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for decades. However, neither the basic abstractions nor the complexity of contemporary fault-tolerant dis-
tributed algorithms match the peculiarities of hardware implementations.

This article is intended to be part of an attempt striving to bridge over this gap between theory and
practice for the clock synchronization problem. Solving this task sufficiently well will allow to build an ultra-
robust high-precision clocking system for hardware designs like systems-on-chips in critical applications.
As our first building block, we describe and prove correct a novel distributed, Byzantine fault-tolerant,
probabilistically self-stabilizing pulse synchronization protocol, called FATAL, that can be implemented
using standard asynchronous digital logic: Correct FATAL nodes are guaranteed to generate pulses (i.e.,
unnumbered clock ticks) in a synchronized way, despite a certain fraction of nodes being faulty. FATAL uses
randomization only during stabilization and, despite the strict limitations introduced by hardware designs,
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1. INTRODUCTION & RELATED WORK
Fault tolerance has been a focus of intense research both in theory and in practice. The
two disciplines developed disjoint tools in order to increase the robustness of the envi-
sioned systems: Theoretical studies, naturally, were discussing severe fault scenarios
that have been considered too abstract to bear significance for real-world systems by
practitioners. In contrast, engineers focused on typical settings that tend to be more
benign, permitting to be treated efficiently. However, the ongoing rapid growth of sys-
tem sizes results in ever-increasing varieties and frequencies of faults. Consequently,
in the last decade, designers revisited some of the abstract models from theory, and
such models slowly find their way into practical distributed applications.

This process is highly challenging, as the gap that needs to be bridged seems to have
widened over time. To combine the best of both worlds, it is critical to (i) adapt and
extend theoretical results to simultaneously address all relevant optimization criteria
satisfactorily,1 (ii) find suitable hierarchies of abstraction that allow for a seamless
connection from high-level reasoning to the low-level building blocks (ultimately, basic
logic gates and wires) of the system, while hiding away uncritical details on each level
of abstraction; and (iii) redesign systems on all levels to respect the pivotal demands
and fundamental limitations identified in the new framework. Naturally, this requires
an unusually close interaction and thus communication between the two areas.

The present article is the result of this paradigm, applied to the problem of dis-
tributed clock generation for systems-on-chip (SoC). It emphasizes theory aspects,
i.e., points (i) and (ii) of the above list. Regarding (iii), we refer the interested reader
to Dolev et al. [2014]. We introduce a novel model and supporting techniques to express
and analyze such algorithms. The model allows for a direct mapping of algorithms to
hardware, yet provides sufficient abstraction to prove synchronization properties with-
out any gap, i.e., violations of these properties can be tracked down to violations of the
fault model expressed in terms of the very basic components of the system. Beyond
that, our approach leads to a number of new results in both areas that we believe to
be of independent interest.

Problem Motivation
With today’s deep submicron technology running at GHz clock speeds [International
Technology Roadmap for Semiconductors 2012], disseminating the high-speed clock
throughout a very large scale integrated (VLSI) circuit, with negligible skew, is dif-
ficult and costly [Bhamidipati et al. 2002; Friedman 2001; Metra et al. 2004; Restle
et al. 2001]. SoC are hence increasingly designed globally asynchronous locally syn-
chronous (GALS) [Chapiro 1984], where different parts of the chip use different local
clock signals. Two main types of clocking schemes for GALS systems exist, namely, (i)
those where the local clock signals are unrelated, and (ii) multi-synchronous ones that
provide a certain degree of synchrony between local clock signals [Semiat and Ginosar
2003; Teehan et al. 2007].

GALS systems clocked by type (i) permanently bear the risk of metastable upsets
when conveying information from one clock domain to another. To explain the issue,
consider a physical implementation of a bistable storage element, like a register cell,
that can be accessed by read and write operations concurrently. It can be shown that
two operations (like two writes with different values) occurring very close to each other
can cause the storage cell to attain neither of its two stable states for an unbounded
time [Marino 1981], and thereby, during an unbounded time afterwards, successive
reads may return none of the stable states. Although the probability of a single upset

1Existing solutions require a long time to stabilize or exhibit a large communication complexity, and meta-
stability is not addressed. These issues will be discussed later on.
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is very small, one has to take into account that every bit of transmitted information
across clock domains is a candidate for an upset. Elaborate synchronizers [Dike and
Burton 1999; Kinniment et al. 2002; Portmann and Meng 1995] are the only means for
achieving an acceptably low probability for metastable upsets here.

This problem can be circumvented in clocking schemes of type (ii): Common syn-
chrony properties offered by multi-synchronous clocking systems are:

— bounded skew, i.e., bounded maximum time between the occurrence of any two
matching clock transitions of any two local clock signals. Here, in classic clock syn-
chronization, two clock transitions are matching iff they are both the kth, k ≥ 1, clock
transition of a local clock.

— bounded accuracy, i.e., bounded minimum and maximum time between the occur-
rence of any two successive clock transitions of any local clock signal.

Type (ii) clocking schemes are particularly beneficial from a designer’s point of view,
since they combine the convenient local synchrony of a GALS system with a global
time base across the whole chip. It has been shown by Polzer et al. [2009] that these
properties indeed facilitate metastability-free high-speed communication across clock
domains.

The decreasing structure sizes of deep submicron technology also resulted in an
increased likelihood of chip components failing during operation: Reduced voltage
swing and smaller critical charges make circuits more susceptible to ionized parti-
cle hits, crosstalk, and electromagnetic interference [Constantinescu 2003; Gadlage
et al. 2006]. Fault-tolerance hence becomes an increasingly pressing issue in chip de-
sign. Unfortunately, faulty components may behave non-benign in many ways. They
may perform signal transitions at arbitrary times and even convey inconsistent infor-
mation to their successor components if their outgoing communication channels are
affected by a failure. Well-known theory on fault-tolerant consensus and synchroniza-
tion shows that this behavior is the key feature of unrestricted, i.e., Byzantine faults
[Pease et al. 1980]. This forces to model faulty components as Byzantine if a high fault
coverage is to be guaranteed.

The DARTS fault-tolerant clock generation approach [Függer et al. 2006; Függer
et al. 2010] developed by some of the authors of this paper is a Byzantine fault-tolerant
multi-synchronous clocking scheme. DARTS comprises a set of modules, each of which
generates a local clock signal for a single clock domain. The DARTS modules (nodes)
are synchronized to each other to within a few clock cycles. This is achieved by ex-
changing binary clock signals only, via a single wire in each direction between pairs
of nodes. The basic idea behind DARTS is to employ a simple fault-tolerant distributed
algorithm [Widder and Schmid 2009]—based on the consistent broadcasting primitive
of Srikanth and Toueg [1987]—implemented in asynchronous digital logic. An impor-
tant property of the DARTS clocking scheme is that it guarantees that no metastable
upsets occur during fault-free executions. For executions with faults, metastable up-
sets cannot be ruled out: Since Byzantine faulty components are allowed to issue un-
related read and write accesses by definition, the same arguments as for clocking
schemes of type (i) apply. However, Fuchs et al. [2009] show that by proper chip de-
sign, the probability of a Byzantine component leading to a metastable upset of DARTS
can be made arbitrarily small, at a reasonable cost.2

Although both theoretical analysis and experimental evaluation revealed many at-
tractive additional features of DARTS, like guaranteed startup, automatic adaption to

2Note that due to this cost, it is not desirable to rely on this mechanism for all communication; this would
essentially mean to suffer the disadvantages of a type (i) GALS system despite the effort of synchronizing
the different clock domains!
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current operating conditions, etc., there is room for improvement. The most obvious
drawback of DARTS is its inability to support late joining and restarting of nodes, and,
more generally, its lack of self-stabilization properties. If, for some reasons, more than
a third of the DARTS nodes ever become faulty, the system cannot be guaranteed to re-
sume normal operation even if all failures cease. Even worse, simple transient faults
such as radiation- or crosstalk-induced additional (or omitted) clock ticks accumulate
over time to arbitrarily large skews in an otherwise benign execution.

Byzantine-tolerant self-stabilization, on the other hand, is the major strength of a
number of protocols [Ben-Or et al. 2008; Daliot et al. 2003; Daliot and Dolev 2006;
Dolev and Hoch 2007; Dolev and Welch 2004; Hoch et al. 2006; Malekpour 2006]
primarily devised for distributed systems. These works reveal an interplay between
the tasks of pulse synchronization—where the purpose is to generate well-separated
anonymous pulses that are synchronized at all correct nodes—consensus, and clock
synchronization. One can use consensus to agree on clocks and use clocks to dictate
phases to run consensus. Pulse synchronization enables consensus on invocation of
pulses within a small real-time window, where pulses are spaced in time, and between
two consecutive pulses one can run consensus. Solving each of these problems from an
arbitrary initial state poses a major challenge.

In light of these relations, the above papers on self-stabilizing pulse synchronization
are of particular interest in the our context. Beyond optimal resilience (i.e., dn/3e − 1,
c.f. Pease et al. [1980]), an attractive feature of many of these protocols is a small sta-
bilization time of O(n) [Ben-Or et al. 2008; Daliot and Dolev 2006; Dolev and Hoch
2007; Hoch et al. 2006; Malekpour 2006], which is crucial for applications with strin-
gent availability requirements. In particular, Ben-Or et al. [2008] synchronize clocks
in expected constant time in a synchronous system. Given any pulse synchronization
protocol stabilizing in a bounded-delay system in expected time T , this implies an ex-
pected (T +O(1))-stabilizing clock synchronization protocol.

Nonetheless, it remains open whether (with respect to the number of nodes n) a sub-
linear convergence time can be achieved: While the classical consensus lower bound
of f + 1 rounds for synchronous, deterministic algorithms in a system with f < n/3
faults [Fischer and Lynch 1982] proves that exact consensus on a clock value requires
at least f + 1 ∈ Ω(n) deterministic rounds, one has to face the fact that only approxi-
mate agreement on the current time is achievable in a bounded-delay system anyway.
However, no non-trivial time lower bounds on approximate deterministic synchroniza-
tion or the exact problem with randomization are currently known.

Note that existing synchronization algorithms, in particular those that do not rely
on pulse synchronization, have deficiencies rendering them unsuitable in our context.
For example, they have exponential convergence time [Dolev and Welch 2004], require
the relative drift of the nodes’ local clocks to be very small [Daliot et al. 2003; Dolev
and Hoch 2007; Malekpour 2006],3 are not applicable for f > 1 [Malekpour 2006]
(cf. [Malekpour 2009]) or make use of linear-sized messages [Daliot and Dolev 2006;
Dolev and Hoch 2007]. Furthermore, standard models used by the distributed systems
community do not account for metastability, resulting in the same to be true for the
existing solutions.

All previous pulse synchronization algorithms that stabilize in time O(n) make use
of up to Ω(n) concurrently running consensus instances. The underlying idea is that
a correct node can easily initiate a simulated synchronous execution of a consensus
protocol to establish a common perception of some property of the system state among

3Note that it is too costly and space consuming to equip each node with a quartz oscillator. Simple digital
oscillators, like inverters with feedback, in turn exhibit drifts of at least several percent, which heavily vary
with operating conditions.
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the nodes; because consensus is employed, misinformation by faulty nodes can be con-
trolled sufficiently well to ensure eventual stabilization. The disadvantage is a large
complexity, in terms of the local computations performed by each node, but, more im-
portantly, also in terms of the required communication bandwidth of Ω(n) between
each pair of nodes. Our key technical contribution is a way to achieve the same goal
without consensus, which enables to reduce the required bandwidth to O(1) broad-
casted bits per node in constant time.

Detailed Contributions
We describe and prove correct the novel FATAL pulse synchronization protocol, which
facilitates a direct implementation in standard asynchronous digital logic.4 An ex-
tended version of the protocol, termed FATAL+, generates clock ticks (i.e., integer-
labeled pulses) of improved skew and accuracy at a high frequency, as we discuss in
Section 6. The protocol self-stabilizes within O(n) time with probability 1 − 2−(n−f),5
in the presence of f < n/3 Byzantine faulty nodes, and is metastability-free by con-
struction after stabilization in failure-free runs (Theorem 6.2). While executing the
protocol, non-faulty nodes broadcast a constant number of bits in constant time. In
terms of distributed message complexity, this implies that stabilization is achieved
after broadcasting O(n) messages of size O(1), improving by factor Ω(n log n) on the
number of bits transmitted by previous algorithms.6 The protocol can sustain arbi-
trary relative clock drifts, which is crucial if the local clock sources are simple ring
oscillators (uncompensated ring oscillators suffer from frequency variations of up to
20% [Sundaresan et al. 2006]), Lemma 3.4.

If the number of faults is not overwhelming, i.e., a majority of at least n−f nodes con-
tinues to execute the protocol in an orderly fashion, recovering nodes and late joiners
(re)synchronize in constant time (Theorem 4.17). This property is highly desirable in
practical systems, in particular in combination with Byzantine fault-tolerance: Even if
nodes randomly experience transient faults on a regular basis, quick recovery ensures
that the mean time until failure of the system as a whole is substantially increased. All
this is achieved against a powerful adversary that, at time t, knows the whole history
of the system up to time t and does not need to choose the set of faulty nodes in ad-
vance (Corollary 5.5). For more benign settings—meaning that essentially the system
is oblivious to the point in time when a majority of components becomes non-faulty—
the stabilization time is constant in expectation (Corollary 5.6). Apart from bounded
drifts and communication delays, our solution only requires that receivers can distin-
guish senders when receiving a message (i.e., it can identify the channel on which the
incoming message is received, and there is a unique sender that uses this channel),
which is a property that arises naturally in hardware designs.

We finally show how the pulse synchronization protocol can be extended to the FA-
TAL+ clock synchronization protocol that computes bounded logical high-frequency
clocks with small skew (Section 6). FATAL cannot generate pulses at very high fre-
quency, yet we desire a high frequency of clock ticks. This is achieved by combining
a simple non-self-stabilizing Byzantine tolerant pulse synchronization algorithm with
FATAL. Adding a high-frequency oscillator to derive even faster clocks from FATAL+

4In Dolev et al. [2014], we describe how the pulse synchronization protocol can be implemented using asyn-
chronous digital logic.
5Note that the algorithm by Ben-Or et al. [2008] achieving an expected constant stabilization time in a
synchronous model needs to run for Ω(n) rounds to ensure the same probability of stabilization.
6We remark that Malekpour [2006; Malekpour [2009], which conceptually achieves the same complexity,
considers a much simpler model. In particular, individual clocks do not drift apart and the protocol can
sustain a single Byzantine fault only.
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is straightforward. Again, in the absence of faulty components the extended protocol
provably does not suffer from metastability once stabilized. During stabilization, the
fact that nodes merely undergo a constant number of state transitions in constant time
ensures a very small probability of metastable upsets.

Organization of the Article
The remainder of this work is structured as follows. In Section 2, we introduce the
formal framework in which our algorithm operates, and precisely state the problem to
be solved. Essentially, we utilize asynchronous state machines that communicate via
bounded-delay FIFO channels and have access to bounded clocks of bounded relative
drift. However, many details require careful attention, such as appropriately modeling
metastability and randomization. We proceed by presenting the FATAL pulse syn-
chronization algorithm in Section 3. As pseudo-code is not well-suited to represent the
logical flow of the algorithm, we derive a condensed graphical representation that fa-
cilitates grasping the main concepts, yet allows for a full specification of the algorithm.
This approach is complemented by a textual description that focuses on central ideas
and typical executions of the algorithm. The section concludes with a listing of a num-
ber of constraints the parameters of the algorithm must satisfy and a solution to the
respective system of inequalities.

Subsequently, we prove in Section 4 that the given algorithm indeed is a self-
stabilizing pulse synchronization algorithm as formulated in Section 2. Apart from
showing correctness, the statements are organized in a way attempting to highlight
the crucial properties of the algorithm. Moreover, the proofs clarify the details omitted
from the verbal description of the algorithm in Section 3, and connect the constraints
on the algorithm’s parameters to its structural properties. The more involved proofs
are prefaced by outlines summarizing their key arguments. Section 5 provides addi-
tional results that would have complicated or impeded the presentation of the core
proofs in Section 4.

We next present how to extend the pulse synchronization algorithm to the FATAL+
clock synchronization protocol in Section 6. While we stress that this is neither the
sole possibility to derive synchronized high-frequency clocks from pulse synchroniza-
tion nor its only application, we believe that this example convincingly confirms the
relevance of self-stabilizing pulse synchronization for self-stabilizing clock synchro-
nization. Finally, Section 7 reviews the algorithm in terms of asymptotic complexity,
which also includes implementation complexity, and concludes the article with an out-
look on future work.

2. MODEL
In this section, we introduce our system model. Our formal framework will be tied
to the peculiarities of hardware designs, which consist of modules that continuously7

compute their output signals based on their input signals.

Signals
Following Függer [2010]; Függer and Schmid [2012], we define (the trace of) a signal
to be a timed event trace over a finite alphabet S of possible signal states: Formally,
signal σ ⊆ S × R+

0 . All times and time intervals refer to a global reference time taken
from R+

0 , that is, signals reflect the system’s state from time 0 on. The elements of σ
are called events, and for each event (s, t) we call s the state of event (s, t) and t the time
of event (s, t). In general, a signal σ is required to fulfill the following conditions: (i) for

7In sharp contrast to classic distributed computing models, there is no computationally complex discrete
zero-time state-transition here.
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each time interval [t−, t+] ⊆ R+
0 of finite length, the number of events in σ with times

within [t−, t+] is finite, (ii) from (s, t) ∈ σ and (s′, t) ∈ σ follows that s = s′, and (iii)
there exists an event at time 0 in σ.

Note that our definition allows for events (s, t) and (s, t′) ∈ σ, where t < t′, without
having an event (s′, t′′) ∈ σ with s′ 6= s and t < t′′ < t′. In this case, we call event (s, t′)
idempotent. Two signals σ and σ′ are equivalent, iff they differ in idempotent events
only. We identify all signals of an equivalence class, as they describe the same physical
signal. Each equivalence class [σ] of signals contains a unique signal σ0 having no
idempotent events. We say that signal σ switches to s at time t iff event (s, t) ∈ σ0.

The state of signal σ at time t ∈ R+
0 , denoted by σ(t), is given by the state of the

event with the maximum time not greater than t.8 Because of (i), (ii) and (iii), σ(t) is
well defined for each time t ∈ R+

0 . Note that σ’s state function in fact depends on [σ]
only, i.e., we may add or remove idempotent events at will without changing the state
function.

Distributed System
On the topmost level of abstraction, we see the system as a set of V = {1, . . . , n} phys-
ically remote nodes and communication channels between all nodes, over which nodes
can broadcast their states. In the context of a VLSI circuit, “physically remote” actu-
ally refers to quite small distances (centimeters or even less). However, at gigahertz
frequencies, a local state transition will not be observed remotely within a time that is
negligible compared to clock speeds. We stress this point, since it is crucial that differ-
ent clocks (and their attached logic) are not placed too close to each other, as otherwise
they might fail due to the same physical error. This would render it pointless to devise
a system that is resilient to a certain fraction of the nodes failing.

Each node i comprises a number of input ports, namely Si,j for each node j, an output
port Si, and a set of local ports, introduced later on. An execution of the distributed
system assigns to each port of each node a signal. For convenience of notation, for any
port p, we refer to the signal assigned to port p in execution E simply by signal p in
execution E , or just signal p if the execution is clear from the context. We say that
node i is in state s at time t iff Si(t) = s. We further say that node i switches to state s
at time t iff signal Si switches to s at time t.

Nodes exchange their states via the channels between them: for each pair of nodes
i, j, output port Si is connected to input port Sj,i by a FIFO channel from i to j. Note
that this includes a channel from i to i itself. Intuitively, Si being connected to Sj,i
by a (non-faulty) channel means that Sj,i(·) should mimic Si(·), however, with a slight
delay accounting for the time it takes the channel to propagate events. In contrast to
an asynchronous system, this delay is bounded by the maximum delay d > 0.9

Formally we define: The channel from node i to j is said to be correct during [t−, t+]
iff there exists a function τi,j : R+

0 → R+
0 , called the channel’s delay function, such

that: (i) τi,j is continuous and strictly increasing, (ii) ∀t ∈ [max(t−, τi,j(0)), t+] : 0 <

t − τ−1
i,j (t) < d, and (iii) for each t ∈ [max(t−, τi,j(0)), t+], (s, t) ∈ Sj,i ⇔ (s, τ−1

i,j (t)) ∈ Si,
and for each t ∈ [t−, τi,j(0)), (s, t) ∈ Sj,i ⇒ s = Si(0). Note that because of (i), τ−1

i,j exists
in the domain [τi,j(0),∞), and thus (ii) and (iii) are well defined. We say that node i
observes node j in state s at time t if Si,j(t) = s.

8To facilitate intuition, we here slightly abuse notation, as this way σ denotes both a function of time and
the signal (trace), which is a subset of S × R+

0 . Whenever referring to σ, we will talk of the signal, not the
state function.
9With respect to O-notation, we normalize d ∈ O(1), as all time bounds simply depend linearly on d.
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Clocks and Timeouts
Nodes are never aware of the current reference time and we also do not require the
reference time to resemble Newtonian “real” time. Rather we allow for physical clocks
that run arbitrarily fast or slow,10 as long as their speeds are close to each other in
comparison. One may hence think of the reference time as progressing at the speed of
the currently slowest correct clock. In this framework, nodes essentially make use of
clocks with bounded drift.

Formally, clock rates are within [1, ϑ] (with respect to reference time), where ϑ > 1
is constant and ϑ − 1 is the (maximum) clock drift. A clock C is a continuous, strictly
increasing function C : R+

0 → R+
0 mapping reference time to some local time. Clock C

is said to be correct during [t−, t+] ⊆ R+
0 iff we have for any t, t′ ∈ [t−, t+], t < t′,

that t′ − t ≤ C(t′) − C(t) ≤ ϑ(t′ − t). Each node comprises a set of clocks assigned to
it, which allow the node to estimate the progress of reference time. However, clearly
unbounded, continuous valued clocks cannot be implemented by realistic hardware
components. Nodes having access to such devices thus would be an unrealistically
strong assumption. Also, we remark that in our context the actual value of a local
clock is meaningless for stabilization from arbitrary initial states.

To account for this, a node may not directly access the value of its clocks, but rather
only has access to so-called timeout ports of watchdog timers. Intuitively, a timeout is
a counter that is started upon switching to a certain state and expires after a given
period of time has passed on an associated local clock. However, our definition needs
to account for the fact that an implementation cannot realize an instant reset of a
timeout, as well as make sure that, in order to guarantee self-stabilization, a timeout
will eventually expire even if it is in an inconsistent state when becoming correct.11

Formally, a timeout is a triple (T, s, C), where T ∈ R+ is a duration, s ∈ S is a state,
and C is some local clock (each node may have several), say of node i. Each timeout
(T, s, C) has a corresponding timeout port TimeT,s,C , being part of node i’s local input
ports. Signal TimeT,s,C is Boolean, that is, its possible states are from the set {0, 1}.
We say that timeout (T, s, C) is correct during [t−, t+] ⊆ R+

0 iff clock C is correct during
[t−, t+] and the following holds:

(1) For each time ts ∈ [t−, t+] when node i (i.e., its state function Si) switches to state s,
there is a time t ∈ [ts, τi,i(ts)] such that (T, s, C) is reset, i.e., (0, t) ∈ TimeT,s,C .

(2) If TimeT,s,C(t−) = 0 and t ≤ t+ satisfies that C(t) − C(t−) = T , there is a minimal
time t′ ∈ [t−, t] when the timeout is either reset or it expires, i.e., TimeT,s,C switches
to 1.

(3) If the timeout is reset at time ts ∈ [t−, t+] and there is a time t ∈ (ts, t
+] such that

(i) C(t) − C(ts) = T and (ii) the timeout is not reset at any time from (ts, t], then
the timeout expires at time t.

(4) The timeout neither expires nor is it reset at any time not specified above.

We say that timeout (T, s, C) is expired at time t iff TimeT,s,C(t) = 1. For notational
convenience, we will omit the clock C and simply write (T, s) for both the timeout and
its signal.

A randomized timeout is a triple (D, s, C). Here, D is a discrete random distribution
on a finite interval I ⊂ R+

0 . Further s ∈ S is a state, and C is a clock. Its corresponding
timeout port TimeD,s,C behaves very similar to the one of an ordinary timeout, except
that whenever it is reset, the local time that passes until it expires next—provided

10Note that the formal definition excludes trivial solutions by requiring clocks’ progress to be in a linear
envelope of the reference time, see below.
11This is a fundamental requirement, as otherwise the initial state of the system could be deadlocked.
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that it is not reset again before that happens—follows the distribution D. Formally,
(D, s, C) is correct during [t−, t+] ⊆ R+

0 , if C is correct during [t−, t+] and the following
holds:

(1) For each time ts ∈ [t−, t+] when node i switches to state s, there is a time t ∈
[ts, τi,i(ts)] such that (D, s, C) is reset, i.e., (0, t) ∈ TimeD,s,C .

(2) Let D ⊂ I be the (finite) set of points so that for x ∈ D it holds that P [D = x] 6= 0. If
TimeT,s,C(t−) = 0 and t ≤ t+ satisfies that C(t)−C(t−) = maxD, there is a minimal
time t′ ∈ [t−, t] when the timeout is either reset or it expires, i.e., TimeT,s,C switches
to 1.

(3) If the timeout is reset at time ts ∈ [t−, t+] and there is a time t ∈ (ts, t
+] such that

(i) C(t) − C(ts) = x ∈ D and (ii) the timeout is not reset at any time from (ts, t],
then (1, t) ∈ TimeD,s,C with probability

P [D = x|D ≥ x] =
P [D = x]

P [D ≥ x]
,

independently of any other properties of the execution. In other words, whether
(1, t) ∈ TimeD,s,C is determined at time t by an independent flip of a (biased) coin,
and in case (1, t) /∈ TimeD,s,C , no additional information on when the timeout is
going to expire is revealed.

(4) The timeout neither expires nor is it reset at any time not specified above.

We will apply the same notational conventions to randomized timeouts as we do for
regular timeouts. Moreover, for the sake of a straightforward presentation, our algo-
rithm will assume an idealized randomized timeout with a perfectly uniform distribu-
tion D, which can be obtained as the limit of a sequence of discrete distributions. It is
not hard to see that the analysis can be performed equally well with an equidistant
discretization of the perfect uniform distribution of step width O(d) without affecting
the asymptotic of the timeout bounds stated in Condition 3.3; the effect on the timeouts
can be made arbitrarily small by sending the discretization parameter to 0.

The reason why we require that the probability of (1, t) ∈ TimeD,s,C must be inde-
pendent of other properties of the execution is that we must avoid that the portion of a
node’s behavior that is randomized can be predicted.12

We remark that the above definition does not map the random distributionD and the
clock C to the distribution of the next time t ∈ [t0, t

+) satisfying that (1, t) ∈ TimeD,s,C ,
for two reasons. Firstly, re-entering state s might reset the timeout before a coin
flip results in (1, t) ∈ TimeD,s,C for some t. Secondly, the definition permits that
(1, t), (1, t′) ∈ TimeD,s,C for t′ > t without the timeout being reset between t and t′.
However, in the latter case the event (1, t′) will be idempotent and of no significance for
the state of the timeout port TimeD,s,C . Thus, for two subsequent times t0, t′0 ∈ [t−, t+]
when the node switches to s, we get the meaningful statement that for any t ∈ [t0, t

′
0),

P [TimeD,s,C switches to 1 at time t] = P [D = C(t)− C(t0)] .

We remark that these definitions allow for different timeouts to be driven by the
same clock, implying that an adversary may derive some information on the state of
a randomized timeout before it expires from the node’s behavior, even in case it can-
not directly access the values of the clock driving the timeout. However, in practice it
might be very difficult to guarantee that the behavior of a dedicated clock that drives

12This is a non-trivial property. In particular, by drawing from a known random distribution of the expiration
time, nodes could just determine, at time t0, at which local clock value the timeout shall expire next. This
would, however, essentially reveal when the timeout will expire prematurely, greatly reducing the power of
randomization!

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:10 D. Dolev et al.

a randomized timeout is indeed independent of the execution of the algorithm. On the
other hand, the more general definition imposes fewer restriction on the implementa-
tion and is thus preferrable.

Memory Flags
Besides timeout and randomized timeout ports, another kind of node i’s local ports are
memory flags. For each state s ∈ S and each node j ∈ V , Memi,j,s is a local port of node i.
It is used to memorize whether node i has observed node j in state s since the last reset
of the flag. We say that node i memorizes node j in state s at time t if Memi,j,s(t) = 1.
Formally, we require that signal Memi,j,s switches to 1 at time t iff node i observes
node j in state s at time t and Memi,j,s is not already in state 1. The times t when
Memi,j,s is reset, i.e., (0, t) ∈ Memi,j,s, are specified by node i’s state machine, which is
introduced next.

State Machine
It remains to specify how nodes switch states and when they reset memory flags. We
do this by means of state machines that may attain states from the finite alphabet S. A
node’s state machine is specified by (i) the set S, (ii) a function tr, called the transition
function, from T ⊆ S2 to the set of Boolean predicates on the alphabet consisting of
expressions “p = s” (used for expressing guards), where p is from the node’s input and
local ports and s is from the set of possible states of signal p, and (iii) a function re,
called the reset function, from T to the power set of the node’s memory flags.

Intuitively, the transition function specifies the conditions (guards) under which a
node switches states, and the reset function determines which memory flags to reset
upon the state change. Formally, let P be a predicate on node i’s input and local ports.
We define P holds at time t by structural induction: If P is equal to p = s, where p is
one of node i’s input and local ports and s is one of the states signal p can obtain, then
P holds at time t iff p(t) = s. Otherwise, if P is of the form ¬P1, P1 ∧ P2, or P1 ∨ P2, we
define P holds at time t in the straightforward manner.

We say node i follows its state machine during [t−, t+] iff the following holds: Assume
node i observes itself in state s ∈ S at time t ∈ [t−, t+], i.e., Si,i(t) = s. Then, for each
(s, s′) ∈ T , both:

(1) Node i switches to state s′ at time t iff tr(s, s′) holds at time t and i is not already
in state s′.13 (In case more than one guard tr(s, s′) is true at the same time, we
assume that an arbitrary tie-breaking ordering exists among the transition guards
that specifies to which state to switch.)

(2) Node i resets memory flag m at some time in the interval [t, τi,i(t)] iff m ∈ re(s, s′)
and i switches from state s to state s′ at time t. This correspondence is one-to-one.

A node is defined to be non-faulty during [t−, t+] iff during [t−, t+] all its timeouts
and randomized timeouts are correct and it follows its state machine. If it employs
multiple state machines (see below), it needs to follow all of them.

In contrast, a faulty node may change states arbitrarily. Note that while a faulty
node may be forced to send consistent output state signals to all other nodes if its
channels remain correct, there is no way to guarantee that this still holds true if chan-
nels are faulty.14

13Recall that for a short period a node may still observe itself in state s albeit already having switched to s′.
14A single physical fault may cause this behavior, as at some point a node’s output port must be connected to
remote nodes’ input ports. Even if one places bifurcations at different physical locations striving to mitigate
this effect, if the voltage at the output port drops below specifications, the values of corresponding input
channels may deviate in unpredictable ways.
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Metastability
In our discrete system model, the effect of metastability is captured by the lacking
capability of state machines to instantaneously take on new states: Node i decides on
state transitions based on the delayed status of port Si,i instead of its “true” current
state Si. This non-zero delay from Si to Si,i bears the potential for metastability, as
a successful state transition can only be guaranteed if after a transition guard from
some state s to some state s′ becomes true, all other transition guards from s to s′′ 6= s′

remain false during this delay at least.
This is exemplified in the following scenario: Assume node i is in state s at some

time t. However, since it switched to s only very recently, it still observes itself in state
s′ 6= s at time t via Si,i. Given that there is a transition (s′, s′′) in T , s′′ 6= s, whose
condition is fulfilled at time t, it will switch to state s′′ at time t (although state s has
not even stabilized yet). That is, due to the discrepancy between Si,i and Si, node i
switches from state s to state s′′ at time t even if (s, s′′) is not in T at all.15

In a physical chip design, these invalid changes of state might even result in incon-
sistent operations on the local memory, up to the point where it cannot be properly
described in terms of S, and thus in terms of our discrete model, anymore. Even worse,
the state of i is part of the local memory and the node’s state signal may attain an
undefined value that is propagated to other nodes and their memory. While avoiding
the latter is the task of the input ports of a non-faulty node, our goal is to prevent this
erroneous behavior in situations where input ports attain legitimate values only.

Therefore, we define node i to be metastability-free in an execution, if the situation
described above does not occur.

Definition 2.1 (Metastability-Freedom). Node i ∈ V is called metastability-free dur-
ing [t−, t+] (in execution E), iff for each time t ∈ [t−, t+] when i switches to some state
s ∈ S in execution E , it holds that τi,i(t) < t′, where t′ is the infimum of all times in
(t, t+] when i switches to some state s′ ∈ S in E .

Multiple State Machines
In some situations the previous definitions are too stringent, as there might be differ-
ent “components” of a node’s state machine that act concurrently and independently,
mostly relying on signals from disjoint input ports or orthogonal components of a sig-
nal. We model this by permitting that nodes run several state machines in parallel.
All these state machines share the input and local ports of the respective node and
are required to have disjoint state spaces. If node i runs state machines M1, . . . ,Mk,
node i’s output signal is the product of the output signals of the individual machines.
Formally we define: Each of the state machines Mj , 1 ≤ j ≤ k, has an additional
own output port sj . The state of node i’s output port Si at any time t is given by
Si(t) := (s1(t), . . . , sk(t)), where the signals of ports s1, . . . , sk are defined analogously to
the signals of the output ports of state machines in the single state machine case. Note
that by this definition, the only (local) means for node i’s state machines to interact
with each other is by reading the delayed state signal Si,i.

We say that node i’s state machine Mj is in state s at time t iff sj(t) = s, where
Si(t) = (s1(t), . . . , sk(t)), and that node i’s state machine Mj switches to state s at time
t iff signal sj switches to s at time t. Since the state spaces of the machines Mj are
disjoint, we will omit the phrase “state machine Mj” from the notation, i.e., we write
“node i is in state s” or “node i switched to state s”, respectively.

15Note that while the “internal” delay τi,i(t)− t can be made quite small, it cannot be reduced to zero if the
model is meant to reflect physical implementations.
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Recall that the various state machines of node i are as loosely coupled as remote
nodes, namely via the delayed status signal on channel Si,i only. Therefore, it makes
sense to consider them independently also when it comes to metastability.

Definition 2.2 (Metastability-Freedom – Multiple State Machines). We denote state
machine M of node i ∈ V as being metastability-free during [t−, t+] (in execution E), iff
for each time t ∈ [t−, t+] when M switches from some state s ∈ S to another state s′ ∈ S
in execution E , it holds that τi,i(t) < t′, where t′ is the infimum of all times in (t, t+]
when M switches to some state s′′ ∈ S in E .

Note that by this definition the different state machines may switch states concur-
rently without suffering from metastability.16 It is even possible that some state ma-
chine suffers metastability, while another is not affected by this at all.17

Problem Statement
The purpose of the pulse synchronization protocol is that nodes generate synchronized,
well-separated pulses by switching to a distinguished state accept. Self-stabilization
requires that it starts to do so within a bounded time, for any possible initial state.
However, as our protocol makes use of randomization, there are executions where this
does not happen at all; instead, we will show that the protocol stabilizes with proba-
bility one in finite time.

In a nutshell, our algorithm tolerates an adversary type that is commonly referred to
as a strong adversary. An execution can be seen as a sequence of random experiments,
namely the non-faulty nodes’ coin flips, where the non-faulty components behave ac-
cording to their specifications and all other aspects of the execution (faulty nodes’ be-
havior, the rate of non-faulty clocks within [1, ϑ], etc.) are under the full control of the
adversary. Our goal is to achieve stabilization quickly with a large probability (over
the non-faulty nodes’ coin flips) for any possible strategy of the adversary.

To give a precise meaning to this statement, we define the following probability
spaces.

Definition 2.3 (Adversarial Spaces). Denote for i ∈ V by Ci = (Ci,1, . . . , Ci,ci) the
tuple of clocks of node i. An adversarial space is a probabilistic space that is defined
by subsets of nodes W ⊆ V and channels E ⊆ V 2, a time interval [t−, t+], a proto-
col P (nodes’ ports, state machines, etc.) as previously defined, the tuple of all clocks
(C1, . . . , Cn), a function Θ assigning each (i, j) ∈ V 2 a delay τi,j : R+

0 → R+
0 , an initial

state E0 of all ports, and an adversarial function A. Here A is a function that maps a
partial execution E|[0,t] until time t (i.e., all ports’ values until time t), W , E, [t−, t+], P,
C, and Θ to the states of all faulty ports during the time interval (t,∞).

The adversarial space AS(W,E, [t−, t+],P, C,Θ, E0,A) is now defined on the set of all
executions E satisfying that (i) the initial state of all ports is given by E|[0,0] = E0, (ii)

for all i ∈ V and k ∈ {1, . . . , ci} : CEi,k = Ci,k, (iii) for all (i, j) ∈ V 2, τEi,j = τi,j , (iv) nodes
in W are non-faulty during [t−, t+] with respect to the protocol P, (v) all channels in
E are correct during [t−, t+], and (vi) given E|[0,t] for any time t, E|(t,t′] is given by
A, where t′ is the infimum of times greater than t when a non-faulty node switches

16However, care has to be taken when implementing the inter-node communication of the state components
in a metastability-free manner.
17This is crucial for the algorithm we are going to present. For stabilization purposes, nodes comprise a state
machine that is prone to metastability. However, the state machine generating pulses (i.e., having the state
accept, cf. Definition 2.4) does not take its output signal into account once stabilization is achieved. Thus,
the algorithm is metastability-free after stabilization in the sense that we guarantee a metastability-free
signal indicating when pulses occur.

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



FATAL: Robust Pulse Generation A:13

states. Thus, except for when randomized timeouts expire, E is fully predetermined
by the parameters of AS.18 The probability measure on AS is induced by the random
distributions of the randomized timeouts specified by P.

To avoid confusion, observe that if the clock functions and delays do not follow the
model constraints during [t−, t+], the respective adversarial space is empty and thus of
no concern. This, admittedly cumbersome, definition provides the means to formalize a
notion of stabilization that accounts for worst-case drifts and delays and an adversary
that knows the full state of the system up to the current time.

We are now in the position to formally state the pulse synchronization problem in
our framework. Intuitively, the goal is that after transient faults cease, nodes should
with probability one eventually start to issue well-separated, synchronized pulses by
switching to a dedicated state accept. Thus, as the initial state of the system is arbi-
trary, specifying an algorithm19 is equivalent to defining the state machines that run
at each node, one of which has a state accept.

Definition 2.4 (Self-Stabilizing Pulse Synchronization). Given a set of nodes W ⊆
V and a set E ⊆ V × V of channels, we say that protocol P is a (W,E)-stabilizing
pulse synchronization protocol with skew Σ and accuracy bounds T− > Σ and T+ that
stabilizes within time T with probability p iff the following holds. Choose any time
interval [t−, t+] ⊇ [t−, t−+T + Σ] and any adversarial space AS(W,E, [t−, t+],P, ·, ·, ·, ·)
(i.e., C, Θ, E0, andA are arbitrary). Then executions fromAS satisfy with probability at
least p that there exists a time ts ∈ [t−, t−+T ] so that, denoting by ti(k) the time when
node i ∈ W switches to a distinguished state accept for the kth time after ts (ti(k) =∞
if no such time exists),

(i) ti(1) ∈ (ts, ts + Σ),
(ii) |ti(k)− tj(k)| ≤ Σ if max{ti(k), tj(k)} ≤ t+,

(iii) |ti(k + 1)− ti(k)| ≥ T− if ti(k + 1) ≤ t+, and
(iv) |ti(k + 1)− ti(k)| ≤ T+ if ti(k) + T+ ≤ t+.

Note that the fact that A is a deterministic function and, more generally, that we
consider each space AS individually, is no restriction: As P succeeds for any adversar-
ial space with probability at least p in achieving stabilization, the same holds true for
randomized adversarial strategies A and worst-case drifts and delays.

3. THE FATAL PULSE SYNCHRONIZATION PROTOCOL
In this section, we present our self-stabilizing pulse generation algorithm. In order to
be suitable for implementation in hardware, it needs to utilize very simple rules only.
It is stated in terms of state machines as introduced in the previous section.

The overall idea of the pulse synchronization algorithm is as follows. In a stable
state, the nodes will switch to the accept state in a well-synchronized fashion, then
sleep for some time (by means of timeouts) and then initialize a fault-tolerant voting
procedure to re-establish tight synchronization and generate the next pulse. The sleep-
ing phase here makes sure that the voting signals that are considered for, say, the kth
pulse, are indeed for this pulse and not lingering signals from pulse k − 1.

This strategy fails in case the nodes stop to follow the above scheme in a synchro-
nized fashion. In order to recover this behavior from arbitrary states, the algorithm

18This follows by induction starting from the initial configuration E0. UsingA, we can always extend E to the
next time when a correct node switches states, and when non-faulty nodes switch states is fully determined
by the parameters of AS except for when randomized timeouts expire. Note that the induction reaches any
finite time within a finite number of steps, as signals switch states finitely often in finite time.
19We use the terms “algorithm” and “protocol” interchangeably throughout this work.
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needs to succeed in generating one pulse to “restart” the system in case the pulse
generation deadlocks. To this end, nodes detecting that less than n− f nodes are syn-
chronized will switch to a recover state. Once all non-faulty nodes are in this state and
a long timeout expired, a synchronized pulse is again generated by means of voting.
However, it may also be the case that a subset of the nodes keeps generating pulses
without ever detecting that system-wide synchronization has been lost. In this case,
the recovering nodes need to join the ongoing pulse generation. Careful design of the
algorithm avoids that these two mechanisms interfere. Ultimately, we rely on gener-
ation of a “randomized pulse” from a lower layer to establish a minimal amount of
consistency among all non-faulty nodes’ states. This facilitates a (sufficiently) consis-
tent perception of the system state by all non-faulty nodes so that the two mechanisms
can coexist without impeding each other’s success. After stabilization, the lower layer
is ignored by the pulse generation mechanism, therefore the algorithm provides deter-
ministic guarantees during stable operation.

Since the ultimate goal of the pulse generation algorithm is to interact with an ap-
plication layer (cf. Section 6), we introduce a possibility for a coupling with such a layer
in the pulse generation algorithm itself. For each node i, we add a further port NEXTi,
which can be driven by node i’s application layer. As for other state signals, its output
raises flag Memi,NEXT, which for simplicity we call NEXTi as well. This mechanism
enables to use the slow pulses generated by the algorithm from this layer as “phase
delimiters” that serve to stabilize the application layer algorithm, but avoid to disrupt
the application layer’s correct operation once stabilization is achieved. The latter is
done by allowing the application layer to influence the time between two successively
generated pulses within a range that does not prevent the pulse generation algorithm
from stabilizing correctly.

Many application layers may not require this feedback mechanism. In Section 6, we
give an example of an application layer that indeed does rely on the NEXTi signals:
We show how to couple a non-self-stabilizing clock synchronization routine with the
pulse generation algorithm to make the former self-stabilizing. The feedback mecha-
nism here serves a two-fold purpose. First, it avoids the need to directly force clock
transitions of the clock synchronization layer on occurrence of a pulse whenever the
clocks are running properly, which enables a tighter synchronization guarantee than
provided by the pulse synchronization algorithm (whose more complex logic is likely
to entail large delays). Second, by triggering the next “phase” when the previous one
is completed, we avoid that the clocks are halted for a large period of time because
the nodes wait for the next pulse before proceeding. This is for instance important if
the system is supposed to respond quickly to external measurements or commands,
disallowing long periods of “sleep”.

Since we will show that the pulse algorithm stabilizes independently of the behavior
of the NEXT signal, and the clock synchronization routine presented in Section 6 is
designed such that it will stabilize once the pulse generation algorithm did so, we can
partition the analysis of the compound algorithm into two parts. When proving the
correctness of the pulse generation algorithm in Section 4, we thus assume that for
each node i, NEXTi is arbitrary.

3.1. Overview of the Algorithm
Before we describe the various state machines of the algorithm in detail, let us start
with a conceptual overview of the algorithm that gives intuition on its structure and
the purpose of its components. We also cover how the extension generating clocks we
describe in more detail in Section 6 will couple to the pulse synchronization algorithm.
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Each node runs several state machines that are organized in a layered structure and
communicate by reading their state signals. On each layer, the state machines of the
(at least n − f ) non-faulty nodes cooperate in order to establish certain synchroniza-
tion properties. The higher is a state machine in the hierarchy, the stronger are these
guarantees; the lower it is, the weaker are the synchronization properties its input
ports’ signals need to satisfy for stabilization. The lowest-layer state machine utilizes
randomization to recover from any configuration. Each other layer utilizes auxiliary
information from the layer below to stabilize. Finally, we will “attach” another state
machine on the top level that will output the logical clocks Li.

More specifically, we have the following state machines:

— For the specific application of synchronizing logical clocks that we are going to
describe in Section 6, at the top level each node employs a copy of the quick cycle state
machine (Figure 16 in Section 6). Once all layers stabilized, the quick cycle behaves
like a much faster version of the next lower layer, the main state machine, which
generates the pulses. It relies on the pulses in order to ensure eventual stabilization.
Once the system is stabilized, it consistently and deterministically increases the logical
clock at a high frequency while guaranteeing small clock imprecision.

— The main state machine (Figure 3) is the centerpiece of the pulse generation algo-
rithm. Once stabilized, it generates slow, roughly synchronized pulses within certain
frequency bounds, by repeatedly switching to the state accept. These pulses are used
as a “heartbeat” for stabilizing the application layer; at each pulse, the quick cycle’s
clocks are reset to 0 and the quick cycle’s state machines are forced into state accept+.
By itself, however, the main state machine is not capable of recovering from every pos-
sible initial configuration of the non-faulty nodes. In certain cases, it requires some
coarse synchrony to be established first in order to stabilize, which is probabilistically
provided by the underlying layer. We remark that, once stabilized, the main state ma-
chine operates fully independently of this layer (and thus deterministically).

— The auxiliary information potentially required for stabilization by the main state
machine is provided by a simple intermediate layer we refer to as extension of the main
state machine (Figure 5). Essentially, it is supposed to be consistently reset by the
underlying layer and then communicate information vital for stabilization to the main
state machine. This information depends both on the time of reset and the current
states of the n main state machines, which it therefore monitors.

— Finally, the resynchronization routine (Figure 6) utilizes randomized timeouts
to consistently generate events at all non-faulty nodes that could be understood as
“randomized pulses”. Such a pulse is correct for our purposes if all non-faulty nodes
generate a respective event in coarse synchrony and no non-faulty node generates an-
other such event within a time window of a certain length. The crux of the matter is
that an occasional occurrence of such pulses suffices to achieve stabilization determin-
istically. Relying on randomness on this layer greatly simplifies the task of overcoming
the interference by faulty nodes at low costs in both time and communication. We note
that the main state machine masks this randomness once stabilization is achieved,
facilitating deterministic behavior of the higher levels and, ultimately, the application
layer.

We will now present the individual state machines of the pulse synchronization al-
gorithm in more detail; the discussion of the quick cycle is deferred to Section 6.

3.2. Basic Cycle
The full pulse generation algorithm makes use of a rather involved interplay between
conditions on timeouts, states, and thresholds to converge to a safe state despite a lim-
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Fig. 1. Basic cycle of node i once the algorithm has stabilized.

ited number of faulty components. As our approach is thus complicated to present in
bulk, we break it down into pieces. Moreover, to facilitate giving intuition about the
key ideas of the algorithm, in this subsection we assume that there are never more
than f < n/3 faulty nodes, i.e., the remaining n− f nodes are non-faulty within [0,∞).
We further assume that channels between non-faulty nodes (including loopback chan-
nels) are correct within [0,∞). We start by presenting the basic cycle that is repeated
every pulse once a safe configuration is reached (see Figure 1).

We employ graphical representations of the state machine of each node i ∈ V . States
are represented by circles containing their names, while transition (s, s′) ∈ T is de-
picted as an arrow from s to s′. The guard tr(s, s′) is written as a label next to the
arrow, and the reset function’s value re(s, s′) is depicted in a rectangular box on the
arrow. To keep labels more simple we make use of some abbreviations. Recall that in
the notation of timeouts (T, s, C) the driving clock C is omitted. We write T instead of
(T, s) if s is the same state which node i leaves if the condition involving (T, s) is satis-
fied. Threshold conditions like “≥ f + 1 s ”, where s ∈ S, abbreviate Boolean predicates
that reach over all of node i’s memory flags Memi,j,s, where j ∈ V , and are defined in
a straightforward manner. If in such an expression we connect two states by “or”, e.g.,
“≥ n − f s or s′ ” for s, s′ ∈ S, the summation considers flags of both types s and s′.
Thus, such an expression is equivalent to

∑
j∈V max{Memi,j,s,Memi,j,s′} ≥ f + 1. For

any state s ∈ S, the condition Si,i = s, (respectively, ¬(Si,i = s)) is written in short as
“in s” (respectively, “not in s”). We write “true” instead of a condition that is always
true (like e.g. “(in s) or (not in s)” for an arbitrary state s ∈ S). Finally, re(·, ·) always
requires to reset all memory flags of certain types, hence we write e.g. propose if all
flags Memi,j,propose are to be reset.

We now introduce the basic flow of the algorithm once it stabilized (see Figure 2 for
intuition; a more detailed explanation of the figure follows later), i.e., once all n−f non-
faulty nodes are well-synchronized, switching to state accept within 2d. Recall that the
remaining up to f < n/3 faulty nodes may produce arbitrary signals on their outgoing
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ready
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Fig. 2. Part of an execution of the basic cycle in a system of n = 4 nodes, where f = 1 node is faulty.

channels. A pulse is locally triggered by switching to state accept. Note that this starts
two timeouts, (T1,accept) and (T2,accept). Assume that at some time all non-faulty
nodes switch to state accept within a time window of 2d, i.e., pulses are generated by
non-faulty nodes within a time interval of size 2d. Supposing that T1 ≥ 3ϑd, these nodes
will observe, and thus memorize, each other and themselves in state accept within
a time interval of size 3d and thus before T1 expires at any non-faulty node for the
following reasons: Assuming that the first non-faulty node switches to accept at time
t, its timeout (T1,accept) is reset immediately when switching to accept at earliest and
thus does not expire before t+ T1/ϑ. It thus cannot switch to another state before time
t+ T1/ϑ. The last non-faulty node, by assumption, will switch to accept by time t+ 2d.
Its state will be propagated to all non-faulty nodes by at most another d later. By the
constraint T1 ≥ 3ϑd, at that time, all non-faulty nodes are still in state accept.

Hence, the nodes will switch to state sleep upon expiration of their T1 timeouts. From
state sleep, they will switch to states sleep→ waking, waking, and finally ready, where
the timeout (T2,accept) is determining the time this takes, as it is considerably larger
than ϑ(2ϑ+ 2)T1. The intermediate states serve the purpose of achieving stabilization,
hence we leave them aside for the moment.

Nodes in ready will switch to propose as soon as (i) they memorize f + 1 nodes in
propose or accept, (ii) T3 is expired and NEXTi is memorized as having been observed
in state 1, or (iii) T4 expires. Using memory flags instead of the immediate signals here
is vital in order to avoid that faulty nodes can induce metastability, e.g. by switching
back a propose signal to 0 just when the (f + 1)-threshold is reached, or continuously
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maintaining a voltage on the channel that cannot be clearly interpreted as either 0
or 1.20

Assume for a moment that all non-faulty nodes are observed in state ready with
all their propose and accept flags reset to 0 before the first node switches to propose;
we will show later that this is indeed the case. Thus, the first non-faulty node that
switches to state accept again cannot do so before it memorizes at least n − f nodes
in state propose. This implies that at the time when it switches to accept, at least
n − 2f ≥ f + 1 non-faulty nodes must be in state propose. Hence, the rule that nodes
switch to propose if they memorize f + 1 nodes in states propose or accept will take
effect, i.e., the remaining non-faulty nodes in state ready switch to propose after less
than d time. Another d time later all non-faulty nodes in state propose will have become
aware of this and switch to state accept as well, as the threshold of n−f nodes in states
propose or accept is reached. Thus the cycle will be complete and the reasoning can be
repeated inductively.

It remains to show that indeed the memory flags are properly reset and nodes are
observed in state ready before a non-faulty node switches to propose. To see this, recall
that by time t + T1 + 4d, no non-faulty node is observed in state accept (or propose,
for that matter) anymore until the first node switches to propose again. Checking the
timeout conditions for the transition from sleep to sleep → waking and recalling that
T1 ≥ 3ϑd, we see that no non-faulty node switches to waking earlier than time t+ (2 +
1/ϑ)T1 > t + T1 + 4d. Hence, no node will memorize a non-faulty node in propose or
accept after resetting these flags upon switching to waking and ready (and before a
node switches to propose again). This entails that the first node switching to propose
must do so because T4 expired or because T3 expired and its NEXT memory flag is
true. As all nodes switched to accept during [t, t+ 2d), at non-faulty nodes the timeouts
(T2,accept) and subsequently (T3, ready) or (T4, ready) cannot expire again before time
t + (T2 + min{T3, T4})/ϑ. On the other hand, each non-faulty node switches to accept
by time t + 2d and hence resets T2 by time t + 3d. It will expire by time t + T2 + 3d >
t + (2ϑ + 2)T1 + 6d (the latest possible time when a node observes itself in waking),
making it switch to ready, in which it will be observed by time t + T2 + 4d. Therefore,
the constraint (T2 + min{T3, T4})/ϑ ≥ T2 + 4d is sufficient to ensure that indeed all
non-faulty nodes observe themselves in state ready before the first one switches to
propose.

Clearly, for the above line of argumentation to be valid, the algorithm could be sim-
pler than stated in Figure 1. We already mentioned that the motivation of having three
intermediate states between accept and ready is to facilitate stabilization. Similarly,
there is no need to make use of the accept flags in the basic cycle at all; in fact, it
adversely affects the constraints the timeouts need to satisfy for the above reasoning
to be valid. However, the accept flags are much better suited for diagnostic purposes
than the propose flags, since nodes are expected to switch to accept in a small time
window and remain in state accept for a small period of time only (for all our results,
it is sufficient if T1 = 4ϑd). Moreover, two different timeout conditions for switching
from ready to propose are unnecessary for correct operation of the pulse synchroniza-
tion routine. The second timeout is introduced in combination with the NEXT signal in
order to allow for a seamless coupling to the application layer.

20These metastability-related issues are not covered by Definition 2.1, as they are to be addressed by an
implementation of the state machine representation utilized in this work; a discussion is beyond the scope
of this article. In contrast, Definition 2.1 focuses on state transitions where branching is possible, e.g., from
accept to either recover or sleep in Figure 3, which require to enable a metastability-free implementation by
careful algorithmic design beyond mere use of memory flags.
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Fig. 3. Overview of the core routine of node i’s self-stabilizing pulse algorithm.

Figure 2 shows part of an execution of the basic cycle executed by four nodes, one of
them being faulty. Communication delays between nodes (at the time when the sending
node switches state) are depicted by dotted arrows. Note however, that a node contin-
uously transmits its state, and not only when switching state. In order not to overload
the figure we only drew those arrows responsible for the receiving node making a state
transition and did not draw transmissions of a node to itself. An exception is node 4
(the faulty node) that only sends its state correctly to node 2, making it switch to ac-
cept earlier than the other nodes. Node 1 is slow, in the sense that it has slow clocks
and (the maximum of) d time elapses between the node switching to a new state and
node 1 resetting its timeouts (e.g., between switching to accept and resetting timeouts
(T1,accept) and (T2,accept)). Node 2 is fast: it immediately resets its timeouts and runs
a fast clock. Nodes 2 and 3 switch to propose because of their timeouts (T3, ready) or
(T4, ready) expiring. The slow node 1, however, switches to propose because it memo-
rized f + 1 = 2 nodes in propose, namely, nodes 2 and 3. Observe that all non-faulty
nodes switch to accept within 2d time again: Node 1 switches to accept because it mem-
orized itself, node 2 and node 3 in propose, and node 2 in accept, which is more than
the required 2f + 1 = 3 nodes in propose or accept. Node 2 switches to accept because
it memorizes itself and nodes 3 and 4 in propose, and node 3 because it memorizes
nodes 1 and 2 in accept.

3.3. Main Algorithm
We proceed by describing the main routine of the pulse algorithm in full. It is graphi-
cally presented in Figure 3. Except for the states recover and join and additional resets
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of memory flags, the main routine is identical to the basic cycle. The purpose of the two
additional states is the following: Nodes switch to state recover once they detect that
something is wrong, that is, non-faulty nodes do not execute the basic cycle as out-
lined in Section 3.2. This way, non-faulty nodes will not continue to confuse others by
sending for example state signals propose or accept despite clearly being out-of-sync.
There are various consistency checks that nodes perform during each execution of the
basic cycle. The first one is that in order to switch from state accept to state sleep,
non-faulty nodes need to memorize at least n− f nodes in state accept. If this does not
happen within 4d ≤ T1/ϑ time after switching to state accept, by the arguments given
in Section 3.2, the nodes could not have entered state accept within 2d of each other.
Therefore, any node making this observation can be certain that something is wrong
and switches to state recover upon expiration of T1. Next, whenever a non-faulty node
is in state waking, there should be no non-faulty nodes in states accept or recover. Con-
sidering that the node resets its accept and recover flags upon switching to waking, it
follows that no node should memorize f + 1 or more nodes in states accept or recover
at any time when it observes itself in state waking (even if it never observes this many
nodes in either of the states). If it does, however, it again switches to state recover.
Last but not least, during a synchronized execution of the basic cycle, no non-faulty
node may be in state propose for more than a certain amount of time before switching
to state accept. Therefore, nodes will switch from propose to recover when timeout T5

expires.
There are three basic stabilization scenarios by which correct operation may be re-

stored:

(i) All non-faulty nodes are in state recover or switch to this state due to the con-
sistency checks described above. Eventually, they will switch to state join due to a
timeout mechanism, and essentially the same voting scheme employed in the basic
cycle (≥ f + 1 nodes memorized in join “pull” others into join, and a threshold of n− f
nodes memorized in join or its immediate successor states are required to switch to
propose) is utilized to generate a clean pulse that “reboots” the system.

(ii) At least n − 2f ≥ f + 1 nodes keep executing the basic cycle in a synchronized
fashion. The consistency checks of the basic cycle together with the requirement that
n − f nodes must be observed in accept within a short time interval (roughly T1) in
order to switch from accept to sleep make sure that a smaller number will inevitably
lead to scenario (i). Having f + 1 or more non-faulty nodes switch to sleep→ waking in
a short time period then is used to establish (rough) synchrony among all non-faulty
nodes. Starting certain timeouts at such a resynchronization point (see Definitions 3.1
and 3.2) and choosing the timing constraints accordingly, we ensure that the following
sequence of transitions occurs:
— All non-faulty nodes on the basic cycle switch to either ready or recover.
— All non-faulty nodes in recover switch to join before any node in state ready could

possibly switch to propose due to an expired timeout.
— In all possible cases, the two “pulling” rules involving (f + 1)-thresholds guarantee

that all non-faulty nodes will switch to accept within 3d time, at the latest once the
T4 timeouts expire and all non-faulty nodes switched to states join or propose.
(iii) At least n − f nodes execute the basic cycle in a synchronized fashion. Any

further node will either start following the basic cycle as well or end up in recover,
from where it will “jump on the train” by switching to accept when the majority of
nodes switches to accept on the next pulse. Scenarios (i) and (ii) already suffice to
recover from arbitrary initial states, but require time Ω(n) in the worst case, as we
will discuss later. Scenario (iii) can be integrated without affecting Scenarios (i) or (ii)
and succeeds within O(1) time.
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We point out that Scenario (i) (or something similar) cannot be avoided if we want
to have a recovery mechanism where nodes leave the basic cycle,21 as otherwise the
system could deadlock. On the other hand, Scenario (ii) is necessary because nodes
must never wait for observing more than n − f state transitions when executing the
basic cycle, as otherwise the system would deadlock if f or more nodes crash. Hence, f
Byzantine nodes can always mimic to be non-faulty to n−2f non-faulty nodes executing
the basic cycle in order to prevent them from switching to recover; these n − 2f nodes
cannot distinguish this setting from f faulty nodes claiming to be in state recover and
n− f nodes properly advancing on the basic cycle and therefore must not leave it.

These considerations reveal that we need to reconcile two conflicting goals: We must
be able to “reboot” the system after a “complete crash”, which, given that initial states
are arbitrary, cannot rely on any assumptions on synchrony, yet we must also be able
to make a minority of nodes in recover accept the timing imposed by f + 1 or more
non-faulty nodes that execute the basic cycle and cannot detect that the system is not
operating correctly. The difficulty here is that it is vital that all non-faulty nodes decide
consistently on a common time base or Scenario (i) applies.

A

(f+1)

B

(f/2)

C

(f/2)

faulty

(f)

waking

in waking

ready
T3

propose will not switch

to accept

recover

in recover
and active

join accept

recover

in recover
and passive

ignored since
in passive

propose

Fig. 4. Part of an execution where nodes are prevented to join the basic cycle in synchrony.

To get some intuition on this issue, consider the partial execution of the main state
machine given in Figure 4. The states active and passive of the extension of the main
state machine, which will be introduced shortly, keep track of a node’s observation on
a resynchronization point. For now, it is enough to know that a node will switch from
passive to active (and therefore start timeout T6) when it notices n− f nodes switching
to sleep → waking, whereas T7 is a large timeout that leaves sufficient time for the
“synchronized” recovery mechanism to work before we fall back to Scenario (i). The

21Not employing such an approach turns out to be even more difficult, as the nodes’ behavior on the basic
cycle is constrained by the properties we expect from the stable system.
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execution in Figure 4 describes a setting where at least f + 1 non-faulty nodes execute
the basic cycle in synchrony (set A, initially in state waking), at least f nodes initially
are in recover (set B ∪ C), nodes in set B are in state active, and nodes in set C are
in state passive; in particular, the condition “not in dormant” is satisfied. All memory
flags are cleared and all timeouts have just been reset.

The nodes in A will switch to ready (the faulty nodes will not send recover or active
signals to them at this stage), and we assume that set B will switch to join because
T6 expires as prescribed by Scenario (ii). Nodes in C are not in active and therefore
will not switch to join (as the faulty nodes do not send join signals) anytime soon.
When the nodes in A switch to propose, the nodes in C will thus not participate in the
voting process, implying that the faulty nodes have full control on which nodes from
A∪B switch to accept and when (in Figure 4, faulty nodes only send to B making them
switch to accept, whereas nodes in C remain in recover). For instance, by careful control
of non-faulty nodes’ clocks (within the valid bounds) and faulty nodes communication,
the adversary can arrange for some non-faulty nodes switching from propose to recover
because they have been stuck in propose until T5 expires, exactly at the time when at
the nodes in C timeout T7 expires and they switch to join and subsequently to propose.

While this example does not provide a complete non-stabilizing execution, it shows
a behavior of the system that certainly is to be shunned. If the adversary gains too
much control of when a subset of the nodes rejoins the execution of the basic cycle, this
can be used to make some nodes leave the basic cycle just when others enter it again.
This way, the adversary can maintain a split of the system, where always subsets of
the nodes follow different stabilization strategies that require different timing, and
ultimately leverage this to prevent stabilization. Any individual such scenario is not
very illustrative, as typically it can be resolved by a simple modification of the main
state machine. However, when devising the algorithm, we encountered the problem
that any such attempt just made the same issue reappear for another execution and
another combination of states.

In the example from Figure 4, the underlying issue was that sets B and C had
differing views whether a common timebase had been established by the nodes still
executing the basic cycle. Once such a common timebase can indeed be established, it
can be used to correctly “initialize” any states and memory flags that do not interact
with the basic cycle in case all non-faulty nodes already execute the basic cycle in a
synchronized fashion. The design of the main state machine thus can be seen as a way
to separate the problem of stabilization sufficiently from the indefinite execution of
the basic cycle such that it can be solved by an “attached” algorithm that terminates
within bounded time, and provide a way to properly initialize and run this algorithm
every now and then. This is the purpose of the remaining state machines we have not
discussed yet.

3.4. Extension of the Main State Machine
The extension of the main state machine (Figure 5) controls the execution of the im-
plicit stabilization algorithm. Its three states correspond to the stabilization algorithm
not running (dormant), running without having established a common time base so
far (passive), and running with a common time base (supposedly) being established by
having observed at least f + 1 nodes in state sleep → waking since the algorithm was
started. The latter is captured by the sleep→ waking flags that are reset upon starting
a stabilization attempt, which in turn is controlled by the state resync of the resynchro-
nization algorithm that will be introduced shortly. The join flags are also reset when
switching to passive, as they will be required only once during a stabilization attempt.
Note that the nodes cannot enter state join of the main state machine and are forced
to leave it whenever in dormant, ensuring that the join flags will be properly cleared
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Fig. 5. Extension of node i’s core routine.

when initializing stabilization. We formalize the notion of “initializing stabilization”
by the following definition, which incorporates the predecessor state of resync in the
resynchronization state machine.

Definition 3.1 (Resynchronization Points). Given W ⊆ V , time t is a W -resynchro-
nization point iff each node in W switches to state supp → resync in the time interval
(t, t+ 2d).

Despite the simplicity of the control structure the extension state machine provides,
it is in general not trivial to guarantee a correct initialization even if all non-faulty
nodes switch to resync at the same instant in time and remain in this state sufficiently
long for T7 to expire (which essentially is equivalent to termination of the implicit sta-
bilization algorithm). In the unfortunate event that a resynchronization point is con-
tained in or close to the small time window during which different non-faulty nodes
executing the basic cycle may be observed in state sleep → waking, some nodes may
immediately switch to active while others remain in passive. A sufficient condition to
avoid this is to assume that no node is in state sleep during a specific time window
around a resynchronization point t. A similar issue arises if nodes are still in state join
very close to a resynchronization point (i.e., they have not already been in dormant for
a while), as this may interfere with a clean reset of the join flags. Our proof of stabiliza-
tion will rely on resynchronization points without these caveats, which is expressed by
the following definition.

Definition 3.2 (Good Resynchronization Points). A W -resynchronization point at
time t is called good iff no node from W switches to state sleep during (t − ∆g, t),
where ∆g := (2ϑ+ 3)T1 + 2d, and no node is in state join during [t− T1 − 2d, t+ 4d).

It remains to explain how stabilization is properly initialized, or, equivalently, how
we ensure that good resynchronization points occur within O(n) time with a large
probability, regardless of the initial state of the system.

3.5. Resynchronization Algorithm
The resynchronization routine is specified in Figure 6. It provides some synchroniza-
tion that is akin to that of a pulse, except that such “weak pulses” occur at random
times, and may be generated inconsistently even after the algorithm as a whole has
stabilized. Since the main routine operates independently of the resynchronization
routine once the system has stabilized, we can afford the weaker guarantees of the
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Fig. 6. Resynchronization algorithm, comprising two state machines executed in parallel at node i. The
states supp j and supp k (as well as the respective transitions) are generic examples of the states supp 1 to
supp n comprised by the state machine

routine: If it succeeds in generating a good resynchronization point merely once, the
main routine will stabilize deterministically.

In order to clarify that despite having a linear number of states (supp1, . . . , suppn),
this part of the algorithm can be implemented using 2-bit communication channels be-
tween state machines only, we generalize our description of state machines as follows.
If a state is depicted as a circle separated into an upper and a lower part, the upper
part denotes the local state, while the lower part indicates the signal state to which
it is mapped. A node’s memory flags then store the respective signal states only, i.e.,
remote nodes do not distinguish between states that share the same signal. Clearly,
such a machine can be simulated by a machine as introduced in the model section. The
advantage is that such a mapping can be used to reduce the number of transmitted
state bits; for the resynchronization routine given in Figure 6, we merely need two bits
(init/wait and none/supp) instead of dlog(n+ 3)e+ 1 bits.

The basic idea behind the resynchronization algorithm is the following: Every now
and then, nodes will try to initiate agreement on a resynchronization point. This is
the purpose of the small state machine on the left in Figure 6, which makes the node
briefly switch to init once its randomized timeout R3 expires and then switch back
again. Assume for the moment that each node will do so constantly often in Θ(n2)
time, and between each two such attempts it will let Ω(n2) time pass. Hence, it is safe
to ignore any initialization message by a node that sent such a message recently, and
each node will “listen” to a faulty node at most O(1) times within an interval of length
Θ(n2). Therefore, faulty nodes can interfere at most O(n2) many times with stabiliza-
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Fig. 7. Part of an execution of the resynchronization algorithm in a system of n = 4 nodes in the absence of
faulty nodes.

tion attempts of non-faulty nodes within O(n2) time. Choosing constants accordingly
and taking into account that the adversary cannot predict when a randomized timeout
will expire, we can make sure that there is a large probability that a non-faulty node
will initialize stabilization at some time when faulty nodes do not interfere; here, it
is vital to ensure that once the expiration of a timeout is revealed (i.e., an init signal
is triggered), it is already too late for the faulty nodes to prevent a good resynchro-
nization point. We remark that the use of randomness serves not only to overcome the
faulty nodes’ interference, but conveniently makes it likely that a resynchronization
point is good, because most of the time nodes will be (a) in state none (and therefore in
dormant and not in join) and (b) not in state sleep of the basic cycle.

The resynchronization algorithm in Figure 6 follows the same principle, but refines
it by an additional voting step in order to reduce the time bound from above (and
thus also the overall stabilization time) from Θ(n2) to Θ(n). By requiring n − f supp
signals in order to switch to supp → resync, we force the adversary to “invest” at
least n − 2f > n/3, i.e., a linear number of init signals from faulty nodes to non-
faulty nodes in order to convince a non-faulty node to switch to supp → resync (and
subsequently resync). Any smaller number of signals will not interfere with a non-
faulty node initializing resynchronization, as nodes in supp states still react to init
signals by other nodes.

Consider now the state machine displayed on the right of Figure 6. We will illustrate
how the routine is intended to work. Figure 7 shows part of an execution discussed in
the following, in the case of a four node system. Assume that at the time t when a non-
faulty node i (node 1 in the figure) switches to state init, all non-faulty nodes are not
in any of the states supp → resync, resync, or supp i, and at all non-faulty nodes the
timeout (R2, supp i) has expired. Then, no matter what the signals from faulty nodes
or on faulty channels are (in the figure all nodes are non-faulty), each non-faulty node
will be in one of the states supp j, j ∈ V , or supp → resync at time t + d. Hence, they
will observe each other (and themselves) in one of these states at some time smaller
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Fig. 8. The adversary spoiling an attempt to generate a resynchronization point in a system of n = 4 nodes.

than t + 2d. These statements follow from the various timeout conditions of at least
2ϑd and the fact that observing22 node i in state init will make nodes switch to state
supp i if in none or supp j, j 6= i. Hence, all of them will switch to state supp→ resync
during (t, t+ 2d), i.e., t is a resynchronization point. Note that timeout R1 makes sure
that no non-faulty node will leave resync again too soon, leaving sufficient time for the
main routine to stabilize.

The scenario we just described relies on the fact that at time t no non-faulty node
is in state supp → resync or state resync, and (R2, supp i) is expired at all non-faulty
nodes. Figure 8 shows how the adversary can use inconsistent communication to im-
pede the stabilization process by preventing that a non-faulty node’s transition to init
will trigger a resynchronization point. We will choose R3/ϑ > R2 � R1, implying that
when R3 expires at node i again after it switched to state init, (R2, supp i) is indeed
expired at all nodes and they switched back to state none (unless other init signals
interfered). With this in mind, we can see that the requirement that non-faulty nodes
are neither in supp → resync nor resync is achieved with a large probability by choos-
ing R3 as a uniform distribution over some interval [ϑ(R2 + 3d), ϑR2 + Θ(nR1)]: Other
nodes will switch to init O(n) times during this interval, each time “blocking” other
nodes for at most O(R1) time, and, by the arguments given above, faulty nodes may
interfere at most O(n) times in total as well, also “blocking” at most O(R1) time. If the
random choice picks any other point in time during this interval, a resynchronization
point occurs. Even if the clock speed of the clock driving R3 is manipulated in a worst-
case manner (affecting the density of the probability distribution with respect to real
time by a factor of at most ϑ), just increasing the size of the interval further accounts
for this.

We emphasize that the above strategy fails if the adversary can predict when a time-
out is going to expire, which is sketched in Figure 9 for n = 7 and f = 2. Initially, all
5 non-faulty nodes are in state none with all timeouts R1 and R2 expired. The time-
outs R3 have just been reset, and the “random” choices determined that they expire

22Since nodes will act immediately when seeing an init signal, utilizing memory flags here would be point-
less.
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1
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3

4

5

6
(faulty)

7
(faulty)

in none

in none

in none

in none

in none

init

init

init

init

init

(R2, supp 6)
(R2, supp 7)

init init

init init

init init

init

Fig. 9. The adversary preventing stabilization for Θ(n) time in a system of n = 7 nodes. We only show
the init signals by faulty nodes, transitions to init, and R2 timeouts relating to faulty nodes here; for each
switch of a non-faulty node to init, the adversary follows the approach shown in Figure 8 to foil occurrence
of a resynchronization point. The pattern can be repeated unless the non-faulty nodes “get lucky” in that
their R3 timeouts line up neatly (i.e., 4 nodes switch to init in a time window to narrow for R2 to expire, yet
there is sufficient time in between for R1 to expire and previously fooled nodes to switch back to none).

at almost equidistant times, i.e., the random choices produced a well-spread and thus
good distribution from the point of view of the algorithm. However, since the adversary
knows the respective times in advance, he can just repeat the strategy shown in Fig-
ure 8 for each time when a non-faulty node switches to init, never “wasting” any init
signals to non-faulty nodes.

Concretely, shortly before a non-faulty node i sends an init signal at time t, say, at
time t−10ϑd, the faulty nodes will send an init signal on f+1 = 3 channels (to different
non-faulty nodes), causing the recipients to switch to some supp state. Furthermore,
both of them sent a supp signal to these nodes, causing them to switch to supp→ resync
and subsequently resync before the init signal is broadcasted by the respective non-
faulty node. The remaining two non-faulty nodes that are in state none at time t will
reset their supp flags upon switching to supp i when receiving the init signal from i.
Hence, they will not proceed to supp→ resync because the threshold “≥ n−f = 5 supp”
cannot be reached within 2ϑd local time, and they will switch back to none.
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Since there are 5 attempts to spoil, each of which requires 3 init signals from faulty
to non-faulty nodes, the adversary can repeat the above strategy by sending at most 2
init signals over each of the 2 · 5 channels between faulty and non-faulty nodes within
the considered period of time. Simple computations reveal that the adversary can in
fact prevent a good resynchronization point indefinitely, provided that the local time
when a randomized timeout will expire becomes known when the timeout is started;
the scenario can be generalized to arbitrarily large n, n = 3f + 1.23

Given that we assume a strong adversary that knows the entire state of the sys-
tem at all times, it is thus vital to meet the independence condition on the random
choices stated in the definition of randomized timeouts. In particular, one must not
“pre-evaluate” the distribution when the timeout is started. Rather, whenever a local
time is reached where the timeout may expire, a random choice is made deciding only
whether the timeout indeed does expire or will do so later. On the other hand, in prac-
tice it can very well be feasible to simply draw from the random distribution when the
timeout is started, since in many settings it is reasonable to assume that the expira-
tion time of the timeout is revealed to the remaining system no sooner than it actually
affects the respective node’s behavior. Moreover, employing pseudo-randomness will
be sufficient unless the system is to be resilient against an actual attacker; it seems
absurd to assume that a fault pattern that predicts future pseudo-random choices will
emerge naturally.

3.6. Timeout Constraints
Condition 3.3 summarizes the constraints we require on the timeouts for the core rou-
tine and the resynchronization algorithm to act and interact as intended.

Condition 3.3 (Timeout Constraints). Recall that ϑ > 1 and ∆g := (2ϑ + 3)T1 + 2d.
Define

λ :=

√
25ϑ− 9

25ϑ
∈
(

4

5
, 1

)
. (1)

The timeouts need to satisfy the constraints

T1 ≥ 4ϑd (2)
T2 ≥ 3ϑ∆g + 7ϑd = (6ϑ2 + 9ϑ)T1 + 13ϑd (3)

T3 ≥ (2ϑ2 + 4ϑ)T1 − T2 + ϑT6 + 7ϑd
(2,7)
> (ϑ− 1)T2 + 6ϑd (4)

T4 ≥ T3 (5)
T5 ≥ max {(ϑ− 1)T2 − T3 + ϑT4 + 7ϑd, (ϑ− 1)T1 + ϑ(T2 + T4)− T6} (6)

T6 ≥ ϑT2 − 2ϑT1 + 2ϑd
(3)
> (2ϑ2 + 3ϑ)T1 + 6ϑd (7)

T7 ≥ (4ϑ− 2)T1 + ϑ(T2 + T4 + T5) + T6 + 2ϑd

(7)
> (2ϑ2 + 7ϑ− 2)T1 + ϑ(T2 + T4 + T5 + 8d) (8)

23We remark that in case ϑ is not too large, over every interval of Θ(n) time, there is a positive probability
that the times when the non-faulty nodes’ timeouts R3 expire are distributed such that the adversary,
knowing them in advance, still cannot prevent stabilization. However, Chernoff ’s bound shows that the
probability for this to happen is exponentially small in n−f ; hence, eventual stabilization may be guaranteed
with probability 1 even for an omniscient adversary, but the expected stabilization time is exponential in n.
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R1 ≥ max
{
ϑT7 + (4ϑ2 + 8ϑ)d, ϑ(2T1 + 2T2 + 2T4 + T5 + 12d)− 2T1

}
(9)

R2 ≥
2ϑ(R1 + 6∆g + T1 + (8ϑ+ 11)d)(n− f)

1− λ
(10)

R3 = uniformly distributed random variable on
[ϑ(R2 + 3d), ϑ(R2 + 3d) + 8(1− λ)R2] (11)

λ ≤ T2 − 2ϑ∆g − (ϑ− 1)T1 − 2ϑd

T2 − (ϑ− 1)T1 − ϑd
. (12)

We need to show that this system can always be solved. Furthermore, we would
like to be able to couple the pulse generation algorithm to application algorithms that
need to control the timing of their own progression (once stabilization is achieved),
regardless of how much the time span for the tasks such an algorithm performs be-
tween successive pulses may vary (within known bounds). More concretely, we would
like to couple our algorithm with a simple clock synchronization algorithm presented
in Section 6. Its idea is to let each node generate M ≥ 1 fast pulses between any two
FATAL pulses. For this algorithm to work correctly, we must account for the possi-
ble drift of the fast M -clock and the desynchronization of the FATAL pulses, making
sure that the M th pulse is generated at a time allowing interaction with the under-
lying FATAL algorithm. This requirement translates to being able to make the ratio
(T2 + T4)/(ϑ(T2 + T3 + 4d)) arbitrarily large: (T2 + T4)/ϑ is the minimal gap between
successive (FATAL) pulses generated at each node, provided that the states of all the
NEXT signals are constantly zero (by Inequality (3), T2 is much larger than T1 and
therefore controls how long it takes to reach ready from accept), and T2 +T3 + 4d is the
sum of the maximal desynchronization between synchronized FATAL nodes (2d) and
the maximal time it takes a node to switch to ready and for T3 to expire after generat-
ing a (FATAL) pulse (at this point, nodes will be ready to respond to NEXTi being true
by switching to propose).

LEMMA 3.4. For any d, ϑ ∈ O(1), Condition 3.3 can be satisfied with T1, . . . , T7, R1 ∈
O(1) and R2 ∈ O(n), where the ratio

α :=
(T2 + T4)/ϑ

T2 + T3 + 4d

may be chosen to be an arbitrarily large constant.

PROOF. First, observe that if Inequality (3) holds, the denominator in the right hand
side of Inequality (12) is positive. Thus, we can equivalently state Inequality (12) as

T2 ≥
2ϑ∆g + (1− λ)(ϑ− 1)T1 + (2− λ)ϑd

1− λ
. (13)

Since λ ∈ (4/5, 1), this inequality clearly imposes a stronger constraint than Inequal-
ity (3), hence we can replace Inequalities (3) and (12) with this one and obtain an
equivalent system. The requirement of (T2 +T4)/(ϑ(T2 +T3 +4d)) = α can be rephrased
as

T4 ≥ (αϑ− 1)T2 + αϑ(T3 + 4d) . (14)

Again, clearly this constraint is stronger than Inequality (5), hence we drop Inequal-
ity (5) in favor of Inequality (14).

We satisfy the inequalities by iteratively defining the values of the left hand sides in
accordance with the respective constraint, in the order (2), (13), (7), (4), (14), (6), (8),
(9), and finally (10). Note that this is feasible, as in each step the right hand side of the
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current inequality is an expression in d, ϑ, α, and, in case of Inequality (10), n − f .24

We obtain the solution

T1 := 4ϑd

T2 :=
50ϑ3d

1− λ

T6 :=
50ϑ4d

1− λ

T3 :=
(ϑ2 − 1)50ϑ3d

1− λ
+ 31ϑ3d

T4 :=
(αϑ3 − 1)50ϑ3d

1− λ
+ 35αϑ4d

T5 :=
(αϑ3 − 1)50ϑ4d

1− λ
+ 39αϑ5d

T7 :=
100αϑ8d

1− λ
+ 90αϑ5d

R1 :=
(3αϑ3 − 1)50ϑ5d

1− λ
+ 121αϑ6d

R2 :=
((3αϑ3 − 1)100ϑ6 + (1− λ)(242αϑ7 + 310ϑ2))(n− f)d

(1− λ)2
.

As α ∈ O(1) was arbitrary, d and ϑ are constants, and λ ∈ (4/5, 1) depends on ϑ only
and is thus a constant as well, these values satisfy the asymptotic bounds stated in
the lemma, concluding the proof.

4. ANALYSIS
In this section we show that the presented protocol is a (W,E)-stabilizing pulse syn-
chronization protocol, for proper choices of the set of nodes W , the set of channels E,
the skew bound Σ, and the accuracy bounds T−, T+, stabilizing in time T (k) ∈ O(kn)
with probability 1 − 2−k(n−f) (for any k ∈ N). Moreover, we show that if a set of at
least n − f nodes fire pulses within the accuracy bounds, then other non-faulty nodes
synchronize within O(R1) time deterministically.

4.1. Basic Statements
To start our analysis, we need to define the basic requirements for stabilization. Essen-
tially, we need that a large set W of at least n − f > 2n/3 nodes is non-faulty and the
channels between them are correct. However, the first part of the stabilization process
is simply that nodes “forget” about past events that are captured by their timeouts, as
the associated information may be incomplete or simply wrong. Therefore, we demand
that the nodes in W indeed have been non-faulty for a time period that is sufficiently
large to ensure that all timeouts have been reset at least once after the considered set
of nodes became non-faulty. The largest possible timeout duration is determined by
the maximal possible value of R3, ϑ(R2 + 3d) + 8(1 − λ)R2. We add another d time to
account for the maximum delay, to make sure that these resets in fact took place when
the information conveyed by the channels in W ×W has been accurate.

24For simplicity, we refrain from demanding equality and drop terms in order to get more condensed expres-
sions. For ϑ ≤ 1.2, for example, the increase in the bounds is not significant.
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Definition 4.1 (Coherent Nodes). The subset of nodes W ⊆ V is called coherent dur-
ing the time interval [t−, t+], iff during [t−− (ϑ(R2 + 3d) + 8(1− λ)R2)− d, t+] all nodes
in W are non-faulty, and all channels Si,j , i, j ∈W , are correct.

We will show that if a coherent set of at least n − f nodes fires a pulse, i.e., switches
to accept, in tight synchrony, this set will henceforth generate pulses deterministically
and with controlled frequency, as long as the set remains coherent. This motivates the
following definitions.

Definition 4.2 (Stabilization Points). We call time t a W -stabilization point (W -
quasi-stabilization point) iff all nodes in W switch to accept during [t, t+2d) ([t, t+3d)).

Throughout this section, we assume the set of coherent nodes W with |W | ≥ n − f to
be fixed and consider all nodes in and channels originating from V \W as (potentially)
faulty.

As a first step, we observe that at times when W is coherent, indeed all nodes reset
their timeouts, basing the respective state transitions on proper perception of nodes
in W .

LEMMA 4.3. IfW is coherent during the time interval [t−, t+], with t− ≥ ϑ(R2+3d)+
8(1 − λ)R2 + d, any (randomized) timeout (T, s) of any node i ∈ W expiring at a time
t ∈ [t−, t+] has been reset at least once since time t−−(ϑ(R2+3d)+8(1−λ)R2). If t′ denotes
the time when such a reset occurred, for any j ∈ W it holds that Si,j(t′) = Sj(τ

−1
j,i (t′)),

where τ−1
j,i (t′) ≥ t′ − d, i.e., at time t′, i observes j in a state j attained when it was

non-faulty.

PROOF. According to Condition 3.3, the largest possible value of any (randomized)
timeout is ϑ(R2 + 3d) + 8(1 − λ)R2. Hence, any timeout that is not expired at time
t−− (ϑ(R2 + 3d) + 8(1− λ)R2) ≥ 0 expires before time t− or is reset at least once. As by
the definition of coherency all nodes inW are non-faulty and all channels between such
nodes are correct during [t−− (ϑ(R2 + 3d) + 8(1−λ)R2), t+], this implies the statement
of the lemma.

Phrased informally, any corruption of timeouts and channel states eventually wears
off, as correct timeouts expire and correct links remember no events that lie d or more
time in the past. Proper cleaning of the memory flags is more complicated and will be
explained further down the road.

Throughout this section, we will assume for the sake of simplicity that the set W is
coherent at all times and use this lemma implicitly, e.g., we will always assume that
nodes from W will observe all other nodes from W in states that they indeed had been
at up to less than d time ago, expiring of randomized timeouts at non-faulty nodes
cannot be predicted accurately, etc. We will discuss more general settings in Section 5.

We proceed by showing that once all nodes in W switch to accept in a short period
of time, i.e., a W -quasi-stabilization point is reached, the algorithm guarantees that
synchronized pulses are generated deterministically with a frequency that is bounded
both from above and below.

THEOREM 4.4. Suppose t is a W -quasi-stabilization point. Then

(i) all nodes in W switch to accept exactly once within [t, t+ 3d), and do not leave accept
until t+ 4d; and

(ii) there will be a W -stabilization point t′ ∈ (t+ (T2 + T3)/ϑ, t+ T2 + T4 + 5d) satisfying
that no node in W switches to accept in the time interval [t+ 3d, t′); and that

(iii) each node i’s, i ∈ W , core state machine (Figure 1) is metastability-free during [t +
3d, t′ + 3d].
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PROOF OUTLINE. We show that the initial synchrony provided by a W -quasi-
stabilization point ensures that all nodes will switch through states accept, sleep,
sleep → waking, waking, ready, propose, accept and re-establish tight synchrony by
the voting mechanism for switching from ready over propose to accept, as described in
Section 3.2 and Figure 2. The time bounds on t′ follow from examining the timeouts
involved in these transitions, and some additional “reserve” in the timeout constraints
guaranteed by Condition 3.3 ensure that each state is safely attained before the next
state transition occurs.

i

j

k

t t + 3d

t + 4d

t + T1 + 4d t′
t′ + d

t′ + 2d

accept

ti

ready
≥ T2/ϑ

recover or
propose (inf)

t′i

≥ min(T3, T4)/ϑ
accept

accept

tj

T1 expires,
sleep

tj,s

≤ T1 + d
sleep→ waking waking

tw

ready accept

accept

tk

accept (inf)

f + 1 nodes from W
switch to propose

Fig. 10. Part of an execution discussed in the proof of Statement (ii) of Theorem 4.4.

PROOF. Proof of (i): Due to Inequality (2), a node does not leave the state accept
earlier than T1/ϑ ≥ 4d time after switching to it. Thus, no node can switch to accept
twice during [t, t + 3d). By definition of a quasi-stabilization point, every node does
switch to accept in the interval [t, t+ 3d) ⊂ [t, t+ T1/ϑ). This proves Statement (i).

Proof of (ii): For each i ∈ W , let ti ∈ [t, t+ 3d) be the time when i switches to accept.
By (i) ti is well-defined. Further let t′i be the infimum of times in (ti,∞) when i switches
to recover or propose.25 In the following, denote by i ∈W a node with minimal t′i.

Figure 10 depicts part of an execution discussed in the following. We will show that
all nodes switch to propose via states sleep, sleep → waking, waking, and ready in the
presented order. By (i) nodes do not leave accept before t + 4d. Thus at time t + 4d,
each node in W is in state accept and observes each other node in W in accept. Hence,
each node in W memorizes each other node in W in accept at time t + 4d. For each
node j ∈ W , let tj,s be the time node j’s timeout T1 expires first after tj . Then tj,s ∈
(tj + T1/ϑ, tj + T1 + d).26 Since |W | ≥ n− f , each node j switches to state sleep at time

25Note that we follow the convention that inf ∅ = ∞ if the infimum is taken with respect to a (from above)
unbounded subset of R+

0 .
26The upper bound comprises an additive term of d since T1 is reset at some time from (tj , tj + d).
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tj,s. Hence, by time t+ T1 + 4d, no node will be observed in state accept anymore (until
the time when it switches to accept again).

When a node j ∈ W switches to state waking at the minimal time tw larger than tj ,
it does not do so earlier than at time t+T1/ϑ+(2+1/ϑ)T1 = t+(2+2/ϑ)T1 > t+T1 +4d.
As we just observed, this implies that all nodes in W have already left accept at least
d time ago. Moreover, they cannot switch to accept again until t′i as it is minimal and
nodes need to switch to propose or recover before switching to accept. Hence, nodes in
W are not observed in state accept during (t + T1 + 4d, t′i], in particular not by node j.
Furthermore, by the definition of t′i and the choice of i, nodes in W are not observed in
state recover during (tw − d, t′i]. As it resets its accept and recover flags upon switching
to waking, j will hence neither switch from waking to recover nor from ready to propose
during (tw, t

′
i).

Now consider node i. By the previous observation, it will not switch from waking to
recover, but to ready, following the basic cycle. Consequently, it must wait for timeout
T2 to expire, i.e., cannot switch to ready earlier than at time t + T2/ϑ. By definition of
t′i, node i thus switches to propose at time t′i. As it is the first node that does so, and it
reset its propose flag upon switching to ready (at a time larger than tw, when all nodes
from W were already observed in states sleep, sleep → waking, waking, or ready) this
cannot happen before timeouts T3 or T4 expire, i.e., before time

t+
T2

ϑ
+

min{T3, T4}
ϑ

(5)
= t+

T2 + T3

ϑ

(4)
> t+ T2 + 5d . (15)

All other nodes j ∈ W will switch to waking and, for the first time after tj , observe
themselves in state waking at a time within (t + T1 + 4d, t + (2 + ϑ)T1 + 7d). Recall
that unless they memorize at least f + 1 nodes in accept or recover while being in state
waking, they will all switch to state ready by time

max{t+ T2 + 4d, t+ (2ϑ+ 2)T1 + 7d} (3)
= t+ T2 + 4d . (16)

As we just showed that t′i > t + T2 + 5d, this implies that at time t + T2 + 5d all nodes
in W are observed in state ready, and none of them leaves before time t′i.

Now choose t′ to be the infimum of times from (t+(T2+T3)/ϑ, t+T2+T4+4d] (depicted
as the shaded area in Figure 10) when a node in W switches to state accept.27 Because
of Inequality (15), node j cannot switch to propose within [tj , t + (T2 + T3)/ϑ). Thus,
(after time t + 3d) node j does not switch to accept again earlier than time t′, and
timeout T5 cannot expire at j until time

t+
T2 + T3 + T5

ϑ

(6)
≥ t+ T2 + T4 + 7d ≥ t′ + 3d , (17)

making it impossible for j to switch from propose to recover at a time within [tj , t
′+3d].

What is more, a node from W that switches to accept must stay there for at least
T1/ϑ > 3d time. Thus, by definition of t′, no node j ∈ W can switch from accept to
recover at a time within [tj , t

′ + 3d]. Hence, no node j ∈ W can switch to state recover
after tj , but earlier than time t′ + 3d. It follows that no node in W can switch to other
states than propose or accept during [t + T2 + 4d, t′ + 3d]. In particular, no node in W
resets its propose flags during [t+ T2 + 5d, t′ + 2d] ⊃ [t′i, t

′ + 2d].
If at time t′ a node in W , say node k, switches to state accept, n − 2f ≥ f + 1 of

its propose flags corresponding to nodes in W are true, i.e., all correspond to a flag in
state 1. As the node resets its propose flags at the most recent time when it switched
to ready and no nodes from W have been observed in propose between this time and

27Note that since we take the infimum on (t+(T2+T3)/ϑ, t+T2+T4+4d], we have that t′ ≤ t+T2+T4+4d.
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t′i, it holds that f + 1 nodes in W switched to state propose during [t′i, t
′). Since we

established that no node resets its propose flags during [t′i, t
′ + 2d], it follows that all

nodes are in state propose by time t′ + d. Consequently, all nodes in W will observe all
nodes in W in state propose before time t′ + 2d and switch to accept, i.e., t′ ∈ (t+ (T2 +
T3)/ϑ, t+ T2 + T4 + 4d) is a W-stabilization point. Statement (ii) follows.

On the other hand, if at time t′ no node in W switches to state accept, it follows that
t′ = t+T2+T4+4d, by definition of the infimum. As all nodes observe themselves in state
ready by time t + T2 + 5d, they switch to propose before time t + T2 + T4 + 5d = t′ + d
because T4 expired. By the same reasoning as in the previous case, they switch to
accept before time t′ + 2d, i.e., Statement (ii) holds as well.

Proof of (iii): We have shown that within [tj , t
′ + 3d], any node j ∈ W switches to

states along the basic cycle only. To show the correctness of Statement (iii), it is thus
sufficient to prove that, whenever j switches from state s of the basic cycle to s′ of the
basic cycle during time [tj , t

′ + 3d], the transition from s to recover is disabled from
the time it switches to s′ until it observes itself in this state. We consider transitions
tr(accept, recover), tr(waking, recover), and tr(propose, recover) one after the other:

(1) tr(accept, recover): We showed that node j’s tr(accept, sleep) is satisfied before time
t+4d ≤ t+T1/ϑ, i.e., before tr(accept, recover) can hold, and no node resets its accept
flags less than d time after switching to state sleep. When j switches to state accept
again at or after time t′, T1 will not expire earlier than time t′ + 4d.

(2) tr(waking, recover): As part of the reasoning about Statement (ii), we derived that
tr(waking, recover) does not hold at nodes from W observing themselves in state
waking.

(3) tr(propose, recover): The additional slack of d in Inequality (17) ensures that T5

does not expire at any node in W switching to state accept during (t′, t′+2d) earlier
than time t′ + 3d.

Since [tj , t
′ + 3d] ⊃ [t+ 3d, t′ + 3d], Statement (iii) follows.

Inductive application of Theorem 4.4 shows that by construction of our algo-
rithm, nodes in W provably do not suffer from metastability upsets once a W -quasi-
stabilization point is reached, as long as all nodes in W remain non-faulty and the
channels connecting them are correct. Unfortunately, it can be shown that it is impos-
sible to ensure this property during the stabilization period, thus rendering a formal
treatment infeasible. This is not a peculiarity of our system model, but a threat to any
model that allows for the possibility of metastable upsets as encountered in physical
chip designs. However, it was shown that, by proper chip design, the probability of
metastable upsets can be made arbitrarily small [Fuchs et al. 2009].28 For the purpose
of the stabilization analysis in the remainder of this section and Section 5, we will
therefore assume that all non-faulty nodes are metastability-free in all executions.

The next lemma reveals a very basic property of the main algorithm that is satisfied
if no non-faulty nodes may switch to state join in a given period of time. It states that
if a non-faulty node switches to state sleep, other non-faulty nodes cannot remain too
far ahead or behind in case they are on the basic cycle as well.

28Note that it is feasible to incorporate this issue into the model by means of the probability space, as it is
beyond control of “reasonable” adversaries to control signals on faulty channels (or ones that originate at
non-faulty nodes) precisely enough to ensure more than a small probability of a metastable upset. However,
since it is (at best) impractical to consider metastable states of the system in our theoretical framework,
essentially this approach boils down to counting the number of state transitions during stabilization where
a non-faulty node is in danger of becoming metastable and control this risk by means of the union bound.
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LEMMA 4.5. Assume that at time tsleep, some node from W switches to sleep and no
node from W is in state join during [tsleep − T1 − 2d, tsleep + 2T1 + 2d]. Then

(i) at time tsleep + 2T1 + 2d, each node in W is in one of the states sleep, sleep→ waking,
waking, or recover;

(ii) each node from W in states sleep, sleep→ waking, or waking at time tsleep + 2T1 + 2d
switches to accept and resets its timeout (T2,accept) (most recently w.r.t. time tsleep +
2T1 + 2d) at times from (tsleep −∆g − 4d, tsleep + T1 + 2d); and

(iii) no node in W switches from recover to accept during [tsleep + T1 + d, ta], where ta >
tsleep + 2T1 + 2d denotes the infimum of times larger than tsleep + T1 + d when a node
in W switches to state accept.

PROOF OUTLINE. For the sake of the argument, assume first that no node in W
switches from recover to accept. For switching to sleep, a node in W must observe at
least n−f nodes in accept within the fairly short time of roughly T1 it stays in accept, at
least n− 2f of which are non-faulty. Once these nodes leave accept, either to sleep or to
recover, the only way to get to accept again is by following the basic cycle (as switching
to join and the transition from recover to accept are forbidden), which requires at the
least T2 to expire. Without these n− 2f nodes in accept, no other node in W can switch
to sleep, as 2(n − 2f) > n − f = |W |, the number of non-faulty nodes available. From
this we can conclude that at time tsleep + 2T1 + 2d all nodes in W are roughly in the
same spot of the basic cycle or in recover (Statements (i) and (ii)).

Regarding the possible transition from recover to accept, we argue that at least n−2f
nodes from W that enabled the original transition of some node in W to sleep at time
tsleep cannot be (observed) in state accept at time tsleep + T1 + d, as after leaving accept
to either recover or sleep sufficiently long timeouts need to expire first. However, this
also entails that the transition from recover to accept becomes impossible starting on
time tsleep +T1 +d until some of these at least n−2f nodes reach accept again following
the basic cycle (or via join). This implies Statement (iii) and shows Statements (i) and
(ii) in the general case.

i ∈W

A ⊆W

tsleep − T1 − 2d tsleep tsleep + T1 + d tsleep + 2T1 + 2d

accept
and reset flags

ta

sleep

accept accept accept accept accept
≥ T2/ϑ

in accept at
time within here

not observed in accept

Fig. 11. Part of an execution discussed in the proof of Statement (iii) of Lemma 4.5.

PROOF. We will first show that Statement (iii) holds. Figure 11 depicts a part of
the execution discussed in the following. We claim that there is a subset A ⊆ W of at
least n − 2f nodes such that each node from A has been in state accept at some time
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in the interval (tsleep − T1 − 2d, tsleep). To see this, observe that if a node in W (node i
in Figure 11) switches to state sleep at time tsleep, it must have observed n − 2f non-
faulty nodes from W in state accept at times from (tsleep − T1 − d, tsleep], since it resets
its accept flags after switching to accept at the time ta ≥ tsleep − T1 − d (that is minimal
with this property). Each of these nodes must have been in state accept at some time
from (tsleep − T1 − 2d, tsleep), showing the existence of a set A ⊆W as claimed.

At time

tsleep + T1 + d
(3)
= tsleep − T1 − 2d+ min

{
ϑ(2T1 + 3d)

ϑ
,
T2

ϑ
− (T1 + d)

}
,

no node from A is observed in state accept by the following arguments. First, it must
have left accept by tsleep + T1. Second, we claim that it cannot have switched to ac-
cept again by that time. To see this, observe that, assuming otherwise, it must have
switched to accept again at a time greater than tsleep−T1−2d−(T1 +d). By assumption,
it cannot have switched to accept via join, and in order to switch directly from recover
to accept, a timeout of ϑ(2T1 + 3d) needs to expire first. Since this in particular applies
to the nodes from A and no node from W is in state join until time tsleep + 2T1 + 2d,
the only way to switch to accept is thus by following the basic cycle via states sleep,
sleep→ waking, waking, ready, and propose. However, this takes at least until time

tsleep − T1 − 2d− (T1 + d) +
T2

ϑ

(3)
> tsleep + 2T1 + 2d

as well. Thus, the claim holds and no node in W observes a node in A in accept within
time [tsleep +T1 +d, tsleep +2T1 +2d]. Since |A| ≥ n−2f ≥ f +1, this implies that no node
in W can switch from recover to accept without observing some node from A in accept.
Statement (iii) of the lemma follows.

We next show Statements (i) and (ii) for any node in W (node i in Figure 12) that
observes itself in one of the states waking, ready, or propose at time tsleep − T1 − 2d. By
time tsleep+d, it will memorize all nodes fromA in accept (provided that it did not switch
to accept in the meantime). Hence, it satisfies tr(waking, recover), tr(ready,propose),
and tr(propose,accept) until it switches to either recover or accept. It follows that any
such node must have switched to recover or accept by time tsleep + 3d < tsleep + T1 + d.
Since the transition from recover to join is excluded by the assumptions of the lemma,
either (a) the node switches to sleep at some time during the interval (tsleep − T1 −
2d, tsleep + 2T1 + 2d), or (b) it will be in state accept or recover at time tsleep + T1 + d. In
case it is in accept, it will switch to recover by time tsleep + 2T1 + 2d, after its timeout T1

expired. Since nodes in W cannot switch from recover to accept during [tsleep +T1+d, ta),
with ta > tsleep + 2T1 + 2d, because of Statement (iii), it follows that, in case of (b), it
will be in state recover by time tsleep + 2T1 + 2d, without the possibility to leave earlier
than time ta. Thus Statements (i) and (ii) follow for case (b).

In case of (a), if the node switched to sleep during (tsleep − T1 − 2d, tsleep + 2T1 + 2d),
consider the most recent time before that when it switched to accept. We know that this
must have happened during (tsleep−T1−3d, tsleep +T1 +d); the lower bound follows from
the fact that it observes itself in waking, ready or propose at time tsleep − T1 − 2d, and
thus must have switched to accept after time tsleep − T1 − 3d. The upper bound follows
from the observations before. And since the only way to reach sleep from these states
is over state accept, we know that such a time indeed exists. Thus the node must have
reset its timeout (T2,accept) at some time from (tsleep − T1 − 3d, tsleep + T1 + 2d). Hence
Statement (ii) is satisfied for nodes observing themselves in states waking, ready, or
propose at time tsleep − T1 − 2d. Considering that

tsleep − (2ϑ+ 3)T1 − 6d+
T2

ϑ

(3)
> tsleep + 2T1 + 2d , (18)
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Statement (i) follows for such nodes, as T2 cannot be expired by time tsleep + 2T1 + 2d.
Note that we can reason analogously for nodes that already observe themselves in

states recover or accept at time tsleep−T1−2d; the only difference is that such a node may
already have switched to accept up to T1 + d time earlier and thus resets its timeout T2

at some time from (tsleep − 2T1 − 4d, tsleep + T1 + d), which is well in the bounds claimed
by Statement (ii). By Inequality (18), Statement (i) holds as well.

i ∈W

tsleep − (2ϑ + 3)T1 − 6d tsleep − T1 − 2d

accept and
reset T2

≤ d

reset T1

≤ T1
sleep
≤ d

reset timeout

≤ (2ϑ + 1)T1

sleep→ waking

≤ d

waking

≤ d

observe in
waking

Fig. 12. Part of an execution discussed in the proof of Statements (i) and (ii) of Lemma 4.5.

Hence, it remains to consider nodes that observe themselves in states sleep or
sleep → waking at time tsleep − T1 − 2d. Such a node must have switched to sleep
at a time from (tsleep − (2ϑ + 2)T1 − 5d, tsleep − T1 − 2d), cf. Figure 12. Each consid-
ered node thus switched to accept (most recently before this time) at some time from
(tsleep − (2ϑ + 3)T1 − 6d, tsleep − T1 − 2d), and reset its timeout T2 most recently at a
time from (tsleep − (2ϑ + 3)T1 − 6d, tsleep − T1 − d) = (tsleep − ∆g − 4d, tsleep − T1 − d),
yielding Statement (ii) for the respective node. Applying Inequality (18) once more, we
obtain Statement (i). As we have shown Statements (i) and (ii) for all possible states of
the main state machine a node in W can observe itself in at time tsleep − T1 − 2d, this
concludes the proof.

Granted that nodes are not in state join for sufficiently long, this implies that nodes
will switch to sleep in rough synchrony with others or drop out of the basic cycle and
switch to recover.

COROLLARY 4.6. Assume that at time tsleep, a node from W switches to sleep, no
node is in state join during [tsleep − T1 − 2d, tsleep + 2T1 + 3d], and also that during
(tsleep −∆g, tsleep) = (tsleep − (2ϑ + 3)T1 − 2d, tsleep) no node in W is in state sleep. Then
at time tsleep + 2T1 + 3d, any node i from W is either in one of the states sleep or sleep→
waking and observed in sleep, or it is and is observed in state recover.

PROOF. For a node i ∈W , denote by ti the supremum of times from [0, tsleep+2T1+3d]
when the node switches to state sleep. We distinguish four cases.

(1) ti ∈ [tsleep + 2T1 + 2d, tsleep + 2T1 + 3d]: By Statement (i) of Lemma 4.5, node i is
not in state accept at time tsleep + 2T1 + 2d, and hence cannot switch to sleep until time
ti + T1/ϑ > tsleep + 2T1 + 3d, a contradiction. Thus this does not apply.

(2) ti ∈ [tsleep, tsleep + 2T1 + 2d]: In this case, the node will stay in state sleep at least
until time ti + (2ϑ+ 1)T1/ϑ > tsleep + 2T1 + 3d (by Inequality (2)).

(3) ti ∈ [tsleep −∆g, tsleep]: This does not apply by assumption.
(4) ti < tsleep − ∆g: By Statements (i) and (ii) of Lemma 4.5, all nodes j ∈ W are

either in state recover at time tsleep + 2T1 + 2d or switched to accept at a time from
(tsleep − ∆g − 4d,min{tj , tsleep + T1 + 2d}) ⊆ (tsleep − ∆g − T1/ϑ, tsleep + T1 + 2d). We
will exclude the latter case. To this end, recall that any non-faulty node j will stay in
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“fast” node

“slow” node

t− + ∆g + (2ϑ + 2)T1 + 3d

t0

t0 + 2T1 + 2d

t0 + ∆g + d

t0 + 2∆g + d

t1

sleep (inf)

sleep sleep→ waking
ready

accept sleep (inf)
T2/ϑ

(2ϑ+ 1)T1

T1/ϑ

no node in sleep since ∆g no node in sleep since ∆g

Fig. 13. Part of an execution as considered in the induction in Lemma 4.7.

state accept for at least T1/ϑ time before switching to sleep. Hence, we conclude that if
tj < tsleep−∆g, the most recent time when it switched to accept before tj is smaller than
tsleep−∆g −T1/ϑ, a contradiction. Hence, indeed we have that any non-faulty node j is
in state recover at time tsleep + 2T1 + 2d (which in particular holds for j = i).
By Statement (iii) of Lemma 4.5, no node from W switches from recover to accept dur-
ing [tsleep + 2T1 + 2d,min{ta, tsleep + 2T1 + 3d}], where ta is the infimal time larger than
tsleep + T1 + d when a node from W switches to accept. Nodes from the first three cases
switch to accept (again) after time tsleep +2T1 +3d, because of the timeouts along the ba-
sic cycle. Because no node fromW switches to join during [tsleep+2T1+2d, tsleep+2T1+3d],
also nodes to which the current case applies switch to accept after time tsleep + 2T1 + 3d.
Hence, min{ta, tsleep + 2T1 + 3d} = tsleep + 2T1 + 3d, and we conclude that node i is in
state recover during [tsleep + 2T1 + 2d, tsleep + 2T1 + 3d] for this case.

Hence, node i satisfies the claim in all cases, concluding the proof.

4.2. Resynchronization Points
In this section, we derive that within linear time, it is very likely that good resyn-
chronization points occur. As a first step, we infer from Lemma 4.5 that for any time
interval during which no node from W enters state join, most of the time in this inter-
val no nodes from W are in state sleep.

LEMMA 4.7. Suppose no node in W is in state join during [t−, t+]. Then the volume
of times t ∈ [t− + T1 + 2d, t+] satisfying that no node from W is in state sleep during
(t−∆g, t) is at least(

T2 − 2ϑ∆g − (ϑ− 1)T1 − 2ϑd

T2 − (ϑ− 1)T1 − ϑd

)
(t+ − t−)− 6∆g .

PROOF OUTLINE. Lemma 4.5 and Corollary 4.6 essentially state that if no node
from W may switch to join, there will be only one roughly synchronized group of non-
faulty nodes executing the basic cycle, while all other non-faulty nodes end up in state
recover. Moreover, this group cannot switch to sleep too frequently, as every time this
happens, T2 must expire at the respective nodes (cf. Figure 13). By choosing T2 a con-
stant factor larger than T1 (recall that non-faulty nodes will leave sleep after a timeout
of (2ϑ + 1)T1 expires), we can thus guarantee that a large fraction of the time no non-
faulty node is in state sleep. We prove this by induction on the times when (the first
node of) the group executing the basic cycle switches to state sleep. Naturally, it may
also happen that all non-faulty nodes cease executing the basic cycle. This just makes
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things even simpler, though. Once the last non-faulty node leaves sleep, no non-faulty
node will be in state sleep again until time t+.

PROOF. Denote by t0 the infimum of times from [t−+T1+2d, t+] when a node fromW
switches to sleep. Recall that any such node will leave state sleep once a timeout of (2ϑ+
1)T1 expires, that is, at most (2ϑ+ 1)T1 + d time after switching to the state. Thus, any
time t ∈ [t−+∆g+(2ϑ+2)T1 +3d, t0] satisfies that no node in W is in state sleep during
(t−∆g, t). We proceed by induction over increasing times ti ∈ (t0, t

+], i ∈ {1, . . . , imax},
where ti is the infimum of times from [ti−1 +2T1 +3d, t+] when a node from W switches
to sleep. The induction halts at index imax ∈ N iff timax > t+−T2/ϑ+ (1−1/ϑ)T1 +d. We
claim that, for each i, the volume of the set of times t ∈ [t− + ∆g + (2ϑ + 2)T1 + 3d, ti]
such that no node in W is in state sleep during (t−∆g, t) is at least

ti − t− − (∆g + (2ϑ+ 2)T1 + 3d)− i(2∆g + d) (19)
and that

ti ≥ t− −
(

2ϑ+ 1 +
1

ϑ

)
T1 − d+ i

(
T2

ϑ
−
(

1− 1

ϑ

)
T1 − d

)
. (20)

In fact, we will show these bounds by establishing that no node from W is in state sleep
during

(ti−1 + (2ϑ+ 3)T1 + 3d, ti) = (ti−1 + ∆g + d, ti) , (21)
that

ti ≥ ti−1 +
T2

ϑ
−∆g − 4d

(3)
≥ ti−1 + 2∆g + 3d (22)

for all i ∈ {1, . . . , imax}, and proving a slightly stronger version of the latter inequality
for indices i > 1.

We first establish these bounds for t1 (cf. Figure 13). By Lemma 4.5, every node
in W that is not in state recover at time t0 + 2T1 + 2d resets T2 at some time from
(t0 −∆g − 4d, t0 + T1 + 2d) and is in one of the states sleep, sleep→ waking, or waking
at time t0 + 2T1 + 2d. Hence, such nodes do not switch to state ready and subsequently
to propose, accept, and sleep again until t0 + T2/ϑ −∆g − 4d ≤ t+, i.e., Inequality (22)
holds for i = 1. We obtain

t1 ≥ t0 +
T2

ϑ
−∆g − 4d

≥ t− +
T2

ϑ
−∆g + T1 − 2d

= t− −
(

2ϑ+ 1 +
1

ϑ

)
T1 − d+

(
T2

ϑ
−
(

1− 1

ϑ

)
T1 − d

)
,

showing Inequality (20) for i = 1. Moreover, Statement (i) of Lemma 4.5 implies that no
node inW is in state sleep during [t0+(2ϑ+3)T1+3d, t1) = [t0+∆g+d, t1), as any node in
W in state sleep at time t0 +2T1 +2d will leave after a timeout of (2ϑ+1)T1 expires; this
shows (21) for i = 1. Hence, the volume of the set of times t ∈ [t−+∆g+(2ϑ+2)T1+3d, t1]
such that no node from W is in state sleep during (t−∆g, t) is at least (cf. Figure 13)

t0 − (t− + ∆g + (2ϑ+ 2)T1 + 3d) + t1 − (t0 + 2∆g + d) ,

showing Inequality (19) for i = 1.
We now perform the induction step from i < imax to i+ 1. By (21) for index i, no node

from W is in state sleep during

(ti−1 + ∆g + d, ti)
(22)
⊇ (ti −∆g, ti) .
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Hence we can apply Corollary 4.6 to see that nodes in W not observing themselves in
state sleep at time ti+2T1+3d switched to state recover (and observe themselves in this
state). Therefore, non-faulty nodes that continue to execute the basic cycle must have
switched to sleep by time ti + 2T1 + 3d and have performed their most recent reset of
timeout T2 at or after time ti−T1−d. Observe that switching to sleep again also requires
T1 to expire after switching to accept. Thus, such nodes do not switch to state ready and
subsequently to propose, accept, and sleep again until time ti+T2/ϑ−(1−1/ϑ)T1−d ≤ t+
(as otherwise we had i = imax), yielding

ti+1 ≥ ti +
T2

ϑ
−
(

1− 1

ϑ

)
T1 − d .

Moreover, like for i = 1, no node in W is in state sleep during [ti + ∆g + d, ti+1). These
two statements show Inequality (21) and Inequality (22) for i+ 1, and by means of the
induction hypothesis directly imply Inequality (19) and Inequality (20) for i+1 as well,
i.e., the induction succeeds.

From Inequality (20), we have that

imax ≤
t+ − t− + (2ϑ+ 1 + 1/ϑ)T1 + d

T2/ϑ− (1− 1/ϑ)T1 − d
(3)
<

t+ − t−

T2/ϑ− (1− 1/ϑ)T1 − d
+ 1 . (23)

Observe that the same reasoning as above shows that no node fromW switches to sleep
during [timax+∆g+d, t

+] since timax ≥ t+−(T2/ϑ−(1−1/ϑ)T1−d). Thus, inserting i = imax

into Inequality (19), we infer that the volume of times t ∈ [t−+∆g+(2ϑ+2)T1+3d, t+] ⊂
[t−, t+] such that no node from W is in state sleep during (t, t−∆g) is at least

t+ − t− − (∆g + (2ϑ+ 2)T1 + 3d)− (imax + 1)(2∆g + d)

(23)
>

(
T2 − 2ϑ∆g − (ϑ− 1)T1 − 2ϑd

T2 − (ϑ− 1)T1 − ϑd

)
(t+ − t−)− (5∆g + (2ϑ+ 2)T1 + 5d)

(2)
>

(
T2 − 2ϑ∆g − (ϑ− 1)T1 − 2ϑd

T2 − (ϑ− 1)T1 − ϑd

)
(t+ − t−)− 6∆g ,

concluding the proof.

We are now ready to advance to proving that good resynchronization points are likely
to occur within bounded time, no matter what the strategy of the adversary is. To this
end, we first establish that in any execution, at most of the times a non-faulty node
switching to state init will result in a good resynchronization point. This is formalized
by the following definition.

Definition 4.8 (Good Times). Given an execution E of the system, denote by E ′ any
execution satisfying that E ′|[0,t) = E|[0,t), where at time t a node i ∈W switches to state
init in E ′. Time t is good in E (with respect to W ) provided that for any such E ′ it holds
that t is a good W -resynchronization point in E ′.

The previous statement thus boils down to showing that in any execution, the majority
of the times is good.

LEMMA 4.9. Given any execution E and any time interval [t−, t+], the volume of
good times in E during [t−, t+] is at least

λ2(t+ − t−)− 11(1− λ)R2

10ϑ
.
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good times

main state
machine

resynchronization
routine

t− t+

init init init

* interference by faulty nodes’ init signals

* * *

** interference by non-faulty nodes’ init signals

** ** **

nodes may still
be in resync

Fig. 14. Illustration of the lower bound on the volume of good times shown in Lemma 4.9. The adversary
utilizes the approach shown in Figure 8 to “block” the time ranges marked by *. The init signals of non-faulty
nodes may also cause interference; the respective ranges are marked by **. Shaded rectangles at the “main
state machine” axis mark the times t for which during (t−∆g , t) no node from W is in sleep (cf. Lemma 4.7
and Figure 13). Shaded rectangles at the “good times” axis mark good times.

PROOF OUTLINE. The proof goes by discarding a sufficiently large set of times to
make sure that all potential reasons for the remaining times not being good are ex-
cluded (see Figure 14). As argued in Section 3.5 and shown in Figure 7, we can be
sure that a resynchronization point will occur when some non-faulty node switches
to init, granted that no non-faulty nodes are in either of the states supp → resync or
resync. As non-faulty nodes will not switch to or remain in state join when in dormant,
and non-faulty nodes will switch to dormant when not in resync, for most of the times
when the first condition holds, we also have that no node from W is in state join. From
Lemma 4.7 we see that for a large fraction of the remaining times, also no node from
W is in state sleep. Hence, when at some non-faulty node the roughly uniformly dis-
tributed timeout R3 expires, there is a constant probability that this will result in a
good resynchronization point, i.e., a large fraction of the times are good.

This line of reasoning requires one more argument, though. When non-faulty nodes
switch to resync, they remain there until R1 expires. Meanwhile, a good resynchro-
nization point cannot occur. Consequently, we need to argue that such transitions do
not happen too frequently. We show that—due to the voting scheme employed in the
resynchronization routine—non-faulty nodes will switch to supp → resync and resync
only if a linear number of R2 timeouts is reset in a small time window. Hence, in
O(R2) = O(R3) time there can be no more than O(n) such time windows. The timeout
constraints in Condition 3.3 make sure that the constants play out in our favor, so that
for any time interval that is larger than roughly R2, a constant fraction of the times
must be good.
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PROOF. Assume w.l.o.g. that |W | = n− f (otherwise consider a subset of size n− f )
and abbreviate

N :=

(
ϑ(t+ − t−)

R2
+

11

10

)
(n− f)

≥
⌈
ϑ(t+ − t−) +R2/10

R2

⌉
(n− f)

(10)
≥
⌈
ϑ(t+ − t−) + ϑ(R1 + 6∆g + T1 + 5d)/(5(1− λ))

R2

⌉
(n− f)

(1)
≥
⌈
ϑ(t+ − t− +R1 + 6∆g + T1 + 5d)

R2

⌉
(n− f) . (24)

The proof is in two steps: First we construct a measurable subset of [t−, t+] that
comprises good times only. In a second step a lower bound on the volume of this set is
derived.

Constructing the set: Consider an arbitrary time t ∈ [t−, t+], and assume a node
i ∈ W switches to state init at time t. When it does so, its timeout R3 expires. Recall
that W is coherent during [t−, t+]. Hence, by Lemma 4.3, all timeouts of node i that
expire at times within [t−, t+] have been reset at least once between the time when the
node became non-faulty and t. Let tR3 be the maximum time not later than t when R3

was reset. Due to the distribution of R3 we know that

tR3

(11)
≤ t− (R2 + 3d) .

Thus, node i is not in state init during time [t − (R2 + 2d), t), and no node j ∈ W
observes i in state init during time [t − (R2 + d), t). Thereby any node j’s, j ∈ W ,
timeout (R2, supp i) corresponding to node i is expired at time t.

We claim that the condition that no node from W is in or observed in one of the
states resync or supp→ resync at time t is sufficient for t being a W -resynchronization
point. To see this, assume that the condition is satisfied. Thus all nodes j ∈ W are in
states none or supp k for some k ∈ {1, . . . , n} at time t. By the algorithm, they all will
switch to state supp i or state supp→ resync during (t, t+d). It might happen that they
subsequently switch to another state supp k′ for some k′ ∈ V , but all of them will be in
one of the states with signal supp during (t+d, t+ 2d]. Consequently, all nodes from W
will observe at least n−f nodes in state supp during (t′, t+2d) for some time t′ < t+2d.
Hence, those nodes in W that were still in state supp i (or supp k′ for some k′) at time
t + d switch to state supp → resync before time t + 2d, i.e., t is a W -resynchronization
point.

We proceed by analyzing under which conditions t is a good W -resynchronization
point. Recall that in order for t to be good, it has to hold that no node from W switches
to state sleep during (t−∆g, t) or is in state join during (t− T1 − 2d, t+ 4d).

We begin by characterizing subsets of good times within (tr, t
′
r) ⊂ [t−, t+], where tr

and t′r are times such that during (tr, t
′
r) no node from W switches to state supp →

resync. Due to timeout

R1

(9)
> (4ϑ+ 2)d ,

we know that during (tr + R1 + 2d, t′r), no node from W will be in, or be observed in,
states supp→ resync or resync. Thus, if a node from W switches to init at a time within
(tr + R1 + 2d, t′r), it is a W -resynchronization point. Further, all nodes in W will be in
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state dormant during (tr +R1 + 2d, t′r + 4d). Thus all nodes in W will be observed to be
in state dormant during (tr +R1 + 3d, t′r + 4d), implying that they are not in state join
during (tr +R1 + 3d, t′r + 4d). In particular, any time t ∈ (tr +R1 + T1 + 5d, t′r) satisfies
that no node in W is in state join during (t− T1 − 2d, t+ 4d). Applying Lemma 4.7, we
infer that the total volume of times from (tr, t

′
r) that is good is at least(

T2 − 2ϑ∆g − (ϑ− 1)T1 − 2ϑd

T2 − (ϑ− 1)T1 − ϑd

)
(t′r − tr)− (R1 + 6∆g + T1 + 5d) . (25)

In other words, up to a constant additive loss in each interval (tr, t
′
r), a constant

fraction of the times are good.

Volume of the set: In order to infer a lower bound on the volume of good times during
[t−, t+], we subtract from t+− t− the volume of some intervals during which we cannot
exclude that a node from W switches to supp → resync, increased by the constant
term R1 + 6∆g + T1 + 5d from (25). The bound then yields that at least a fraction of
(T2 − 2ϑ∆g − (ϑ− 1)T1 − 2ϑd)/(T2 − (ϑ− 1)T1 − ϑd) of the remaining volume of times is
good. Note that we also need to account for the fact that non-faulty nodes may already
be in state supp → resync at time t−, which we do by also considering events prior to
t− when non-faulty nodes switch to supp→ resync. Formally, we define

Ḡ =
⋃

tr∈[t−−(R1+6∆g+T1+4d),t+]
∃i∈W : i switches to supp→resync at tr

[tr, tr +R1 + 6∆g + T1 + 5d]

and strive for a lower bound on the volume of [t−, t+] \ Ḡ. In order to lower bound the
good times in [t−, t+], it is thus sufficient to cover all times when a non-faulty node
switches to supp→ resync during [t− − (R1 + 6∆g + T1 + 5d), t+] by 2N − 1 intervals of
volume at most some V and then infer a lower bound of t+−t−−2N(V+R1 +6∆g+T1 +
5d) on the volume of [t−, t+] \ Ḡ. The remainder of the proof hence is concerned with
deriving such a cover of the times when non-faulty nodes may switch to supp→ resync
during [t− − (R1 + 6∆g + T1 + 5d), t+].

Observe that nodes in W do not switch to state init more than⌈
t+ − t− +R1 + 6∆g + T1 + 5d

minimal value of R3

⌉
(11)
≤
⌈
t+ − t− +R1 + 6∆g + T1 + 5d

R2

⌉
(24)
≤ N

n− f
(26)

times during [t− − (R1 + 6∆g + T1 + 5d), t+].
Now consider the case that a node in W switches to state supp → resync at a time t

satisfying that no node in W switched to state init during (t−(8ϑ+6)d, t). This necessi-
tates that this node observes n−f of its channels in state supp during (t−(2ϑ+1)d, t), at
least n− 2f ≥ f + 1 of which originate from nodes in W . As no node from W switched
to init during (t − (8ϑ + 6)d, t), every non-faulty node that has not observed a node
i ∈ V \W in state init at a time from (t− (8ϑ+ 4)d, t) when (R2, supp i) is expired must
be in a state whose signal is none during (t− (2ϑ+ 2)d, t) due to timeouts. Therefore its
outgoing channels are not in state supp during (t− (2ϑ+1)d, t). By means of contradic-
tion, it thus follows that for each node j of the at least f + 1 nodes (which are all from
W ), there exists a node i ∈ V \W such that node j resets timeout (R2, supp i) during
the time interval (t− (8ϑ+ 4)d, t).

The same reasoning applies to any time t′ 6∈ (t − (8ϑ + 6)d, t) satisfying that some
node in W switches to state supp → resync at time t′ and no node in W switched to
state init during (t′ − (8ϑ + 6)d, t′). Note that the set of the respective at least f + 1
events (corresponding to the at least f + 1 nodes from W ) where timeouts (R2, supp i)
with i ∈ V \W are reset and the set of the events corresponding to t are disjoint, as

Journal of the ACM, Vol. V, No. N, Article A, Publication date: January YYYY.



A:44 D. Dolev et al.

they occur during disjoint time intervals. However, the total number of events where
such a timeout can be reset during [t− − (R1 + 6∆g + T1 + 5d), t+] is upper bounded by

|V \W ||W |
⌈
t+ − t− +R1 + 6∆g + T1 + 5d

R2/ϑ

⌉
(24)
< (f + 1)N , (27)

i.e., the total number of channels from nodes not in W (|V \W | many) to nodes in W
multiplied by the number of times an associated timeout can expire at a receiving node
in W during [t− − (R1 + 6∆g + T1 + 5d), t+].

Using that observations, we can now infer that Ḡ can be covered by less than 2N
intervals of size (R1 + 6∆g + T1 + 5d) + (8ϑ + 6)d each as follows. By Inequality (26),
there are no more than N times t ∈ [t− − (R1 + 6∆g + T1 + 5d), t+] when one of the
|W | = n − f many non-faulty nodes switches to init and thus may cause others to
switch to state supp → resync at times in [t, t + (8ϑ + 6)d]. Similarly, Inequality (27)
shows that the channels from V \W to W may cause at most N − 1 such times t ∈
[t− − (R1 + 6∆g + T1 + 5d), t+], since any such time requires the existence of at least
f + 1 events where timeouts (R2, supp i), i ∈ V \W , are reset at nodes in W , and the
respective events are disjoint. Thus, all times tr ∈ [t− − (R1 + 6∆g + T1 + 5d), t+] when
some node i ∈W switches to supp→ resync are covered by at most 2N − 1 intervals of
length (8ϑ+ 6)d.

This results in a cover Ḡ′ ⊇ Ḡ consisting of at most 2N − 1 intervals that satisfies

vol
(
Ḡ
)
≤ vol

(
Ḡ′
)
< 2N(R1 + 6∆g + T1 + (8ϑ+ 11)d) .

As argued previously, summing over the at most 2N intervals that remain in [t−, t+]\
Ḡ′ and using (25), it follows that the volume of good times during [t−, t+] is at least

T2 − 2ϑ∆g − (ϑ− 1)T1 − 2ϑd

T2 − (ϑ− 1)T1 − ϑd
(t+ − t− − 2N(R1 + 6∆g + T1 + (8ϑ+ 11)d)

(12)
≥ λ(t+ − t− − 2N(R1 + 6∆g + T1 + (8ϑ+ 11)d))

= λ

(
t+ − t− − 2

(
ϑ(t+ − t−)

R2
+

11

10

)
(n− f)(R1 + 6∆g + T1 + (8ϑ+ 11)d)

)
= λ

(
1− 2ϑ(R1 + 6∆g + T1 + (8ϑ+ 11)d)(n− f)

R2

)
(t+ − t−)

−11λ(R1 + 6∆g + T1 + (8ϑ+ 11)d)(n− f)

5
(10)
≥ λ2(t+ − t−)− 11(1− λ)R2

10ϑ
,

as claimed. The lemma follows.

We are now in the position to prove our second main theorem, which states that a
good resynchronization point occurs withinO(R2) time with overwhelming probability.

THEOREM 4.10. Denote by Ê3 := ϑ(R2 + 3d) + 8(1−λ)R2 + d the maximal value the
distribution R3 can attain plus the at most d time until R3 is reset whenever it expires.
For any k ∈ N and any time t, with probability at least 1 − (1/2)k(n−f) there will be a
good W -resynchronization point during [t, t+ (k + 1)Ê3].

PROOF OUTLINE. Given that Lemma 4.9 shows that in any sufficiently long execu-
tion most of the times are good, it suffices to show that the adversary has little chances
to prevent that some non-faulty node switches to init at one of these many good times.
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This is guaranteed by the roughly uniform distribution used for R3. Since clock drifts
will not affect the density of the distribution too much, it ensures roughly uniformly
distributed reference times when an R3 timeout will expire, regardless of the execu-
tion. This unconditional guarantee makes sure that, no matter what the adversary
does, there is an upper bound on the probability mass of possible expiration times the
adversary can prevent from being good. In other words, the adversary cannot prevent
that there is a constant chance that a non-faulty node succeeds in generating a good
synchronization point by switching to init when its timeout R3 expires. Because each
expiration time is determined independently, we obtain an overwhelming probability
that at least one node succeeds.

PROOF. Fix some node i ∈W and denote by t0 the infimum of times from [t, t+ (k+

1)Ê3] when node i switches to init. We have that t0 < t + Ê3. By induction, it follows
that node i will switch to state init at least another k times during [t, t + (k + 1)Ê3]
at the times t1 < t2 < . . . < tk. We claim that each such time tj , j ∈ {1, .., k} is with
probability at least 1/2 good (and therefore is a good W -resynchronization point).

We prove this by induction on j: As induction hypothesis, suppose for some j ∈
{1, . . . , k − 1} that we showed the statement for j′ ∈ {1, . . . , j − 1} and the execution
of the system is fixed until time tj−1, i.e., E|[0,tj−1] is given. Now consider the following
set of executions that are extensions of E|[0,tj−1]. Fix any adversarial space that, given
the random choices made in E|[0,tj−1], would indeed result in E|[0,tj−1] (put simply, con-
sider all possible behaviors of the adversary after time tj−1). Within this space, fix all
random choices made until time tj−1 to be the same as in E|[0,tj−1], and fix all random
choices non-faulty nodes i′ 6= i will make in the future. Note that the execution until
now is fully determined until time tj−1 and the only free parameter left are the random
choices of i after time tj−1.

As the rate of the clock driving node i’s R3 is between 1 and ϑ, and all clocks (clock
functions) are already fixed, tj > tj−1 is distributed within a (minimal) interval, call it
[t−, t+], of size at most

t+ − t− ≤ 8(1− λ)R2 .

Assume for a moment that tj = t+. We apply Lemma 4.9 to the corresponding execu-
tion29 E ′, showing that the volume of times from [t−, t+] that are not good in E ′ is at
most

(1− λ2)(t+ − t−) +
11(1− λ)R2

10ϑ
.

Now consider the actual random distribution of tj on [t−, t+]. Since the clock driving
the timeout cannot make progress faster than at rate ϑ and the probability density of
R3 is constantly 1/(8(1−λ)R2) (with respect to the clock function C) during [t−, t+], we
obtain that the probability of tj not being a good time is upper bounded by

(1− λ2)(t+ − t−) + 11(1− λ)R2/(10ϑ)

8(1− λ)R2/ϑ
≤ ϑ(1− λ2) +

11

80

(1)
< ϑ

9

25ϑ
+

7

50
=

1

2
.

We define E|[0,tj) := E ′|[0,tj), where in E at time tj indeed R3 expires at node i. This de-
fines a distribution of executions E|[0,tj) so that tj is good with probability at least 1/2.

We complete our reasoning as follows. The inductive construction above shows that
for any adversarial space and regardless of the random choices of other nodes, the

29Technically, we still have a distribution of executions, since there are future random choices by i. Note,
however, that all these executions are identical until time t+.
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times t1, . . . , tj are each good with independent probability at least 1/2. Hence, this
bound applies simultaneously to all at least n − f nodes in W , and we conclude that
we have a good time when a node from W switches to init during [t, t + (k + 1)Ê3]
with probability at least 1 − (1/2)k(n−f). By the definition of good times, this implies
that there is a good W -resynchronization point with at least the stated probability,
concluding the proof.

4.3. Stabilization via Good Resynchronization Points
Having established that eventually a good W -resynchronization point tg will occur,
we turn to proving the convergence of the main routine. Our reasoning proceeds as
follows.

— A good resynchronization point tg results in a clean reset of the join and sleep →
waking memory flags and starts the (implicit) recovery procedure by letting all non-
faulty nodes switch to passive (Lemma 4.11).

— Eventually, non-faulty nodes that do not switch to sleep must drop out of the basic
cycle (Lemma 4.12). If there is such a time, denote by tsleep > tg the minimal such
time.

— The reset of the sleep→ waking flags and the definition of a good resynchronization
point make sure that no non-faulty node will switch to active before T6 expired after
the minimal time ts > tsleep > tg when a non-faulty node switches to sleep→ waking
(Lemma 4.13).

— From Corollary 4.6 and the above, it follows that there is a small time window when
all non-faulty nodes (if any) that do not end up in state recover switch to sleep →
waking (Lemma 4.14). If there are f or less such nodes, all non-faulty nodes end up
in recover. Otherwise, all non-faulty nodes observe at least f + 1 non-faulty nodes in
state sleep→ waking and switch to active, at roughly the same time when the nodes
executing the basic cycle switch to waking.

— Non-faulty nodes in state waking switch to recover or ready before any non-faulty
node leaves state recover. Non-faulty nodes in state recover switch to join before
T3 or T4 expires at any non-faulty node in ready. This follows from the above and
Condition 3.3.

— We argue that this implies that when some non-faulty node switches to accept before
T5, T7, or R1 expire at any non-faulty node, all non-faulty nodes (i.e., those in W )
will follow shortly, i.e., a W -quasi-stabilization point is reached. Since all non-faulty
nodes switch to join or ready once the respective timeouts expire, Condition 3.3
ensures that this will eventually happen.

We now implement the above strategy. We start with a few helper statements wrap-
ping up that a good resynchronization point guarantees proper reset of flags and time-
outs involved in the stabilization process of the main routine.

LEMMA 4.11. Suppose tg is a good W -resynchronization point. Then

(i) each node i ∈W switches to passive at a time ti ∈ (tg+4d, tg+(4ϑ+4)d) and observes
itself in state dormant during [tg + 4d, τi,i(ti)),

(ii) Memi,j,join |[τi,i(ti),tjoin] ≡ 0 for all i, j ∈ W , where tjoin ≥ tg + 4d is the infimum of all
times greater than tg − T1 − 2d when a node from W switches to join,

(iii) Memi,j,sleep→waking |[τi,i(ti),ts] ≡ 0 for all i, j ∈ W , where ts ≥ tg + (2 + 1/ϑ)T1 ≥ tg +
(1 + 1/ϑ)T1 + d is the infimum of all times greater or equal to tg when a node from W
switches to sleep→ waking,

(iv) no node from W resets its sleep→ waking flags during [tg+(1+1/ϑ)T1 +d, tg+R1/ϑ],
and
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(v) no node from W resets its join flags during [tg + (1 + 1/ϑ)T1 + d, tg +R1/ϑ].

PROOF. All nodes in W switch to state supp→ resync during (tg, tg + 2d) and switch
to state resync when their timeout of 4ϑd expires, which does not happen until time
tg + 4d. Once this timeout expired, they switch to state passive as soon as they observe
themselves in state resync, i.e., by time tg+(4ϑ+4)d. Hence, every node i ∈W does not
observe itself in state resync within [tg + 3d, τi,i(ti)), and therefore is in state dormant
during [tg + 3d, τi,i(ti)]. This implies that it observes itself in state dormant during
[tg + 4d, τi,i(ti)), completing the proof of Statement (i).

Moreover, from the definition of a good W -resynchronization point we have that no
nodes from W are in state join at times in [tg − T1 − 2d, tjoin). Statement (ii) follows, as
every node from W resets its join flags upon switching to state passive at time ti.

Regarding Statement (iii), observe first that no nodes from W are in state sleep →
waking during (tg − d, tg + (2 + 1/ϑ)T1) for the following reason: By definition of a good
W -resynchronization point no node from W switches to sleep during (tg − ∆g, tg) ⊃
(tg − (2ϑ + 1)T1 − 3d, tg). Any node in W that is in states sleep or sleep → waking at
time tg − (2ϑ + 1)T1 − 3d switches to state waking before time tg − d due to timeouts.
Finally, any node in W switching to sleep at or after time tg will not switch to state
sleep→ waking before time tg + (2 + 1/ϑ)T1. The observation follows.

Since nodes in W reset their sleep→ waking flags at some time from

[ti, τi,i(ti)] ⊂ (tg + 3d, tg + (4ϑ+ 5)d)
(2)
⊆ (tg + 3d, tg + (2 + 1/ϑ)T1) ,

Statement (iii) follows.

Statements (iv) and (v) follow from the fact that all nodes inW switch to state passive
until time

tg + (4 + 4ϑ)d
(2)
≤ tg +

(
1 +

1

ϑ

)
T1 ,

while timeout (R1, supp→ resync) must expire first in order to switch to dormant and
subsequently passive again.

Before we proceed with our third main statement showing eventual stabilization, we
make a few more basic observations. Firstly, if non-faulty nodes do not make progress
on the basic cycle, they must eventually switch to recover, i.e., the timeout conditions
ensure detection of deadlocks.

LEMMA 4.12. For any time t− and any node in W it holds that it must be in state
recover or join or switch to sleep at some time from [t−, t−+(1−1/ϑ)T1+T2+T4+T5+4d).

PROOF. Suppose a node from W is never in state recover or join during [t−, t− +
(1 − 1/ϑ)T1 + T2 + T4 + T5 + 4d). Thus it may follow transitions along the basic cycle
only. Assume w.l.o.g. that the node switched to sleep right before time t−. Thus, it
switched to state accept beforehand, no later than time t− − T1/ϑ. Due to timeouts, it
either switched to recover at some point in time or switched to sleep, sleep → waking,
waking, ready, propose, accept, and finally sleep again. At each state, it takes less than
d time until a respective timeout is started and it observes itself in the respective state.
Hence, the node switches to recover or sleep before time

t−− T1

ϑ
+max{(2ϑ+2)T1+3d, T2}+T4+T5+T1+4d

(3)
= t−+

(
1− 1

ϑ

)
T1+T2+T4+T5+4d ,

proving the claim of the lemma.
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Secondly, after a good W -resynchronization point tg, no node from W will switch to
state join until either time tg + T7/ϑ + 4d or T6/ϑ time after the first non-faulty node
switched to sleep→ waking again after tg. By proper choice of T7 > T6 and T6, this will
guarantee that nodes from W do not switch to join prematurely during the final steps
of the stabilization process.

LEMMA 4.13. Suppose tg is a good W -resynchronization point. Denote by ts the
infimum of times greater than tg when a node in W switches to state sleep → waking
and by tjoin the infimum of times greater than tg−T1− 2d when a node in W switches to
state join. Then, starting from time tg + 4d, tr(recover, join) is not satisfied at any node
in W until time

min

{
tg +

T7

ϑ
+ 4d, ts +

T6

ϑ

}
< tjoin .

PROOF. By Statements (ii) and (iii) of Lemma 4.11 and Inequality (2), we have that
ts ≥ tg + 2T1 + 4d ≥ tg + (4ϑ+ 4)d and tjoin ≥ tg + 4d. Consider a node i ∈W not observ-
ing itself in state dormant at some time t ∈ [tg + 4d, tjoin]. According to Statements (i)
and (ii) of Lemma 4.11, the threshold condition of f + 1 nodes memorized in state join
cannot be satisfied at such a node. By statements (i) and (iii) of the lemma, the thresh-
old condition of f + 1 nodes memorized in state sleep → waking cannot be satisfied
unless t > ts. Hence, if at time t a node from W satisfies that it observes itself in state
active, we have that T6 expired after being reset after time ts, i.e., t > ts + T6/ϑ. More-
over, by Statement (i) of Lemma 4.11, we have that if T7 is expired at any node in W
at time t, it holds that t > tg + T7/ϑ+ 4d. Altogether, we conclude that tr(recover, join)
is not satisfied at any node in W during[

tg + 4d,min

{
tg +

T7

ϑ
+ 4d, ts +

T6

ϑ

}]
.

In particular, tjoin must be larger than the upper boundary of this interval, concluding
the proof.

Thirdly, after a good W -resynchronization point, any node in W switches to recover
or to sleep → waking within a bounded time, and all nodes in W doing the latter will
do so in rough synchrony. Using the previous lemmas, we can show that this happens
before the transition to join is enabled for any node in W .

LEMMA 4.14. Suppose tg is a good W -resynchronization point and use the notation
of Lemma 4.13. Define t+ := tg + (2 − 1/ϑ)T1 + T2 + T4 + T5 + 6d and denote by tsleep
the infimum of all times greater than tg −∆g when a node in W switches to sleep. Then
tsleep ≥ tg and either

(i) tsleep < t+ and at time tsleep + 2T1 + 3d, any node in W is either in one of the states
sleep or sleep→ waking and observed in sleep, or is in recover and also observed in
recover, or

(ii) all nodes in W are observed in state recover at time t+ + 2T1 + 3d.

PROOF OUTLINE. Lemma 4.11 basically says that around tg, all non-faulty nodes
clear their join and sleep → waking flags, and that no non-faulty nodes are in these
states close enough to tg to cause inconsistent flag states (e.g., no non-faulty node
memorize a non-faulty node in sleep → waking while other non-faulty nodes do not).
From this, Lemma 4.13 essentially derives that in order for a non-faulty node to switch
to join again, first T7 must expire at some non-faulty node (which cannot happen before
time t++2T1+3d) or a non-faulty node must switch to sleep and subsequently a timeout
T6 > ϑ(2T1 + 3d) must expire. From Corollary 4.6, we know that while no non-faulty
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node is in state join, any non-faulty node that switches to sleep will result in Statement
(i) being true. On the other hand, t+ is sufficiently large so that no non-faulty node
switching to sleep until then will result in all non-faulty nodes ending up in state
recover, which follows from Lemma 4.12 and leads to Statement (ii).

PROOF. By definition of a good resynchronization point, no non-faulty node switches
to sleep during (tg −∆g, tg), giving that tsleep ≥ tg from which it follows that ts ≥ tsleep.
We distinguish two cases for tsleep:

Case 1: Assume tsleep < t+. Then Lemma 4.13 yields that

tjoin > min

{
tg +

T7

ϑ
+ 4d, tsleep +

T6

ϑ

}
(8)
≥ min

{
t+ + 2T1 + 4d, tsleep +

T6

ϑ

}
(7)
≥ tsleep + 2T1 + 3d .

Therefore, by definition of a good resynchronization point, no non-faulty node is in
state join during (tg − T1 − 2d, tjoin) ⊃ (tsleep − T1 − 2d, tsleep + 2T1 + 3d). Recalling
that during (tg − ∆g, tsleep), no non-faulty node is in state sleep, the preconditions of
Corollary 4.6 hold, implying Statement (i).

Case 2: Contrary, assume that tsleep ≥ t+. By definition of a good resynchronization
point no non-faulty node switched to sleep during (tg −∆g, t

+) ⊃ (tg − T1 − 2d, t+) and
no non-faulty node is in state join during (tg − T1 − 2d, tjoin). By Lemma 4.13,

tjoin > min

{
tg +

T7

ϑ
+ 4d, tsleep +

T6

ϑ

}
(8)
≥ min

{
t+ + 2T1 + 4d, t+ +

T6

ϑ

}
(7)
≥ t+ + 2T1 + 3d .

Hence, Lemma 4.12 states that every non-faulty node must be in state recover at some
time in (tg − T1 − 2d, t+ − 2T1 − 4d). If no non-faulty node leaves state recover for
another d longer, i.e., during (tg − T1 − 2d, t+ − 2T1 − 3d), all non-faulty nodes will
be and be observed in state recover by time t+ − 2T1 − 3d, implying Statement (ii)
holds. Otherwise, suppose there is some non-faulty node switching from recover to
accept at some time taccept ∈ (tg − T1 − 2d, t+ − 2T1 − 3d). Then there are at least
n − 2f ≥ f + 1 non-faulty nodes in state accept at some times from (taccept − d, taccept).
These nodes switch to recover (because no non-faulty node switches to sleep before
time tsleep ≥ t+) during (taccept − d, taccept + T1 + d) and stay there until at least time
taccept+2T1+2d ≤ t+. This entails that the transition from recover to accept is impossible
during [taccept +T1 +2d, tjoin) ⊇ [t+−T1−d, t+). Since all non-faulty nodes are in recover
at least once during (tg−T1−2d, t+−T1−d) and no non-faulty node switches to sleep (or
join) during (tg−T1−2d, t+), we conclude that all non-faulty nodes are in states recover
or accept during [t+−T1−d, t+). However, non-faulty nodes in accept at time t+−T1−d
will leave the state before time t+ because T1 expires. Altogether, these observations
imply that all non-faulty nodes switch to state recover by time t+ and cannot leave it
again until time tjoin > t+ + 2T1 + 3d, i.e., Statement (ii) holds.

We have everything in place for proving that a good resynchronization point leads to
stabilization within R1/ϑ− 3d time.

THEOREM 4.15. Suppose tg is a good W -resynchronization point. Then there is a
W -quasi-stabilization point during (tg, tg +R1/ϑ− 3d].

PROOF OUTLINE. The proof is carried out by carefully distinguishing cases. Fig-
ure 15 summarizes the different cases with their most important times and state
switches.
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Case 1:

tg + (4ϑ+ 5)d t+
tsleep

first in W
to sleep

ts

first in W
to sleep→ waking

tjoin

first in W
to join

ti,join

i
to join

tg + T7 + (4ϑ+ 5)d

tpropose

first in W
join to propose

tg + T7 + (4ϑ+ 6)d

Case 2:

tg + (4ϑ+ 5)d
tsleep

tsleep + 2T1 + 3d

Case 2a:
< f nodes in W
observed in sleep

by all in W

Case 2b:
≥ f nodes in W
observed in sleep

by all in W

t+

Case 2a:

tg + (4ϑ+ 5)d
tsleep

tsleep + 2T1 + 3d

≥ f + 1 nodes in W
observed in recover

by all in W

tsleep + (2ϑ+ 3)T1 + 6d

tjoin

t+

tpropose

tg + T7 + (4ϑ+ 6)d

Case 2b:

tg + (4ϑ+ 5)d
tsleep

tsleep + 2T1 + 3d

tpropose

tq

tsleep − T1/ϑ+ T2 + T4 + 3d

t+

Fig. 15. Visualization of the cases of Theorem 4.15. The times that are shown to be W -quasi-stabilization
points are marked with rectangular borders.

By Lemma 4.13, a non-faulty node will eventually switch to sleep or all non-faulty
nodes end up in recover. In the latter case, eventually the T7 timeouts expire and the
system will “reboot” via the join state. In case a non-faulty node switches to sleep in
a timely fashion, the lemma states that shortly after, all non-faulty nodes are in state
recover, sleep or just switched to sleep→ waking.

From here, one of the following must be true: (i) at least f+1 non-faulty nodes switch
to sleep → waking within a small amount of time or (ii) all non-faulty nodes end up
in recover. This follows from the observation that if at most f non-faulty nodes pass
on to waking, the remaining at least n − 2f ≥ f + 1 non-faulty nodes must end up
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in recover, i.e., non-faulty nodes in waking will satisfy tr(waking, recover) and switch
to recover as well. If (ii) applies, the analysis proceeds as in the previous case. If (i)
applies, all non-faulty nodes switch from passive to active in short order, and therefore
start their T6 timeouts in rough synchrony. This implies that these nodes switch to join
after non-faulty nodes on the basic cycle switch to ready, but before any of them can
switch to propose due to timeout T3 (or T4) expiring. We show that from this configu-
ration, eventually non-faulty nodes will switch to propose and accept within a window
of 3d time. The proof is completed by showing that this entire procedure is in all cases
complete before R1 expires at any non-faulty node (which would switch to dormant and
therefore would be forced to vacate join).

PROOF. For simplicity, assume during this proof that R1 = ∞. Then, by State-
ment (i) of Lemma 4.11, all nodes in W observe themselves in states passive or ac-
tive at times greater or equal to tg + (4ϑ + 5)d. We will establish the existence of a
W -quasi-stabilization point at a time larger than tg and show that it is upper bounded
by tg + R1/ϑ − 3d. Hence this assumption can be made w.l.o.g., as the existence of the
W -quasi-stabilization point depends on the execution up to time tg +R1/ϑ only, and R1

cannot expire before this time at any node in W . Moreover, by Statements (i) and (ii) of
Lemma 4.11, every node from W satisfies Memi,i,join ≡ 0 on [tg +(4ϑ+5)d, ti,join), where
ti,join denotes the infimum of all times greater or equal to tg + 4d when node i ∈ W
switches to join. During the time span considered in this proof, every node from W
switches at most once to join, thus we may w.l.o.g. assume that Memi,i,join = 0 is al-
ways satisfied in the following. We use the notation ts, tsleep and t+ as introduced in
Lemmas 4.13 and 4.14. By Statement (iii) of Lemma 4.11 and Inequality (2), we have
that ts ≥ tg + (1 + 1/ϑ)T1 + d ≥ tg + (4ϑ+ 5)d.

According to Lemma 4.11, all nodes in W switched to state passive during (tg +
4d, tg + (4 + 4ϑ)d), implying that at any node in W , T7 will expire at some time from

(tg + T7/ϑ+ 4d, tg + T7 + (4ϑ+ 5)d)
(8)
⊂ (tg + (1 + 1/ϑ)T1, tg + T7 + (4ϑ+ 5)d) .

By Lemma 4.13, thus tjoin > tg + (1 + 1/ϑ)T1, and by Statement (v) of Lemma 4.11, no
node in W resets its join flags after tg + (1 + 1/ϑ)T1 again (before R1 expires).

Case 1: Assume tsleep ≥ t+. Thus, Statement (ii) of Lemma 4.14 applies, i.e., all non-
faulty nodes are observed in state recover by time t+ + 2T1 + 3d. Any node from W will
switch to state join before time tg+T7 +(4ϑ+5)d because T7 expires no later than that.
Subsequently, it will switch to propose as soon as it memorizes all non-faulty nodes in
state join. Denote by tpropose ∈ (tg+T7/ϑ+4d, tg+T7 +(4ϑ+6)d) the minimal time when
a node from W switches from join to propose. As observed before, no node in W resets
its join flags before time tpropose +3d. As nodes in W reset their propose and accept flags
upon switching to state join, some node in W must memorize n− 2f ≥ f + 1 non-faulty
nodes in state join at time tpropose. According to Statement (ii) of Lemma 4.11, these
nodes must have switched to state join at or after time tjoin. Hence, all nodes in W
will memorize them in state join by time tpropose + d and thus have switched to state
join. Hence, all nodes in W will switch to state propose before time tpropose + 2d and
subsequently to state accept before time tpropose + 3d, i.e., tpropose ≤ tg + T7 + (4ϑ+ 6)d is
a W -quasi-stabilization point.

Case 2: Assume tsleep < t+. By Statement (i) of Lemma 4.14, all non-faulty nodes are
observed in either sleep or recover at time tsleep + 2T1 + 3d. The nodes observed in state
sleep will have been observed in state sleep→ waking and switched to waking by time
tsleep + (2ϑ+ 3)T1 + 4d.

Case 2a: Suppose less than f + 1 nodes in W are observed in state sleep at time
tsleep + 2T1 + 3d by all non-faulty nodes, i.e., at least n− 2f ≥ f + 1 non-faulty nodes are
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observed in state recover by all non-faulty nodes. By Lemma 4.13, we have that

tsleep + (2ϑ+ 3)T1 + 6d
(7)
≤ min

{
tsleep +

T6

ϑ
, t+ + (2ϑ+ 3)T1 + 6d

}
(8)
≤ min

{
ts +

T6

ϑ
, tg +

T7

ϑ
+ 4d

}
< tjoin .

Hence, any non-faulty node observing itself in state waking at some time t ∈ (tsleep +
2T1 + 3d, tsleep + (2ϑ+ 3)T1 + 5d) will also observe at least f + 1 non-faulty nodes in state
recover and switch to recover. As any non-faulty node in sleep or sleep→ waking at time
tsleep+2T1+3dwill observe itself in state waking no later than time tsleep+(2ϑ+3)T1+5d,
by time tsleep + (2ϑ+ 3)T1 + 6d < tjoin, all non-faulty nodes observe themselves in state
recover. From here we can argue analogously to the first case, i.e., there exists a W -
quasi-stabilization point tpropose ≤ tg + T7 + (4ϑ+ 6)d.

Case 2b: Suppose at least f+1 nodes in W are observed in state sleep at time tsleep +
2T1 + 3d by all non-faulty nodes. These nodes will switch to waking and subsequently
ready until time

max

{
tsleep + (2ϑ+ 3)T1 + 7d, tsleep −

T1

ϑ
+ T2 + d

}
(3)
= tsleep −

T1

ϑ
+ T2 + d (28)

due to T2 being expired while observing themselves in waking unless they switch from
waking to recover. Note that these nodes reset their accept flags upon switching to
waking. Denote by tpropose and taccept the infima of times greater than tsleep + 2T1 + 4d
when a non-faulty node switches to propose or accept, respectively. Recall that any
non-faulty node switching from recover to join resets its propose and accept flags, and
any non-faulty node switching from waking to ready resets its propose flags. Hence, we
have for all i, j ∈W that

(i) Memi,j,propose(t) = 0 at any time t ∈ [tsleep + 2T1 + 3d, tpropose] at which i observes itself
in ready or join, and

(ii) Memi,j,accept(t) = 0 at any time t ∈ [tsleep + 2T1 + 3d, taccept] at which i observes itself
in ready, join, or propose.

By Statements (ii) and (iv) of Lemma 4.11, no node fromW resets its sleep→ waking
flags at or after time ts ≥ tg+(1+1/ϑ)T1 +d. As ts ≥ tsleep +2T1 +T1/ϑ ≥ tsleep +2T1 +3d
and all nodes from W observed in sleep at time tsleep + 2T1 + 3d will be observed in
sleep → waking by time tsleep + (2ϑ + 3)T1 + 4d, Statement (i) of Lemma 4.11 implies
that all nodes in W switch to active at some time from (ts, tsleep + (2ϑ + 3)T1 + 4d) ⊆
(tsleep +2T1 +3d, tsleep +(2ϑ+3)T1 +4d). As, by the Statements (i) and (ii) from above, the
first node in W switching to state propose must do so because of an expiring timeout,
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Lemma 4.13 yields that

tpropose

≥ min

{
tjoin, tsleep − T1 − d+

T2 + min{T3, T4}
ϑ

}
≥ min

{
tg +

T7

ϑ
+ 4d, ts +

T6

ϑ
, tsleep − T1 − d+

T2 + min{T3, T4}
ϑ

}
(5)
≥ min

{
tsleep − t+ + tg +

T7

ϑ
+ 4d, tsleep +

(
2 +

1

ϑ

)
T1 +

T6

ϑ
, tsleep − T1 − d+

T2 + T3

ϑ

}
(4,8)
= tsleep +

(
2 +

1

ϑ

)
T1 +

T6

ϑ
.

Therefore,

tpropose ≥ tsleep +

(
2 +

1

ϑ

)
T1 +

T6

ϑ

(7)
≥ tsleep −

T1

ϑ
+ T2 + 2d . (29)

By Inequality (28), we conclude that at time tsleep − T1/ϑ + T2 + 2d < tpropose, any node
from W observes itself in one of the states ready, recover, or join.

Again, we distinguish two cases.
Case 2b-I: tpropose < tsleep−T1−d+(T2+T3)/ϑ. As previously used, no non-faulty node

can switch from ready to propose during (tsleep + 2T1 + 4d, tsleep − T1 − d+ (T2 + T3)/ϑ)).
Hence, there must be a non-faulty node that switches from join to propose at time
tpropose. By Statements (i) and (ii) from above, the node must memorize at least n−2f ≥
f + 1 nodes from W in state join at time tpropose. By Statement (ii) of Lemma 4.11,
these nodes must have switched to join at or after time tjoin. Recall that no non-faulty
node resets its join flags during [tg + (1 + 1/ϑ)T1 + d, tg + R1/ϑ). Since propose ≥ tjoin ≥
tg + (1 + 1/ϑ)T1 + d, no non-faulty node resets its join flags during [tpropose, tpropose + 3d).
Hence, all non-faulty nodes still in state recover have switched to join by time tpropose+d,
giving that all non-faulty nodes are in one of the states ready, join, or accept at time
tpropose + d (since they cannot leave accept earlier than tpropose + T1/ϑ ≥ tpropose + 4d
again).

Case 2b-II: tpropose ≥ tsleep − T1 − d + (T2 + T3)/ϑ. Recall that all non-faulty nodes
switched to active by time tsleep + (2ϑ+ 3)T1 + 4d. Hence, any non-faulty node observing
itself in state recover at time tsleep + 2T1 + 3d will have switched to join because T6

expired by time

tsleep + (2ϑ+ 3)T1 + T6 + 5d
(4)
≤ tsleep − T1 − d+

T2 + T3

ϑ
≤ tpropose . (30)

Hence, also in this case all non-faulty nodes are in one of the states ready, join, or
accept at time tpropose + d.

Continuing Case 2b: Next, we claim that any non-faulty node is in states propose
or join by time tsleep − T1/ϑ + T2 + T4 + 3d. To see this, observe that any non-faulty
node following the basic cycle must switch from ready to propose by this time due to
timeouts. On the other hand, according to Inequality (30), all non-faulty nodes in state
recover switch to join by time

tsleep − T1 − d+
T2 + T3

ϑ

(3,5)
< tsleep −

T1

ϑ
+ T2 + T4 + 2d ,

showing the claim.
In summary, we showed the following points:
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(i) At time tpropose + d, all non-faulty nodes are observed in states ready, join, propose,
or accept by all non-faulty nodes.

(ii) All non-faulty nodes switch to propose or join during [min{tjoin, tpropose}, tsleep−T1/ϑ+
T2 + T4 + 3d).

(iii) No non-faulty node resets its propose or accept flags at or after time tpropose +d unless
switching to accept first.

(iv) No non-faulty node memorizes non-faulty nodes in state propose or accept that have
not been in that state at or after time tpropose.

We claim that the infimum tq of all times from[
tpropose, tsleep −

T1

ϑ
+ T2 + T4 + 3d

]
when a node from W switches to accept is a W -quasi-stabilization point. Note that
because

tsleep −
T1

ϑ
+ T2 + T4 + 4d

(6)
≤ tsleep + 4d+

T5 + T6

ϑ

(29)
≤ tpropose +

T5

ϑ

no node from W will switch from propose to recover before time tq + 3d.
Again, we distinguish two cases. First assume that tq < tsleep−T1/ϑ+T2+T4+3d, i.e.,

at time tq indeed a node from W switches to state accept. Due to Statement (iv) from
the above list and the minimality of tq, it follows that the respective node memorizes
n − 2f ≥ f + 1 nodes from W in state propose that switched to propose at or after
time tp. These nodes must be in one of the states propose or accept during [tq, tq + 3d].
According to Statement (i) from above, thus all non-faulty nodes still in ready will
switch to propose by time tq + d. By time tq + 2d, all non-faulty nodes in join will
observe the at least n − f nodes from W in one of the states join, propose, or accept,
and hence switch to propose. Another d time later, all nodes in W will have switched
to accept, i.e., tq is indeed a W -quasi-stabilization point.

On the other hand, if tq = tsleep − T1/ϑ+ T2 + T4 + 3d, Statement (ii) from the above
list gives that all nodes from W are in one of the states join, propose, or accept dur-
ing [tq + d, tq + 3d]. Therefore, non-faulty nodes will switch from join to propose and
subsequently from propose to accept until time tq + 3d as well. Thus, again, tq is a
W -quasi-stabilization point.

It remains to check that in all cases, the obtained W -quasi-synchronization point
occurs no later than time tg + R1/ϑ − 3d. In Cases 1 and 2a, we have that tpropose is a
W -quasi-synchronization point with

tpropose ≤ tg + T7 + (4ϑ+ 5)d
(9)
≤ tg +

R1

ϑ
− 3d .

In Case 2b, it holds that tq is a W -quasi-synchronization point with

tq ≤ tsleep −
T1

ϑ
+ T2 + T4 + 3d

≤ t+ − T1

ϑ
+ T2 + T4 + 3d

= tg + 2T1 −
2T1

ϑ
+ 2T2 + 2T4 + T5 + 9d

(9)
≤ tg +

R1

ϑ
− 3d .
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We conclude that indeed all nodes in W switch to accept within a window of less than
3d time before, at any node in W , R1 expires and it leaves state resync, concluding the
proof.

Finally, putting together our main theorems and Lemma 3.4, we deduce that the
system will stabilize from an arbitrary initial state provided that a subset of n − f
nodes in V remains coherent for a sufficiently large period of time.

COROLLARY 4.16. Let W ⊆ V , where |W | ≥ n− f , and define for any k ∈ N
T (k) := (k + 2)(ϑ(R2 + 3d) + 8(1− λ)R2 + d) +R1/ϑ .

Then, for any k ∈ N, the proposed algorithm is a (W,W 2)-stabilizing pulse synchro-
nization protocol with skew 2d and accuracy bounds (T2 + T3)/ϑ− 2d and T2 + T4 + 7d
stabilizing within time T (k) with probability at least 1 − 2−k(n−f). It is feasible to pick
timeouts such that T (k) ∈ O(kn) and T2 + T4 + 7d ∈ O(1).

PROOF. The satisfiability of Condition 3.3 with T (k) ∈ O(kn) and T2 +T4 +7d ∈ O(1)
follows from Lemma 3.4. Assume that t+ is sufficiently large for [t− + T (k) + 2d, t+] to
be non-empty, as otherwise nothing is to show. By definition, W will be coherent during
[t−c , t

+], with t−c = t−+ϑ(R2 +3d)+8(1−λ)R2 +d. According to Theorem 4.10, there will
be some goodW -resynchronization point tg ∈ [t−c , t

−
c +(k+1)(ϑ(R2+3d)+8(1−λ)R2+d)]

with probability at least 1−1/2k(n−f). If this is the case, Theorem 4.15 shows that there
is a W -stabilization point t ∈ [tg, t

− + T (k)]. Applying Theorem 4.4 inductively, we
derive that the algorithm is a (W,W 2)-stabilizing pulse synchronization protocol with
the bounds as stated in the corollary that stabilizes within time T (k) with probability
at least 1− 2−k(n−f).

4.4. Late Joining and Fast Recovery
An important aspect of combining self-stabilization with Byzantine fault-tolerance is
that the system can remain operational when facing a limited number of transient
faults. If the affected components stabilize quickly enough, this can prevent future
faults from causing system failure. In an environment where transient faults occur
according to a random distribution that is not too far from being uniform (i.e., one
deals not primarily with bursts), the mean time until failure is therefore determined
by the time it takes to recover from transient faults. Thus, it is of significant interest
that a node that starts functioning according to the specifications again synchronizes
as fast as possible to an existing subset of correct nodes. Moreover, it is of interest
that a node that has been shut down temporarily, e.g. for maintenance, can join the
operational system again quickly.

In the terms of our analysis, we show that if there is a set W of at least n − f
synchronized nodes (i.e., there has been a W -stabilization point), then any further
node i ∈ V \W will synchronize in O(1) time (i.e., there will be a (W ∪{i})-stabilization
point). Note that this requires coherency of (W ∪ {i}) for O(1) time only, i.e., there
is no hidden dependence on the “slow” R2 or R3 timeouts, and that the guarantee is
deterministic.

THEOREM 4.17. Suppose there exists a node i in V and a set W ⊆ V , |W | ≥ n − f ,
such that there is a W -stabilization point at some time t− and W ∪ {i} is coherent
during [t−, t− + (1 + 5/(2ϑ))R1]. Then there is a (W ∪ {i})-stabilization point at some
time t ∈ [t−, t− + (1 + 5/(2ϑ))R1].

PROOF OUTLINE. If node i ever switches to sleep in synchrony with the nodes in W ,
stabilization is achieved. From Lemma 4.5 we deduce that if it switches to sleep, it does
this in synchrony with the nodes in W . In case i does not switch to sleep, Lemma 4.12
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states that it will eventually end up in recover. However, from recover it will follow
the nodes in W when they pass through accept the next time; the only remaining
possibility to delay stabilization further thus is that i switches to join. However, from
there it would be “picked up” at the latest in the next iteration of the basic cycle by
the nodes in W . If this does not happen, it must switch to propose fairly soon, and, by
the same arguments as above, will either stabilize by switching to sleep or end up in
recover again. This time Memi,j,join will be true, as the timeout conditions guarantee
that R1 is not expired yet, i.e., the flag cannot have been reset yet. Therefore, the node
cannot switch to join again and will stabilize at the next W -stabilization point.

PROOF. Again, the proof is executed by distinguishing cases. W.l.o.g., we assume
for the moment that W ∪ {i} is coherent during [t−,∞) and later show that indeed
t ≤ t− + (1 + 5/(2ϑ))R1.

Case 1: Node i does not switch to supp → resync during [t−, t− + 2T2 + 2T4 + 14d].
Thus, after R1 expires at the latest by time t−+R1 +d, it will observe itself in dormant
during [t− + R1 + 2d, t− + 2T2 + 2T4 + 14d] and therefore not be (or observe itself) in
state join during [t− + R1 + 3d, t− + 2T2 + 2T4 + 14d]. By Theorem 4.4 (i), there is a
W -stabilization point tW ∈ [t−+(T2 +T3)/ϑ, t−+T2 +T4 +5d). Subsequently, the nodes
in W will switch to sleep during [tW +T1/ϑ, tW +T1 + 3d]. Denote by tsleep the minimum
of the respective times. We apply Lemma 4.5 to W ∪ {i}. Thus, at time tsleep + 2T1 + 2d,
node i is either in state recover and will not leave until the next W -stabilization point
(or it switches to join), or it is in state sleep, sleep → waking, or waking and resets its
timeout T2 at some time from [tW −∆g + T1/ϑ− 4d, tW + 2T1 + 5d].

Case 1a: Node i is in recover at time tsleep + 2T1 + 2d. As it cannot switch to join until
time t− + 2T2 + 2T4 + 14d, it will stay in recover until the subsequent W -stabilization
point t′W ∈ (tW + (T2 +T3)/ϑ, tX +T2 +T4 + 5d) ⊆ tW + (T2 +T3)/ϑ, t−+ 2T2 + 2T4 + 10d)
(existing according to Theorem 4.4). By time t′W , clearly timeout (ϑ(2T1 + 3d), recover)
has expired at node i, as

t′W ≥ tW +
T2 + T3

ϑ

(3)
> tsleep + 2T1 + 2d+ ϑ(2T1 + 3d) + d = tsleep + (ϑ+ 1)(2T1 + 3d) .

Because T1/ϑ ≥ 4d, i will observe all nodes from W in accept during [t′W + 3d, t′W + 4d].
Hence it will switch to accept by time t′W + 3d, i.e., t′W is a (W ∪{i})-quasi-stabilization
point.

Case 1b: Node i is in sleep, sleep→ waking, or waking at time tsleep+2T1+2d. Denote
by t′W the W -stabilization point subsequent to tW as in the previous case. As no node
fromW is in and thus not observed in state accept or recover during [tsleep+2T1+2d, t′W )
by Theorem 4.4 (ii) and, as observed before, node i resets its timeout T2 not earlier than
time tW −∆g + T1/ϑ − 4d, it will not switch to recover before time min{t′W , tW −∆g +
(T1 + T2 + T3 + T5)/ϑ − 4d} unless it switches to accept first. By a proof analogous to
Lemma 4.5 one can show that i resets its propose and accept flags before switching to
ready and d time after the nodes in W have left accept. Thus i cannot switch to accept
before at least f nodes from W switched to propose (unless switching to recover first).
Moreover, by time t′W , it will already have switched to ready since switching there from
sleep takes at most T2 + 3d and

t′W ≥ tW +
T2 + T3

ϑ

(3,7)

≥ tW + 2T1 + 5d+ T2 .

Hence, reasoning analogously to the proof of Theorem 4.4, t′W is in fact a W ∪ {i}-
stabilization point provided that i switches to accept instead of recover first. This in
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turn follows from the bound

tW −∆g +
T1 + T2 + T3 + T5

ϑ
− 4d

(6)
≥ tW −∆g + T1 + T2 + T4 +

T2 + T3 − T6

ϑ
− 4d

(4)
> tW −∆g + (2ϑ+ 4)T1 + T2 + T4 + 3d

(2)
> tW + T2 + T4 + 7d

> t′W + 2d ,

where in the last step we used that t′W < tW + T2 + T4 + 5d according to Theorem 4.4.
This shows that T5 does not expire at i while it is in propose before time t′W +2d. Hence,
t′W is a W ∪ {i}-stabilization point.

Case 2: Node i switches to supp → resync at a time t′ ∈ [t−, t− + 2T2 + 2T4 + 14d].
Denote by tW and t′W the maximal W -stabilization point smaller than t′ and the min-
imal W -stabilization point larger than max{t′, tW + 2d}, which exist by Theorem 4.4.
Denote by tsleep the minimal time larger than tW when a node fromW switches to sleep.
Analogously30 to Case 1b, t′W is a W ∪{i}-stabilization point if i is in state sleep at time
tsleep + 2T1 + 2d. Hence, assume w.l.o.g. that i is in state recover or already switched
to join by this time. Analogously to Case 1a, t′W will be a (W ∪ {i})-quasi-stabilization
point if it stays in recover until time t′W + 3d. Therefore, w.l.o.g., i switches to join at
some time during (t′, t′W + 3d), implying that it will leave the state no later than time
t′W + 4d and switch to state accept by time t′W + 5d.

Now either i continues to execute the basic cycle and thus will, analogously to
Case 1b, participate in the minimal W -stabilization point t′′W > t′W + 2d, or it will
switch to recover again. In the latter case, it cannot switch back to join until at least
time t′+R1/ϑ because it needs to reset its join flags first, which happens upon switch-
ing to passive only. As we have that

t′ +
R1

ϑ

(9)
≥ t′ − 2T1

ϑ
+ 2T2 + 2T4 + T5 + 7d

(6)
> t′ − 2T1

ϑ
+ 3T2 + 3T4 − T6 + 7d

(4,5)
> t′ + 2T2 + 2T4 + 14d

≥ t′′W + 4d ,

the latter of which follows from applying Theorem 4.4 (ii) two times, i cannot leave
state recover through join again before time t′′W + 4d. Therefore, t′′W is a (W ∪ {i})-
quasi-stabilization point, analogously to Case 1a.

We have shown that there is some (W ∪{i})-quasi-stabilization at the latest by time

t′′W ≤ t′ + 2T2 + 2T4 + 10d

in Case 2, while in Case 1 there is a (W ∪ {i})-quasi-stabilization point no later than
time t− + 2T2 + 2T4 + 14d. By Theorem 4.4 (ii), this implies a (W ∪ {i})-stabilization
point by time

t− + 2T2 + 2T4 + 14d+ (T2 + T4 + 5d) < t− +

(
1 +

5

2ϑ

)
R1 ,

30Note that we can apply Lemma 4.5 even if i switches to join, as we can simply replace the set A in the
proof of Lemma 4.5 by W , allowing this stronger version of the lemma to hold.
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where the bound is obtained analogously to the bound t′+R1/ϑ > t′′W +4d shown above.
This concludes the proof, as indeed there is a (W ∪{i})-stabilization point no later than
time t− + (1 + 5/(2ϑ))R1.

5. GENERALIZATIONS
This section provides a few extensions of the core results derived in the previous sec-
tion. In particular, we show that it is not necessary to map faulty channels to, for
example, faulty nodes (thus rendering a non-faulty node effectively faulty in terms of
results), that the algorithm can tolerate an even stronger adversary than defined in
Section 2 without significant change of stabilization time, and that in many reasonable
settings stabilization takes O(R1) time only, even if there is no majority of non-faulty
nodes that is already synchronized.

5.1. Synchronization Despite Faulty Channels
Theorem 4.15 and our notion of coherency require that all involved nodes are connected
by correct channels only. However, it is desirable that non-faulty nodes synchronize
even if they are not connected by correct channels. To capture this, the notions of
coherency and stability can be generalized as follows.

Definition 5.1 (Weak Coherency). We call the set C ⊆ V weakly coherent during
[t−, t+], iff for any node i ∈ C there is a subset C ′ ⊆ C that contains i, has size n − f ,
and is coherent during [t−, t+].

In particular, if there are in total at most f nodes that are faulty or have faulty outgo-
ing or incoming channels, then the set of all non-faulty nodes is (after some amount of
time) weakly coherent.

COROLLARY 5.2. For each k ∈ N let T ′(k) := T (k)− ((ϑ(R2 + 3d) + 8(1− λ)R2 + d)),
where T (k) is defined as in Corollary 4.16. Suppose the subset of nodes C ⊆ V is weakly
coherent during the time interval [t−, t+] ⊇ [t− + T ′(k) + T2 + T4 + 8d, t+] 6= ∅. Then,
with probability at least 1 − (f + 1)/2k(n−f), there is a C-quasi-stabilization point t ≤
t− + T ′(k) + T2 + T4 + 5d.

PROOF OUTLINE. By definition, each node i is part of a coherent set Ci of at least
n − f nodes that, by Corollary 4.16, stabilizes within T (k) time; by the union bound,
this happens with probability 1−(f+1)/2k(n−f) for all these sets. Since the intersection
of two such sets Ci, Cj of size at least n − f contains at least n − 2f ≥ f + 1 nodes,
the stabilization points of these sets cannot be far apart. If the nodes in Ci switch to
accept during some interval [t, t+ 2d), all these nodes will have been observed in state
propose by time t+ 2d. Hence, as |Ci ∩ Cj | ≥ f + 1, the nodes in Cj that have not done
so yet switch to propose and subsequently accept by time t+ 3d.

PROOF. W.l.o.g. we can assume t+ = ∞ during the proof. By the definition of weak
coherency, every node in C is in some coherent set C ′ ⊆ C of size n− f . Hence, for any
such C ′ it holds that we can cover all nodes in C by at most 1+ |V \C ′| ≤ f +1 coherent
sets C1, . . . , Cf+1 ⊆ C. By Corollary 4.16 and the union bound, with probability at least
1 − (f + 1)/2k(n−f), for each of these sets there will be at least one stabilization point
during [t−, t−+T ′(k)]. Assuming that this is indeed true, denote by ti0 ∈ [t−, t−+T ′(k)]
the time

max
i∈{1,...,f+1}

{max{t ≤ t− + T ′(k) | t is a Ci-stabilization point}} ,

where i0 ∈ {1, . . . , f + 1} is an index for which the first maximum is attained and ti0 is
the respective maximal time, i.e., ti0 is a Ci0 -stabilization point.
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Since for all i ∈ {1, . . . , f + 1} it holds that Ci ∩Ci0 6= ∅, and by Theorem 4.4 nodes in
Ci only switch to accept within a time window of size 2d, once a Ci-stabilization point
has occurred, we conclude that all Ci have stabilization points during (ti0−2d, ti0 +2d).

Define t′i0 ∈ (ti0 + 2d, t− + T ′(k) + T2 + T4 + 5d] to be minimal such that it is another
Ci0 -stabilization point. Such a time must exist by Theorem 4.4. Now suppose ta is the
minimal time in (t′i0 − 2d, t′i0 + 2d) when a node from C switches to accept and this
node is in set Ci for some i ∈ {1, . . . , f + 1}. As usual, there must be at least f + 1
non-faulty nodes from Ci in state propose at time ta and by time ta + d, all nodes from
Ci will be observed in either of the states propose or accept. As |Ci ∩ Cj | ≥ f + 1 for
any j ∈ {1, . . . , f + 1}, all nodes in Cj will observe at least f + 1 nodes in states propose
or accept at times in (ta, ta + 2d). We have that ta ≥ ti0 + (T2 + T3)/ϑ − 2d according
to Theorem 4.4. As no nodes switched to state accept during (ti0 + 2d, ta) and none of
them switch to state recover (cf. Theorem 4.4), for any j we can bound

ta + d ≥ ti + d+
T2 + T3

ϑ
> tj − 3d+

T2 + T3

ϑ

(4)
> tj + T2 + 3d (31)

that all nodes from Cj are in one of the states ready, propose, or accept at time ta + d.
Hence, they will switch from ready to propose if they still are in ready before time
ta + 2d. Less than d time later, all nodes in Cj will memorize all nodes in Cj in state
propose and therefore switch to accept if not done so yet. Since j was arbitrary, it
follows that ta is a C-quasi-stabilization point.

COROLLARY 5.3. Suppose C ⊆ V is weakly coherent during [t−, t+] and t ∈ [t−, t+−
(T2 + T4 + 8d)] is a C-quasi-stabilization point. Then

(i) all nodes from C switch to accept exactly once within [t, t+ 3d);
(ii) there will be a C-quasi-stabilization point t′ ∈ [t + (T2 + T3)/ϑ, t + T2 + T4 + 5d)

satisfying that no node from C switches to accept in the time interval [t+ 3d, t′);
(iii) and each node i, i ∈ C, i’s main state machine (Figure 1) is metastability-free during

[t+ 4d, t′ + 4d).

PROOF. Analogously to the proofs of Theorem 4.4 and Corollary 5.2.

We point out that one cannot get stronger results by the proposed technique. Even if
there are merely f + 1 failing channels, this can e.g. effectively render a node faulty
(as it may never see n− f nodes in states propose or accept) or exclude the existence of
a coherent set of size n− f (if the channels connect f + 1 disjoint pairs of nodes, there
can be no subset of n − f nodes whose induced subgraph contains correct channels
only). Stronger resilience to channel faults would necessitate to propagate information
over several hops in a fault-tolerant manner, imposing larger bounds on timeouts and
weaker synchronization guarantees.

Combination of Corollary 5.2 and Corollary 5.3 finally yields:

COROLLARY 5.4. Let C ⊆ V be such that, for each i ∈ C, there is a set Ci ⊆ C
with |Ci| = n− f , and let E =

⋃
i∈C C

2
i . Then, for any k ∈ N, the proposed algorithm is

a (C,E)-stabilizing pulse synchronization protocol with skew 3d and accuracy bounds
(T2 + T3)/ϑ − 3d and T2 + T4 + 8d stabilizing within time T (k) + T2 + T4 + 5d with
probability at least 1− (f + 1)/2k(n−f).

PROOF. Analogously to the proof of Corollary 4.16.

5.2. Stronger Adversary
So far, our analysis considered a fixed set C of coherent (or weakly coherent) nodes.
But what happens if whether a node becomes faulty or not is not determined upfront,
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but depends on the execution? Phrased differently, does the algorithm still stabilize
quickly with a large probability if an adversary may “corrupt” up to f nodes, but may
decide on its choices as time progresses, fully aware of what happened so far? Since we
operate in a system where all operations take positive time, it might even be the case
that a node might fail just when it is about to perform a certain state transition, and
would not have done so if the execution had proceeded differently. Due to the way we
use randomization, this however makes little difference for the stabilization properties
of the algorithm.

COROLLARY 5.5. Suppose at every time t, an adversary has full knowledge of the
state of the system up to and including time t, and it might decide on in total up to f
nodes (or all channels originating from a node) becoming faulty at arbitrary times. If
it picks a node at time t, it fully controls its actions after and including time t. Fur-
thermore, it controls delays and clock drifts of non-faulty components within the system
specifications, and it initializes the system in an arbitrary state at time 0. For any k ∈ N,
define

tk := (k + 3)(ϑ(R2 + 3d) + 8(1− λ)R2 + d) +R1/ϑ+ T2 + T4 + 5d .

Then the set of all nodes that remain non-faulty until time tk reaches a quasi-
stabilization point during [ϑ(R2 + 3d) + 8(1− λ)R2 + d, tk] with probability at least

1− (f + 1)e−k(n−f)/2 .

Moreover, at any time t ≥ ϑ(R2 +3d)+8(1−λ)R2 +d, the set of nodes that are non-faulty
at time t is coherent.

PROOF. The last statement of the corollary holds by definition.
We need to show that Theorem 4.10 holds for the modified time interval [ϑ(R2 +3d)+

8(1− λ)R2 + d, (k + 3)(ϑ(R2 + 3d) + 8(1− λ)R2 + d)] with the modified probability of at
least 1− e−k(n−f)/2. If this is the case, we can proceed as in Corollaries 5.2 and 5.3.

We start to track the execution from time ϑ(R2 + 3d) + 8(1 − λ)R2 + d. Whenever a
non-faulty node switches to state init at a good time, the adversary must corrupt it in
order to prevent subsequent deterministic stabilization. In the proof of Theorem 4.10,
we showed that for any non-faulty node, there are at least k+ 1 different times during
[ϑ(R2+3d)+8(1−λ)R2+d, (k+3)(ϑ(R2+3d)+8(1−λ)R2+d)] when it switches to init that
have an independently by 1/2 lower bounded probability to be good. Since Lemma 4.9
holds for any execution where we have at most f faulty nodes, the adversary corrupting
some node at time t affects the current and future trials of that node only, while the
statement still holds true for the non-corrupted nodes. Thus, the probability that the
adversary may prevent the system from stabilizing until time tk is upper bounded by
the probability that (k + 1)(n − f) independent and unbiased coin flips show f or less
times tail. Chernoff ’s bound states for the random variable X counting the number of
tails in this random experiment that for any δ ∈ (0, 1),

P [X < (1− δ)E[X]] <

(
e−δ

(1− δ)1−δ

)E[X]

< e−δE[X] .

Inserting δ = k/(k + 1) and E[X] = (k + 1)(n− f)/2, we see that the probability that

P [X ≤ f ] ≤ P [X < (n− f)/2] < e−k(n−f)/2 ,

as claimed.
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5.3. Constant-Time Stabilization
Up to now, we considered worst-case scenarios only. In practice, it is likely that faulty
nodes show not entirely arbitrary / malicious behavior. In particular, they might still
be partially following the protocol, not exhibit a level of coordination that could only
be achieved by a powerful central instance, or not be fully aware of non-faulty nodes’
states. Moreover, it is unlikely that at the time when a majority of the nodes becomes
non-faulty, all their timeouts R2 and R3 have been reset recently. In such settings,
stabilization will be much easier and therefore be achieved in constant time with a
large probability. It is difficult, however, to name simple conditions that cover most
reasonable cases. Generally speaking, once (randomized) timeouts of duration R2 or
R3 are not “messed up” at non-faulty nodes anymore, faulty channels and nodes need
to collaborate in an organized manner in order to prevent stabilization for a large time
period. We give a few examples in the following corollary.

COROLLARY 5.6. Suppose W ⊆ V , where |W | ≥ n− f , satisfies that for each i ∈W ,
all (randomized) timeouts of duration R2 or R3 are correct during [t−, t+], and the node
is non-faulty during [t−+ϑ(3(R2+3d)+2(8(1−λ)R2+d)), t+]. Moreover, channels between
nodes inW are correct during [t−+ϑ(3(R2+3d)+2(8(1−λ)R2+d)), t+] and did not insert
init signals that have not been sent during [t−, t−+ϑ(3(R2 + 3d) + 2(8(1−λ)R2 + d))] or
delay them by more than R1 time. Define t̃− := t− + ϑ(3(R2 + 3d) + 2(8(1− λ)R2 + d)) +
R1 + d. Moreover, assume that one of the following statements holds during [t̃−, t+].

(i) Nodes in V \W switch to init at times that are independently distributed with prob-
ability density at most O(1/(R1n)), and channels from V \W to W do not generate
init signals on their own (or delay init signals from before t̃− more than R1 time).

(ii) Channels from V \W to W switch to init at times that are independently distributed
with probability density at most O(1/(R1n

2)).
(iii) Channels from V \W to W switch to init obliviously of the history of signals origi-

nating at nodes in W and do not know the time t̃−.

If t+ ∈ t̃−+Ω(kR1), k ∈ N, then there is a W -stabilization point during [t̃−, t̃−+O(kR1)]
with probability at least 1− 2−Ω(k).

PROOF. In Theorems 4.4 and 4.15, we showed that stabilization is deterministic
once a good resynchronization point occurs. The notion of coherency essentially states
that at non-faulty nodes, each timeout expired at least once and has not been reset
again because of incorrect observations on other non-faulty nodes’ states until the set
is considered coherent (cf. Lemma 4.3). Subsequently, the respective nodes are non-
faulty and the channels connecting them correct. This is true by the prerequisites
of the corollary, which essentially state respective conditions on timeouts R2 and R3

explicitly, while rephrasing the conditions for coherency for the remaining timeouts
(note that R1 is the largest timeout except for R2 and R3).

Moreover, the time span during which R2 and R3 behave and are observed regularly
is large enough for R3 to expire twice and additional R2+3d time to pass. This accounts
for the fact that in the proof of Theorem 4.10, we essentially first wait until R3 expires
once (so the adversary has no useful information on the timeout at the respective node
anymore) and then consider the subsequent time(s) when it expire(s). The proof then
exploits that non-faulty nodes timeout R3 will expire at roughly independently uni-
formly distributed points in time. Therefore, unless faulty nodes or channels interfere,
the statement of the corollary holds.

Hence, we need to show that for any of the three conditions, there is not too much
meddling from outside W . For Conditions (i) or (ii), we see that the probability that
there are no init signals on channels from V \ W to W at all for any time span of
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lengthO(R1) is at least constant, regardless of the time interval considered. Regarding
Condition (iii), recall that Theorem 4.10 essentially shows that whatever the strategy
of the adversary, the expected number of good W -resynchronization points during a
time interval (where W is coherent) is linear in the size of the interval divided by R1 if
the interval is sufficiently large. Since the adversary is oblivious of the current time in
relation to t̃+ and the state of W , the statement that for any strategy of the adversary
the amortized number of good stabilization points per R1 time is constant yields the
claim of the lemma.

We remark that this observation is particularly interesting as the core routine of the al-
gorithm is independent of the resynchronization routine after stabilization. If at some
time W becomes subject to a large number of faults resulting in loss of synchroniza-
tion, however the resynchronization routine still works properly, it is very likely that
W will recover within O(1) time (provided R1 ∈ O(1)). On the other hand, if the resyn-
chronization routine fails in the sense that a majority of the nodes suffers from faulty
timeouts R2 or R3, or communication is faulty between too many nodes, this will not
affect the core routine unless too many components related to it fail as well.

6. THE FATAL+ PROTOCOL
As discussed in the introduction, once pulse synchronization is established, the pulses
may serve as round delimiters for the execution of synchronous rounds. Applying the
algorithm by Hoch et al. [2006], these rounds can be consistently labeled by integers
that increase by one in every round, i.e., fully synchronous executions become feasible.

However, utilizing the pulse synchronization routine as-is will result in poor per-
formance. Firstly, the algorithm due to Hoch et al. [2006] involves the use of shared
coins, which is highly expensive in terms of computation and communication. Sec-
ondly, despite the fact that the time between pulses is Θ(d) (if the timeouts are chosen
respectively) and thus the time for a simulated round would be asymptotically optimal,
system speed would be several orders of magnitude from the lower bound [Lundelius
and Lynch 1984], due to the large implied constants (cf. Lemma 3.4). Moreover, our
system model assumes that delays may vary arbitrarily between 0 and d. While this is
very flexible and helpful when it comes to the—in terms of hardware implementation—
fairly complex implementation of communicating the core state machine’s states, the
pure wire delays of the communication channels between different nodes are much
smaller and vary within a smaller range.

This section contains an extension of FATAL, termed FATAL+, which overcomes
these limitations. In a nutshell, it consists of adding a fast non-self-stabilizing,
Byzantine-tolerant algorithm termed quick cycle to FATAL, which generates exactly
M > 1 fast clock ticks between any two pulses at a correct node after stabilization.

The Quick Cycle Algorithm
Consider a system of n nodes, each of which runs the FATAL pulse synchronization
protocol. Additionally, each node is equipped with an instance of the quick cycle state
machine depicted in Figure 16 and an instance of the cycle counter algorithm depicted
in Figure 17, generating the NEXT signal. Note, that the latter is not stated in terms of
a state machines, in order not to distract from its essentials. Although one can easily
come up with an equivalent state machine description within our system model, a
real-world hardware implementation would rather implement it by a simple adder
circuit than a state machine. The interface between the quick cycle algorithm and
the underlying FATAL pulse synchronization protocol is by means of two signals only,
one for each direction of the communication: (i) The quick cycle state machine and the
cycle counter algorithm generate the NEXT signal by which they (weakly) influence the
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accept+
none+

ready+

none+

propose+

T+
1 and

(T+
2 ,accept)

T+
3 or

≥ f + 1 propose+

or (T+
2 ,accept) = 0

≥ n− f propose+

or (T+
2 ,accept) = 0

propose+

Fig. 16. The quick cycle of the FATAL+ protocol.

Fig. 17: Cycle counter algorithm,
also generating the NEXT signal.
Upon (T+

2 ,accept) expires do
count← 0
generate NEXT pulse

end
Upon switch to accept+ do

count← count + 1 mod M
if count = 0 then

generate NEXT pulse
end

end

time between two successive pulses generated by FATAL, and (ii) the quick cycle state
machine observes the state of the (T+

2 ,accept) signal, which signals the expiration of
an additional timer added to the FATAL protocol. The timer is coupled to the state
accept of FATAL, in which the pulse synchronization algorithm generates a new pulse.
The signal’s purpose is to enforce a consistent reset of the quick cycle state machine
once FATAL has stabilized.

Essentially, the quick cycle state machine is a copy of the outer cycle of Figure 3 that
is stripped down to the minimum. However, an additional mechanism is introduced
in order to ensure stabilization, namely, some coupling to the accept state of the main
algorithm: Whenever a pulse is generated by FATAL, we require that all non-faulty
nodes switch to the accept+ state unless they already occupy that state. This is easily
achieved by incorporating the state of the expiration signal of the additional FATAL
timer (T+

2 ,accept) in the guards of Figure 16.31 Since pulses are synchronized up to the
skew Σ of the pulse synchronization routine, it follows that all non-faulty nodes switch
to accept+ within a time window of Σ + 2d: one d for (T+

2 ,accept) to be reset and an
additional d for a node in ready+ switching to propose+ by time Σ + d to observe itself
in propose+. Subsequently, all non-faulty nodes will switch to state ready+ before the
first one switches to propose+ provided that T+

3 is sufficiently large, and the condition
that f+1 propose+ signals trigger switching to propose+ guarantees that all non-faulty
nodes switch to accept+ in a tightly synchronized fashion.

The cycle counter algorithm depicted in Figure 17 maintains an integer cycle counter
that nodes increase by one whenever they switch to accept+. The counter is reset to
zero whenever (T+

2 ,accept) expires, i.e., shortly after a pulse generated by the un-
derlying pulse synchronization algorithm. The algorithm makes sure that, once the
compound algorithm stabilized, these resets never happen when the counter holds a
non-zero value. The counter operates mod M ∈ N, where M is large enough so that at
least roughly T2 + T3 and at most roughly (T2 + T4)/ϑ time passed since the most re-
cent pulse when it reaches M ≡ 0 again. Whenever the counter is set to 0, a non-faulty
node i ∈ V will set its NEXTi signal to 1 and switch it back to 0 at once (thus raising
the respective NEXTi memory flag of the main algorithm). Thus, by actively trigger-
ing the next pulse, we ensure that a pulse does not occur at an inconvenient point in

31Recall that (T+
2 , accept) = 0 from the time the timer is reset (i.e., at most d time after the node switches

to state accept of the main state machine) until it expires, from where on (T+
2 , accept) = 1 until it is reset

again.
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time: When the system has stabilized, exactly M switches to accept+ of the quick cycle
algorithm occur between any two consecutive pulses at a non-faulty node. As these
switches occur also synchronously at different non-faulty nodes, it is apparent that the
quick cycle state machine in fact implements a bounded-size synchronized clock.

To derive accurate bounds on the skew of the protocol, we need to state the involved
delays more carefully.

Definition 6.1 (Refined Delay Bounds). The state of the quick cycle algorithm is
communicated via separate channels S+

i,j , with i, j ∈ V , whose delays vary within d+
min

and d+
max in order to be considered correct during [t−, t+]. State transitions of the quick

cycle state machine, resets of its timeouts, and clearance of its memory flags take at
most d+

max time.

Setting Σ+ := 2d+
max − d+

min, we assume that the following timing constraints hold:

T+
1 ≥ ϑ(T+

2 + Σ+ + 3d+ d+
max) (32)

T+
2 ≥ ϑ(3d+ 3d+

max) (33)
T+

3 ≥ ϑ(T+
1 + d+

max) (34)

M ∈
[
ϑ(T2 + T3 + 3d) + T+

1 − T
+
2

T+
1 + T+

3

,
T2 + T4 − 3ϑd

ϑ(T+
1 + T+

3 + Σ+ + 4d+
max)

]
. (35)

It follows from Lemma 3.4 that it is always possible to pick appropriate values for the
timeouts and M . Note, however, that choosing M ∈ ω(1) requires that T2 + T3 ∈ ω(1),
resulting in a superlinear stabilization time. More precisely, the stabilization time of
FATAL+ is, given M and minimizing the timeouts under this constraint, in Θ(Mn).

We now prove the correctness of the FATAL+ protocol.

THEOREM 6.2. Let W ⊆ V , where |W | ≥ n − f , and define T (k), for k ∈ N, as
in Corollary 4.16. Then, for any k ∈ N, the FATAL+ protocol is a (W,W 2)-stabilizing
pulse synchronization protocol (where accept+ is the “pulse” state) with skew Σ+ and
accuracy bounds (T+

1 + T+
3 )/ϑ − Σ+ and T+

1 + T+
3 + 2Σ+ + 3d+

max. It stabilizes within
time T (k) +T+

1 +T+
3 + Σ+ + 3d+ 5d+

max with probability at least 1− 2−k(n−f). Moreover,
the cycle counters increase by exactly one mod M at each pulse, within a time window of
Σ+, and both the quick cycle state machine and the cycle counters are metastability-free
once the protocol stabilized and remains fault-free in W .

PROOF OUTLINE. Once the underlying FATAL protocol stabilized (within T (k)
time), the (T+

2 ,accept) signals will be well-synchronized at all non-faulty nodes. Hence
they will force a consistent (re)start of the system, no matter what the initial config-
uration was. Once these timeouts expire after a short amount of time, the non-faulty
nodes will just execute the quick cycle, resynchronizing on each transition to propose+,
without interference by any non-expired (T+

2 ,accept) signal. M is chosen such that
this clock value will be reached before T4 expires at non-faulty nodes in the main state
machine. Hence, by the time when their main state machines switch to state propose,
the non-faulty nodes will have (almost) completed their last iteration of the quick cycle
before the wrap-around of the clock (i.e., their counters equal M − 1 or 0 already); at
the same time, T3 will be already expired at these nodes, implying that they all switch
to propose and subsequently accept. Thus, the “reset” of the quick cycle simply coin-
cides with the wrap-around of the clock to 0, i.e., the operation of the quick cycle is not
disturbed.
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Fig. 18. Part of an execution showing the interaction of the main state machine of FATAL and the quick
cycle at nodes 1 and 2.

Figure 18 shows part of an execution of FATAL+ that has already stabilized. Note,
the potentially smaller skew Σ+ of FATAL+ in comparison to the skew Σ of the under-
lying FATAL protocol.

PROOF. Assume that nodes in W ⊆ V , where |W | ≥ n − f , are non-faulty and
channels between them are correct during [t−, t+], where t+ ≥ t− + T (k) + T+

1 + T+
3 +

Σ+ + 3d + 3d+
max. According to Corollary 4.16, with probability at least 1 − 2−k(n−f),

there exists a time t0 ∈ [t−, t−+T (k))] such that all nodes in W switch to accept within
[t0, t0 + 2d), and they will continue to switch to accept regularly in a synchronized
fashion until at least t+. For the remainder of the proof, we assume that such a time t0
is given; from here we reason deterministically.

The skew bound is shown by induction on the k-th consecutive quick cycle pulse,
where k ∈ N, generated after the stabilization time t0 of the FATAL algorithm. Note
that the time for which we are going to establish that the compound algorithm stabi-
lizes is t1 > t0; here we denote for k ≥ 1 by tk the time when the first node from W
switches to accept+ for the kth time after t0 + 3d, i.e., the beginning of the kth pulse of
FATAL+ that we prove correct. W.l.o.g. we assume that t+ = ∞; otherwise, all state-
ments will be satisfied until t+ only (which is sufficient).

To prove the theorem, we are going to show by induction on k ∈ N that

(i) t1 ∈ [t0 + (T+
2 + T+

3 )/ϑ, t0 + T+
1 + T+

3 + Σ+ + 3d+ 5d+
max],

(ii) if k ≥ 2, tk ≤ tk−1 + T+
1 + T+

3 + Σ+ + 3d+
max,

(iii) if k ≥ 2, tk ≥ tk−1 + (T+
1 + T+

3 )/ϑ,
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(iv) ∀i ∈W : i switches to accept+ for the kth time after t0 + 3d during [tk, tk + Σ+),
(v) if k ≥ M , for l := bk/Mc, ∀i ∈ W : i switches to accept for the lth time after t0 + 3d

during [tMl, tMl + Σ+ + 2d),
(vi) ∀i ∈ W : node i’s cycle counter switches from k − 1 modM to kmodM at some time

from [tk, tk + Σ+), and
(vii) if k ≥ 2, ∀i ∈ W : node i’s cycle counter changes its state exactly once during

[tk−1, tk).

In particular, the protocol is a pulse synchronization protocol with the claimed bounds
on skew, accuracy, and stabilization time. Proving these properties will also reveal that
quick cycle is metastability-free after time t1.

To anchor the induction at k = 1, we need to establish Statement (i) as well as
Statements (iv) and (vi) for k = 1; the remaining statements are empty for k = 1.

Recall that any node i ∈W switches to accept during [t0, t0 + 2d). Hence, during[
t0 + 3d, t0 +

T+
2

ϑ

)
(33)
⊆ [t0 + 3d, t0 + 3d+ 3d+

max) ,

at no node in W , (T+
2 ,accept) is expired, implying that all nodes in W are in state

accept+ during [t0 + 3d+ 2d+
max, t0 + 3d+ 3d+

max). Note that each node in W will reset its
cycle counter to 0 when (T+

2 ,accept) expires, i.e., after having completed its transition
to accept+.

The above bound shows that at the minimal time after t0 + 3d when a node in W
switches to ready+, it is guaranteed that no node in W is observed in propose+ until
the minimal time tp ≥ t0 + 3d when a node in W switches to propose+. Moreover,
at any node in W switching to state ready+ timeout (T+

2 ,accept) must be expired,
implying that the node may not switch from ready+ to propose+ due to this signal
until it switches to accept again. Recall that nodes from W set their NEXT signals to 1
only briefly when their cycle counters are set to 0. Hence, for each such node in W , this
signal is observed in state 0 from the time when (T+

2 ,accept) expires until (a) at least
time tM or (b) the time the node is forced by a switch to accept to set its counter to 0,
whatever is earlier. Examining the main state machine, it thus can be easily verified
that no node in W may switch from ready+ to propose+ because (T+

2 ,accept) = 0 before
(a) time tM or (b) time

t0 +
T2 + T4

ϑ

(35)
> t0 +M(T+

1 +T+
3 +Σ+ +4d+

max)+3d ≥ t0 +M(T+
1 +T+

3 +5d+
max)+3d (36)

is reached. We obtain:
(P1) No node in W observes (T+

2 ,accept)(t) = 0 at some time t ∈ [t0 + 3d,min{tM , t0 +
M(T+

1 + T+
3 + 5d+

max) + 3d}] when it is not in state accept+.
Considering that any node i ∈W will switch to ready+ once both T+

1 and T+
2 expired

and subsequently to propose+ at the latest when T+
3 expires (provided that it does not

switch back to accept+ first), it follows that by time

t0 + 3d+ max{T+
1 + 3d+

max, T
+
2 }+ T+

3 + 2d+
max

(32)
= t0 + T+

1 + T+
3 + 5d+

max + 3d (37)
(36)
< t0 +

T2 + T4

ϑ
, (38)

each node in W must have been observed in propose+ at least once. On the other hand,
as we established that nodes do not observe nodes in W in state propose+ when switch-
ing to ready+ at or after time t+ 3d before the first node in W switches to propose+, it
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follows that until time

t0 +
T+

2 + T+
3

ϑ

(34),(33)
≥ t0 + 3d+ T+

1 + 2d+
max , (39)

nodes in W will have at most |V \W | ≤ f of their propose+ flags in state 1, and their
timeout T+

3 did not expire yet. Thus, by (P1), the first node in W that switches to
propose+ after t0 + 3d must do so at time tp ≥ t0 + 3d+ T+

1 + 2d+
max.

Recall that t1 is the minimal time larger than t0 + 3d when a node in W switches to
state accept+. By (37) and since |W | ≥ n− f , we have that each node in W observes at
least n− f nodes in propose+ by time t0 + T+

1 + T+
3 + 3d+ 5d+

max, and thus

t1 ≤ t0 + T+
1 + T+

3 + 3d+ 5d+
max . (40)

Moreover, we can trivially bound

t1 ≥ tp ≥ t0 + (T+
2 + T+

3 )/ϑ . (41)

From (40) and (41) it follows that t1 satisfies Statement (i) of the claim.
Since at time t1 there is a node i ∈ W switching from propose+ to accept+, (P1) im-

plies that it must memorize at least n−2f ≥ f +1 nodes in W in state propose+, which
must have switched to this state during [tp, t1 − d+

min]. By the above considerations re-
garding the reset of the propose+ flags, this yields that all nodes in W will memorize at
least f + 1 nodes in state propose+ by time t1 +d+

max−d+
min and thus switch to propose+

(if they have not done so yet). It follows that by time t1 + 2d+
max − d+

min = t1 + Σ+, all
nodes in W memorize at least |W | ≥ n − f nodes in propose+ and therefore switched
to accept+. Hence, we successfully established Statement (iv) of the claim for k = 1.
Statement (vi) follows for k = 1, as the cycle counters have been reset to zero at the
expiration of (T+

2 ,accept) and are increased upon the subsequent state transition to
accept+. Note that Statements (ii), (iii), (v), and (vii) trivially hold.

We now perform the induction step from k ∈ N to k + 1. Assume that Statements (ii)
to (vii) hold for all values smaller or equal to k; Statement (i) only applies to k = 1 and
was already shown. Define l := bk/Mc ≥ 0. Thus, if we can show Statement (ii) for
k + 1, we may infer that

tk+1

(i),(ii)

≤ tMl + (k + 1−Ml)(T+
1 + T+

3 + Σ+ + 5d+
max) + 3d

≤ tMl +M(T+
1 + T+

3 + Σ+ + 5d+
max) + 3d (42)

(35)
≤ tMl +

T2 + T4

ϑ
. (43)

In case l = 0, it holds that k < M and we may deduce (P1) by the same arguments as
in the induction basis.

In case l ≥ 1, we use Statement (v) for value k, and, by analogous arguments as
in the induction basis, deduce that at no node in W , (T+

2 ,accept) is expired during
[tMl + 3d, tMl + 3d + 3d+

max), implying that all nodes in W are in accept+ during that
time. Repeating the reasoning of the induction basis before (P1) with t0 replaced by
tMl, t1 replaced by tk, and tM replaced by tMl+M shows that:

(P1’) No node in W observes (T+
2 ,accept)(t) = 0 at some time t ∈ [tMl +

3d,min{tMl+M , tMl +M(T+
1 + T+

3 + 5d+
max) + 3d}] when it is not in state accept+.

Since further tMl+M ≥ tk+1 by definition of l, we obtain from (P1’) that no node i ∈W
will memorize NEXTi = 1 earlier than time min{tk+1, tMl +M(T+

1 + T+
3 + 5d+

max) + 3d}
(again by reasoning analogously to the induction base).
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By Statement (iv) for the value k, we know that each node i ∈W switches to accept+
during [tk, tk+Σ+). In particular, iwill increase its cycle counter at the respective time,
i.e., Statement (vi) for k + 1 follows at once if we establish Statement (vii) for k + 1.
As Statement (iv) for the value k together with Statement (ii) for value k + 1 imply
that each node in W switches to accept+ exactly once during [tk, tk+1), Statement (vii)
for k + 1 follows, provided that we can exclude that the counter is reset to 0, due to
(T+

2 ,accept) expiring, at a time when it holds a non-zero value.
We now show that this never happens. By Statement (v) for value k each node i ∈W

switches to accept during

[tMl, tMl + Σ+ + 2d) (44)

and this time is unique during [tMl, tk+1) due to (42).
Because of (44) a node in W will reset its timeout (T+

2 ,accept) during

[tMl, tMl + Σ+ + 3d) , (45)

and (T+
2 ,accept) will expire within[

tMl +
T+

2

ϑ
, tMl + T+

2 + Σ+ + 3d+ d+
max

)
(32)
⊆
[
tMl +

T+
2

ϑ
, tMl +

T+
1

ϑ

)
(33)
⊆ [tMl + 3d+ 3d+

max, tMl+1) .

Thus, no node in W leaves state accept+ after switching there for the (Ml)th time
after t0 +3d before observing that (T+

2 ,accept) is reset and expires again. In particular,
this shows that the counters are only reset to 0 at times when they are 0 anyway.
Granted that Statement (ii) holds for k + 1, Statement (vii) for k + 1 follows.

Next, we establish Statements (ii) to (iv) for k+ 1. We reason analogously to the case
of k = 1, except that we have to revisit the conditions under which state accept+ is left.
As we have just seen, nodes in W switch from accept+ to ready+ upon T+

1 expiring.
Thus, as all nodes in W switch to accept+ during [tk, tk + Σ+), they switch to ready+

within the time window [tk + T+
1 /ϑ, tk + T+

1 + Σ+ + d+
max). By time

tk +
T+

1

ϑ

(32)
≥ tk + Σ+ + d+

max ,

all nodes in W will be observed in accept+ (and therefore not in propose+), together
with (P1’) preventing that the first node in W that (directly) switches from ready+ to
propose+ afterwards does so without T+

3 expiring first.
More precisely, according to (P1’) no node in W observes (T+

2 ,accept) to be zero until
time min{tk+1, tMl + M(T+

1 + T+
3 + 5d+

max) + 3d}. Further, each node i ∈ W will be
observed in state propose+ no later than time tk + T+

1 + T+
3 + Σ+ + 3d+

max. As argued
for k = 1, it follows that indeed tk+1 ≤ tk + T+

1 + T+
3 + Σ+ + 3d+

max, i.e., Statement (ii)
for k + 1 holds and thus Inequality (43). Further each node i ∈ W switches to accept+
for the (k + 1)th time after t0 + 3d during time [tk+1, tk+1 + Σ+), i.e., Statements (iv)
for k + 1 holds. Statement (iii) for k + 1 is deduced from the fact that it takes at least
(T+

1 + T+
3 )/ϑ time until the first node from W switching to propose+ after tk + Σ+ does

so, since timeouts T+
1 and T+

3 need to be reset and expire first, one after the other.

Finally, we need to establish Statement (v) for k + 1. If M does not divide k + 1,
Statement (v) for k+ 1 follows from Statement (v) for k. Otherwise M does divide k+ 1
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and we can bound32

tk+1 + Σ+ + d

(i),(iii),(32)
≥ tMl +

M(T+
1 + T+

3 )− T+
1 + T+

2

ϑ
+ Σ+ + d

(35)
≥ tMl + T2 + T3 + Σ+ + 4d .

As by Statement (v) for k all nodes in W switched to accept during [tMl, tMl + Σ+ +
2d), we conclude33 from the main state machines’ description that all nodes in W are
observed in state ready with timeout T3 being expired (or already switched to propose
or even accept) by time tMl + T2 + T3 + Σ+ + 4d. Because all their NEXT signals switch
to one during [tk+1, tk+1 + Σ+), all nodes in W must therefore have switched to propose
by time tk+1 + Σ+ + d. Consequently, as we stated that w.l.o.g. By Inequality (43) they
do not switch to accept again before time tk+1. Consequently they do so at times in
[tk+1, tk+1 + Σ+ + 2d) as claimed.

This completes the induction. According to Statement (i), t1 satisfies the claimed
bound on the stabilization time. With respect to this time, Statement (iv) provides the
skew bound, and combining it with Statements (ii) and (iii), respectively, yields the
stated accuracy bounds. Statements (vi) and (vii) show the properties of the counters.
Metastability-freedom of the state machine is trivially guaranteed by the fact that
each state has a unique successor state. For the counter, we can infer metastability-
freedom after stabilization from the observation made in the proof that for times t ≥ t1,
(T2,accept)(t) = 0 at a non-faulty node implies that it is in state accept+ with its cycle
counter equal to zero. This completes the proof.

For some applications, one might require an even higher operational frequency than
provided by the quick cycle state machine. It turns out that there is a simple solution
to this issue.

Increasing the Frequency Further
Given any pulse synchronization protocol, one can derive clocks operating at an ar-
bitrarily large frequency as follows. Whenever a pulse is triggered locally, the nodes
start to increase a local integer counter modulo some value m ∈ N at a speed of φ ∈ R+

times that of a local clock, starting from 0. Denote by T− the accuracy lower bound of
the protocol and suppose that the local clock controlling the counter runs at a speed
between 1 and ρ ∈ (1, ϑ], i.e., its maximum drift is ρ − 1.34 Once the counter reaches
the value m− 1, it is halted until the next pulse. We demand that

m ≤ φT− . (46)

Note that although the clock gets halted, the amortized frequency is essentially opti-
mal. The maximal time the clock is halted is proportional to ρ − 1 multiplied by the
time it takes to complete an iteration of the quick cycle; thus, halting the clock should
be uncritical except for applications requiring extremely fast real-time response.

This approach is similar to the one presented in [Daliot and Dolev 2006], enriched
by addressing the problem of metastability. In the context of the FATAL+ protocol, we
get the following result.

32Note that we already build on Statement (iii) for k + 1 here.
33This statement relies on the constraints on the main state machines’ timeouts, which require that T2
expiring is the critical condition for switching to ready.
34We introduce ρ since one might want to invest into a single, more accurate clock source per node in order
to obtain smaller skews.
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COROLLARY 6.3. Adding a counter as described above to the FATAL+ protocol and
concatenating the counter values of the two counters at node i ∈ V yields a bounded
logical clock Li ∈ {0, . . . ,mM − 1}. At any time t when the protocol has stabilized on
some set W (according to Theorem 6.2), it holds for any two nodes i, j ∈W that

|Li(t)− Lj(t) modmM | ≤
⌈
φΣ+ +

(
1− 1

ρ

)
m

⌉
.

Once stabilized, these clocks do not “jump”, i.e., they always increase by exactly one mod
mM , with at least 1/ρ time between any two consecutive “ticks”.

The amortized clock frequency is within the bounds m/(T+
1 + T+

3 + 2Σ+ + 3d+
max) and

ϑm/(T+
1 +T+

3 −Σ+). Viewed as a state machine in our model, the clocks Li, where i ∈W ,
are metastability-free after stabilization.

PROOF. Observe that it takes at least m/(φρ) time for one of the new counters to
increase from 0 to m. Since the counters are restarted at pulses, which are triggered
locally at most Σ+ time apart, at the time when a “fast” node arrives at the value
m, a “slow” node will have increased its clock by at least bm/ρ − φΣ+c. According to
Inequality (46), slow nodes will be able to increase their counters to m before the next
pulse. The claimed bound on the clock skew and the facts that clock increases are one
by one and at most every 1/ρ time follow.

The bound on the amortized clock frequency follows by considering the minimal and
maximal times M iterations of the quick cycle may require.

The metastability-freedom of the clock is deduced from the metastability-freedom of
the individual counters. For the new counter this is guaranteed by Inequality (46),
since the counter is always halted at 0 before it is reset due to a new quick cycle
pulse.

We remark that in an implementation, one would probably utilize the better clock
source, if available, to drive T+

1 and T+
3 as well.35 Maximizing m with respect to In-

equality (46) and choosing T+
1 + T+

3 sufficiently large will thus result in clocks whose
amortized drift is arbitrarily close to ρ, the drift of the underlying local clock source.

7. DISCUSSION
In this work, we presented a novel Byzantine tolerant self-stabilizing pulse synchro-
nization algorithm. Our analysis shows that the algorithm is optimal in several as-
pects. It tolerates up to f < n/3 faults, deals with worst-case clock drifts and delays,
requires channels of constant bandwidth only, is metastability-free after stabilization
in fault-free runs, and achieves constant-time stabilization of nodes that (re)join the
operational system.

Moreover, as shown in detail in Dolev et al. [2014], the algorithm is suited for imple-
mentation in hardware. In particular, the complexity of nodes is small as well. Nodes
need to evaluate constant-bit signals from O(n) channels and comprise a linear num-
ber of timeouts and clocks. With the exception of determining whether a threshold of
f + 1 or n − f signals is reached, local computations require a linear number of gates
only (cf. Függer et al. [2006]). Checking for thresholds of asynchronous, monotonically
increasing signals in a metastability-free manner can be done by sorting networks of
depth O(log n) and O(n log n) gates [Ajtai et al. 1983].36 Clearly, it is necessary to have

35Since the new counter is started together with T+
1 , this does not incur metastability. Special handling is

required for T+
3 on the Mth pulse of the quick cycle, though.

36The constants are extremely large, implying that for smaller values of n different solutions with asymp-
totic depthO(log2 n), but good constants, are preferred. For very small n, e.g. 4 (f = 1) or 7 (f = 2), different
approaches of exponential asymptotic complexity can be of interest as well.
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conditions involving more than f nodes in order to recover despite f Byzantine faulty
nodes. Therefore, for gates of constant fan-in, our solution is trivially optimal in terms
of the delay arising from local computations, and nodes’ gate complexity is at most a
factor of O(log n) from the optimum.

Whether the complexity of our algorithm in terms of stabilization time or the num-
ber of bits transmitted during the stabilization process is optimal remains open. There
are quite a few structural similarities to consensus and agreement problems, though.
In fact, some existing pulse synchronization algorithms directly utilize consensus al-
gorithms as subroutine [Ben-Or et al. 2008; Daliot and Dolev 2006]. However, in gen-
eral consensus lower bounds do not directly apply to our setting, as nodes need to
achieve approximate agreement on when to fire pulses only. For this problem, no non-
trivial lower bounds are known. Nonetheless, lower bounds for consensus might be an
indication for the complexity of the problem, as—in contrast to the synchronous set-
ting of Ben-Or et al. [2008]—in a bounded-delay system achieving approximate agree-
ment on a time is necessary to enable simulating a synchronous protocol. Therefore,
although approximate agreement is known to be easier than consensus in synchronous
systems [Dolev et al. 1986], one might conjecture that the randomized time complexity
of achieving self-stabilizing pulse synchronization in a bounded-delay system with the
considered adversary is the same as for randomized consensus in an asynchronous sys-
tem with a strong adversary. If this was indeed true, our algorithm would be optimal
with respect to stabilization time and for stabilization with probability 1− 2−Ω(n) [At-
tiya and Censor 2008].

Apart from asymptotic considerations, it is of practical concern what the additive
and multiplicative constants in the asymptotic complexities are. While the bandwidth
required between any two nodes is a mere five bits and the number of components
per node is fairly low,37 the stabilization time suffers from a large multiplicative con-
stant. For the envisioned application, this is however not critical: Overall system fail-
ure should be a rare event, and the high operational frequencies desired in practice
will help to keep the real-time required for stabilization low. This is supported by re-
sults of an evaluation of an initial FPGA prototype, showing stabilization times of no
more than 10 seconds in over 250,000 test runs for d ≈ 5µs in an 8 node system [Dolev
et al. 2014].38 Systems operating at today’s typical clock speeds in the gigahertz range
will have a maximum delay—and thus stabilization time—that is roughly by three
orders of magnitude smaller. Moreover, as long as the majority of nodes continues to
operate within specifications, a node subject to a transient fault will stabilize deter-
ministically, by about another two orders of magnitude faster (cf. Theorem 4.17). Note
that this bound, which is independent of n, is the one determining the mean time until
failure of the system as a whole.

Despite all advantageous properties and the promising results of the test implemen-
tation, there remains an obstacle to putting the algorithm to use. The fact that the
nodes need to be fully connected for our pulse synchronization routine (as is the case
for all current Byzantine-tolerant self-stabilizing clock synchronization algorithms)
constitutes a major scalability issue. Sadly, tolerating a constant fraction of Byzan-
tine faulty nodes comes at the cost of linear node connectivity in the worst case [Dolev
1982; Fischer et al. 1985]. However, if one assumes a (spatially) independent and uni-
form distribution of faults, it becomes feasible to partition the system in cliques of size

37Nodes never need to evaluate more than three threshold conditions concurrently and the remaining logic
is simple in comparison.
38These values match the bounds from theory, which however is not very surprising given that these de-
termine the values picked for the timeouts. For practical purposes, the constraints on the timeouts derived
from the analysis are probably overly conservative in most cases.
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O(log n) that stay operational with high probability granted that the probability of in-
dividual nodes being faulty is at most constant. These cliques then may be connected
by a constant-degree graph (where each link is emulated by fully connecting the re-
spective cliques), enabling to emulate an efficient clock synchronization algorithm that
is not Byzantine-tolerant, but in turn runs on arbitrary graphs. As the worst-case skew
must grow linearly in the diameter of a graph [Biaz and Welch 2001], a particularly at-
tractive option here is gradient clock synchronization [Kuhn et al. 2010; Lenzen et al.
2010]. The goal of gradient clock synchronization algorithms is, for any pair of nodes,
to achieve a tighter synchronization the closer the respective nodes are.

In the resulting system, node degree, gate complexity, and (computational) delay
would drop to O(log n), O(log n log log n), and O(log log n), respectively. Note that stabi-
lization of all Ω(n/ log n) cliques will merely requireO(log n) time with high probability
due to the large probability of stabilization of individual cliques. Even a pulse synchro-
nization algorithm with a constant probability of stabilization within O(1) time would
not perform better in this setting. Implementing these ideas is subject to future work,
and hopefully will lead to a clocking scheme for large-scale Systems-on-Chip that is of
great efficiency, yet offers high resilience to faults.
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