node 7 switches to state init, all non-faulty nodes are not in any of the
states supp — resync, resync, or supp i, and at all non-faulty nodes the timeout
(R2, supp 1) has expired. Then, no matter what the signals from faulty nodes or
on faulty channels are, all non-faulty nodes will be in one of the states supp 7,
j € V, or supp — resync at time t 4+ d. Hence, they will observe each other
(and themselves) in one of these states at some time smaller than ¢ + 2d. These
statements follow from the various timeout conditions of at least 29d and the
fact that observing node ¢ in state init will make nodes switch to state supp i if
in none or supp j, j # i. Hence, all of them will switch to state supp — resync
during (¢,t + 2d), i.e., t is a resynchronization point. Since ¢ follows a random
distribution that is independent of the remaining algorithm and, as mentioned
earlier, most of the times nodes cannot switch to state sleep and it is easy to deal
with the condition on join states, there is a large probability that t is a good
resynchronization point. Note that timeout R; makes sure that no non-faulty
node will switch to supp — resync again anytime soon, leaving sufficient time
for the main routine to stabilize.

The scenario we just described relies on the fact that at time t no node is
in state supp — resync or state resync. We will choose Ry > R;, implying
that Ry + 3d time after a node switched to state init all nodes have “forgotten”
about this, i.e., (Ra, supp i) is expired and they switched back to state none
(unless other init signals interfered). Thus, in the absence of Byzantine faults,

the above requirement is easily achieved with a large probability by choosing
Rj3 as a uniform distribution over some interval [Rz + 3d, Rz + @(nR1)]: Other
nodes will switch to init O(n) times during this interval, each time “blocking”
other nodes for at most O(R;) time. If the random choice picks any other point
in time during this interval, a resynchronization point occurs. Even if the clock
speed of the clock driving R3 is manipulated in a worst-case manner (affecting
the density of the probability distribution with respect to real time by a factor
of at most 1), we can just increase the size of the interval to account for this.

However, what happens if only some of the nodes receive an init signal due
to faulty channels or nodes? If the same holds for some of the subsequent supp
signals, it might happen that only a fraction of the nodes reaches the threshold
for switching to state supp — resync, resulting in an inconsistent reset of flags
and timeouts across the system. Until the respective nodes switch to state none
again, they will not support a resynchronization point again, i.e., about R;
time is “lost”. This issue is the reason for the agreement step and the timeouts
(Ra, supp j). In order for any node to switch to state supp — resync, there
must be at least n — 2f > f 4+ 1 non-faulty nodes supporting this. Hence, all
of these nodes recently switched to a state supp j for some j € V, resetting
(R2, supp j). Until these timeouts expire, f + 1 € £2(n) non-faulty nodes will
ignore init signals on the respective channels. Since there are O(n?) channels,
it is possible to choose Ry € O(nRy) such that this may happen at most O(n)
times in O(n) time. Playing with constants, we can pick R3 € O(n) maintaining
that still a constant fraction of the times are “good” in the sense that Rg expiring
at a non-faulty node will result in a good resynchronization point.

Analysis and Results. Due to lack of space, we had to relegate the detailed
formalization and analysis of our algorithm to [9]. We will hence only briefly
summarize our major results, along with the required constraints. With A :=

(250 — 9)/(259) € (4/5,1), we need:

T1 > 94d Ty > (39 +1—1/9)T1 + Ty

T3 > (202 439 — 1)Ty — To + 9(Tg + 5d) Ty > T3

Ts > (92 + 9 — 2)Ty + 9(Ty + Ty + 9d) — Tg Tg > 9((9 + 1)Ty + Ty + 6d)

Ty > (9 —)Ty + 9((L+2/9 — 9)Ty + Ty + T + Tg + 10d) Ry > 9(T7 + (49 + 8)d)

Ro > 20(R1 + (9 +2)Ty +To /9 + (89 +9)d)(n — f)/(1 — X) R3 = uniformly distributed on

YN < (Ty — (493 + 2892 + 49)d)/(Ty — (892 + 9)d) [9(Rg + 3d), 9(Rg + 3d) + 8(1 — A\)Ro]

This system is solvable for any ¥ < Upmax &~ 1.247 with Ty,...,T7, Ry € O(1)
and Ry € O(n). Furthermore, the system must satisfy the following property
during a given time interval [t~,¢1]: There is a subset W C V of size at least
n — |n/3 — 1| such that during [t~ — (9(R2 + 3d) + 8(1 — A)Rz2) — d,t1] (i) all
nodes i € W are non-faulty, and (ii) all channels S, ;, ¢,7 € W, are correct.

A safe configuration is reached once all nodes in W switch to accept within
3d: Time t is a stabilization point (quasi-stabilization point) iff all nodes ¢ € W
switch to accept within [¢,t + 2d) ([¢,t + 3d)).

Theorem 1. Suppose t is a quasi-stabilization point. Then (i) all nodes in W
switch to accept exactly once within [t,t+3d), and (i) there will be a stabilization
pointt’ € (t+ (To+T3) /Y, t+To+Ty+5d) satisfying that no node in W switches
to accept in the time interval [t+3d,t") and that (iii) each nodei’s, i € W, states

of the basic cycle (accept, sleep, sleep — waking, waking, ready, and propose)
are metastability-free during [t + 3d,t' + 4d).

By induction, we see that if for |[W| > n—|n/3—1] we can show the existence of a
quasi-stabilization point ¢ € [t~,¢T], then for any E O W? the protocol is (W, E)-
stabilizing with skew 2d and accuracy bounds (Ts + T5)/9 — 2d and Ty + Ty +
7d. As it is impossible to guarantee metastability-freedom during stabilization,
our remaining statements argue about metastability-free executions only, i.e.,
provided that metastability does not occur, the system will stabilize.

Theorem 2. Denote by Fs = 9(R2 +3d) +8(1 = A\)Ry +d. For any k € N and
any time t € [t=,tT — (k + 1) E3], with probability at least 1 — (1/2)#=1) there
will be a good W -resynchronization point in [t,t + (k+ 1)Ej3).

A good resynchronization point ensures sufficient consistency of nodes’ mem-
ories for the main routine (Fig. 1) to stabilize deterministically.

Theorem 3. Let T}, := (k + 2)E3 + Ry /9 for k € N. Then, with probability at
least 1 —1/2F0=1) o stabilization point in [t~ ,t~ +T}] exists, and the algorithm
stabilizes within time Ty, plus longest timeout.

References

1. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing byzantine tolerant digi-
tal clock synchronization. In: Proc. 27th symposium on Principles of Distributed
Computing (PODC). pp. 385-394 (2008)

2. Berman, A., Keidar, I.: Low-Overhead Error Detection for Networks-on-Chip. In:
The 27th International Conference on Computer Design (ICCD) (2009)

3. Bhamidipati, R., Zaidi, A., Makineni, S., Low, K., Chen, R., Liu, K.Y., Dalgrehn,
J.: Challenges and Methodologies for Implementing High-Performance Network
Processors. Intel Technology Journal 6(3), 83-92 (2002)

4. Chapiro, D.M.: Globally-Asynchronous Locally-Synchronous Systems. Ph.D. the-
sis, Stanford University (1984)

5. Constantinescu, C.: Trends and Challenges in VLSI Circuit Reliability. IEEE Micro
23(4), 14-19 (2003)

6. Daliot, A., Dolev, D.: Self-Stabilizing Byzantine Pulse Synchronization. CoRR
abs/cs/0608092 (2006)

7. Daliot, A., Dolev, D., Parnas, H.: Self-Stabilizing Pulse Synchronization Inspired
by Biological Pacemaker Networks. In: Proc. 6th Symposium on Self-Stabilizing
Systems (SSS) (2003)

8. Dike, C., Burton, E.: Miller and Noise Effects in a Synchronizing Flip-Flop. IEEE
Journal of Solid-State Circuits SC-34(6), 849-855 (1999)

9. Dolev, D., Figger, M., Lenzen, C., Schmid, U.: Fault-tolerant Algorithms
for Tick-Generation in Asynchronous Logic: Robust Pulse Generation. CoRR
abs/cs/1105.4708 (2011)

10. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of
byzantine faults. Journal of the ACM 51(5), 780-799 (2004)

11. Friedman, E.G.: Clock Distribution Networks in Synchronous Digital Integrated
Circuits. Proceedings of the IEEE 89(5), 665-692 (2001)

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Fuchs, G., Fiigger, M., Steininger, A.: On the Threat of Metastability in an Asyn-
chronous Fault-Tolerant Clock Generation Scheme. In: Proc. 15th Symposium on
Asynchronous Circuits and Systems (ASYNC). pp. 127-136. Chapel Hill, N. Car-
olina, USA (2009)

Fiigger, M.: Analysis of On-Chip Fault-Tolerant Distributed Algorithms. Ph.D.
thesis, Technische Universitat Wien, Institut fiir Technische Informatik (2010)
Fiigger, M., Dielacher, A., Schmid, U.: How to Speed-Up Fault-Tolerant Clock
Generation in VLSI Systems-on-Chip via Pipelining. In: Proc. 8th European De-
pendable Computing Conference (EDCC). pp. 230-239 (2010)

Fiigger, M., Schmid, U.: Reconciling Fault-Tolerant Distributed Computing and
Systems-on-Chip. Research Report 13/2010, Technische Universitdt Wien, Institut
fiir Technische Informatik (2010)

Figger, M., Schmid, U., Fuchs, G., Kempf, G.: Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In: Proc. 6th European Dependable Com-
puting Conference (EDCC). pp. 87-96 (2006)

Gadlage, M.J., Eaton, P.H., Benedetto, J.M., Carts, M., Zhu, V., Turflinger, T.L.:
Digital Device Error Rate Trends in Advanced CMOS Technologies. IEEE Trans-
actions on Nuclear Science 53(6), 3466-3471 (2006)

Hoch, E., Dolev, D., Daliot, A.: Self-stabilizing Byzantine Digital Clock Synchro-
nization. In: Proc. 8th Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS 2006). vol. 4280, pp. 350-362 (2006)

Internat. Technology Roadmap for Semiconductors (2007), http://www.itrs.net
Kinniment, D.J., Bystrov, A., Yakovlev, A.V.: Synchronization Circuit Perfor-
mance. IEEE Journal of Solid-State Circuits SC-37(2), 202-209 (2002)
Malekpour, M.: A Byzantine-Fault Tolerant Self-stabilizing Protocol for Dis-
tributed Clock Synchronization Systems. In: Proc. 9th Conference on Stabilization,
Safety, and Security of Distributed Systems (SSS). pp. 411-427 (2006)

Marino, L.: General Theory of Metastable Operation. IEEE Transactions on Com-
puters C-30(2), 107-115 (1981)

Metra, C., Francescantonio, S., Mak, T.: Implications of Clock Distribution Faults
and Issues with Screening them During Manufacturing Testing. IEEE Transactions
on Computers 53(5), 531-546 (2004)

Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence of Faults.
Journal of the ACM 27, 228-234 (1980)

Polzer, T., Handl, T., Steininger, A.: A Metastability-Free Multi-synchronous Com-
munication Scheme for SoCs. In: Proc. 11th International Symposium on Stabiliza-
tion, Safety, and Security of Distributed Systems (SSS 2009). pp. 578-592 (2009)
Portmann, C.L., Meng, T.H.Y.: Supply Noise and CMOS Synchronization Errors.
IEEE Journal of Solid-State Circuits SC-30(9), 1015-1017 (1995)

Restle, P.J., others;: A Clock Distribution Network for Microprocessors. IEEE
Journal of Solid-State Circuits 36(5), 792-799 (2001)

Semiat, Y., Ginosar, R.: Timing Measurements of Synchronization Circuits. In:
Proc. 9th Symposium on Asynchronous Circuits and Systems (ASYNC) (2003)
Srikanth, T.K., Toueg, S.: Optimal Clock Synchronization. Journal of the ACM
34(3), 626-645 (1987)

Sundaresan, K., Allen, P., Ayazi, F.: Process and temperature compensation in a
7-MHz CMOS clock oscillator. IEEE J. Solid-State Circuits 41(2), 433-442 (2006)
Teehan, P., Greenstreet, M., Lemieux, G.: A Survey and Taxonomy of GALS De-
sign Styles. IEEE Design and Test of Computers 24(5), 418-428 (2007)

Widder, J., Schmid, U.: The Theta-Model: Achieving Synchrony without Clocks.
Distributed Computing 22(1), 29-47 (2009)

http://www.itrs.net

	 Fault-tolerant Algorithms for Tick-Generation in Asynchronous Logic: Robust Pulse Generation
	Introduction & Related Work
	Model
	The FATAL Pulse Synchronization Protocol

