
Efficient Construction of Global Time in SoCs
despite Arbitrary Faults

Christoph Lenzen
Massachusetts Institute of Technology

Cambridge, MA, USA
clenzen@csail.mit.edu

Matthias Függer, Markus Hofstätter, Ulrich Schmid
Vienna University of Technology

Vienna, Austria
{fuegger,mhofstaetter,s}@ecs.tuwien.ac.at

Abstract—In this paper, we show how to build synchronized
clocks of arbitrary size atop of existing small-sized clocks,
despite arbitrary faults. Our solution is both self-stabilizing and
Byzantine fault-tolerant, and needs merely single-bit channels.
It involves a reduction to Byzantine fault-tolerant consensus,
which allows different consensus algorithms to be plugged in for
matching the actual clock sizes and resilience requirements best.
We demonstrate the practicability of our approach by means of
an FPGA implementation and its experimental evaluation. To also
address the cases where deterministic algorithms hit fundamental
limits, we provide a novel randomized self-stabilizing Byzantine
consensus algorithm that works very well also in these settings,
along with its correctness proof and stabilization time analysis.

I. INTRODUCTION

We address the problem of how to construct a common
notion of time among the subsystems of a System-on-Chip
(SoC), the processors of a multicore, or the nodes of any
other “hardware-level” distributed system, in the presence of
arbitrary failures. The ability to trigger operations at well-
defined times at different nodes, i.e., to globally coordinate
activities and timestamp data, greatly simplifies the design of
distributed applications. Indeed, using time instead of timeouts
[1] has not only been the dominant paradigm for implementing
replicated state-machines in fault-tolerant distributed comput-
ing since decades, but has also made its way into Network-
on-Chip (NoC) [2] and SoC [3] technology.

Establishing a common notion of time is simple in the
absence of failures: A sufficiently wide (say, 32-bit) data
bus that continuosly feeds the current time, maintained by a
single counter driven by some oscillator, to all nodes that need
access to global time does the job. If a common clock signal
is available at every node, this global data bus can also be
replaced by local counters that are incremented synchronously
at all nodes. Unfortunately, however, these approaches are not
fault-tolerant: A global data bus is a single point of failure, as
is a common clock signal. In addition, the use of local counters
may turn transient failures (e.g. caused by single-event upsets

This material is based upon work supported by the National Science
Foundation under Grant Nos. CCF-AF-0937274, CNS-1035199, 0939370-
CCF and CCF-1217506, the AFOSR under Contract No. AFOSR Award
number FA9550-13-1-0042, the Swiss Society of Friends of the Weizmann
Institute of Science, the German Research Foundation (DFG, reference
number Le 3107/1-1), and the Austrian Science Foundation (FWF) project
FATAL (P21694).

of the counters due to ionizing particles [4]) into permanent
ones, unless a recovery mechanism is in place.

To alleviate this problem, all local counters must be regu-
larly checked for time offsets and, if needed, adjusted to match
the correct time. As surveyed below, distributed computing
research has provided appropriate solutions both for clas-
sic Byzantine fault-tolerant distributed systems and for self-
stabilizing systems. Byzantine fault-tolerant solutions assume
that some fraction of the nodes (usually at most 1/3) may
behave arbitrarily, in the sense that they can send anything
to the other nodes in the system. By contrast, classic self-
stabilizing solutions can recover from an arbitrary corruption
of the state of every node, provided that no further failure
occurs during the stabilization period. Byzantine fault-tolerant
self-stabilizing solutions combine the best of both worlds.
They completely mask transient faults up to the fault-tolerance
threshold and recover automatically after massive transient
failures, e.g., in spacecraft electronics after a solar flare. Un-
fortunately, however, existing algorithms either incur features
that make them unsuitable in our context or, at best, allow the
implementation of small-sized synchronized clocks only.

Contribution

In this paper, we show how to maintain large (say, 32 or
64 bit) local counters at every node that extend an already
available synchronized short clock (say, 4-8 bits wide), such
that their catenation can be used as a local clock that provides
access to a wide-range global time. More specifically, for
a fully-connected distributed system of n nodes (we expect
n to be typically in the range of 4 . . . 16), among at most
f = b(n − 1)/3c can be Byzantine faulty, we will present
fault-tolerant self-stabilizing algorithms solving the following
problem, which we call (λ, l)-round-labeling: Assuming that a
(self-stabilizing) synchronized λ-bit clock is already available
at every node, extend it to a synchronized (λ + l)-bit local
clock. In order to reduce the wiring complexity, our solutions
assume only B-bit channels (typically with B � l, often just
B = 1) between every pair of nodes.

Our solution is based on a “generic” reduction of (λ, l)-
round-labeling to synchronous binary Byzantine agreement
(consensus) [5]. Consensus algorithms with different round
complexity resp. resilience can thus be plugged into our solu-
tion to match the parameters λ resp. f best. We exemplify this

1



by means of the Phase King and Phase Queen algorithms from
[6], which can be used as long as λ ≥ log(d2/Be+2f+3). A
prototype implementation, synthetisized for an FPGA, demon-
strates that the resulting algorithm can indeed be implemented
easily and works very well in practice. Moreover, we also
provide a novel randomized self-stabilizing Byzantine fault-
tolerant consensus algorithm, along with its correctness proof
and stabilization analysis. It can operate with B = 1 and
constant λ, i.e., independently of f . It provides a stabilization
time (almost) linear in n+ l, even in the presence of a strong
adversary that monitors all communication and states.

Paper Organization

After an overview of related work in Section II, Sec-
tion III introduces our system model and a generic solution
for the (λ, l)-round-labeling problem. Essentially, it reduces
the problem to binary consensus on the l bits of the round
labels. Section IV resp. Section V provides the analytic resp.
experimental results obtained by plugging in the well-known
deterministic phase king consensus algorithm into our generic
solution. Section VI utilizes a novel randomized consensus
algorithm for this purpose, which allows to overcome the
inherent limitations of deterministic algorithms w.r.t. feasible
values of λ. We conclude in Section VII.

II. RELATED WORK

We are not aware of any published solution for the (λ, l)-
round labeling problem. It is apparent, however, that the classic
clock synchronization problem can be recast as (0, l)-round
labeling: In case of Byzantine fault-tolerant clock synchro-
nization protocols [7]–[11], nodes are equipped with a priori
unsynchronized (l-bit) local clocks that are periodically syn-
chronized with each other. Still, a sufficiently large “core” of
correct nodes must always be up and running here to maintain
synchrony and to correctly integrate late joiners. [12], [13] do
not rely on local clocks but rather synchronously increment
local counters, triggered by the continuous interaction of the
core nodes. [9] and [11] consider the problem for highly
specialized system architectures.

Self-stabilizing “digital clock synchronization” algorithms
can recover from arbitrarily corrupteded states. However,
existing algorithms incur features that make them unsuitable
in our (resource-)constrained context. Translating existing
solutions [13]–[16] to our setting would (i) also require
the availability of synchronized (few-bit) clocks in order to
transmit larger messages over B-bit channels, and (ii) result
in (expected) stabilization times that grow fast in terms of the
system size, i.e., at least quadratic in n. Furthermore, except
for the randomized algorithm from [14] (with stabilization
time exponential in n), the complexity of local computations
would entail a large gate and area consumption. The approach
described in [17] does not suffer from a large stabilization
time, but relies on very specific assumptions on the system’s
behavior and is not applicable for f > 1 [18]. Moreover,
to establish clocks (instead of anonymous pulses), it relies
on consensus, implying that again (i) applies. These issues

are avoided by the algorithms described in [19], [20], which,
however, exhibit a stabilization time that is exponential in
the number of clock bits; they are thus suitable for providing
small-sized clocks only.

The (λ, l)-round-labeling problem is also related to recovery
of failed nodes in distributed systems at run-time. In order
to do so, enough state information must be transferred to
a joining node to build an internal state that is consistent
with the current system state. Whereas this is easy when the
system is allowed to cease normal operation during such a state
transfer (as in rollback-recovery [21]), transparent recovery,
i.e., synchronizing a joining node with a continuously evolving
state on-line is more difficult [22]. We are not aware of
solutions that guarantee transparent recovery despite a fraction
of the nodes being Byzantine faulty, however, not to speak of
approaches that also work with 1-bit channels.

III. SYSTEM MODEL AND GENERIC SOLUTION

We consider a fully-connected distributed system of n
nodes, among f < n/3 are Byzantine faulty. Every node
i ∈ V = {1, . . . , n} is connected to every other node by
means of a dedicated B-bit channel, typically with B = 1,
which allows nodes to exchange B-bit messages.1 Nodes do
not need unique identifiers, but they must be able to distinguish
senders, e.g., by fixed local communication ports. We do not
assume that (correct) nodes start executing simultaneously,
from some well-defined initial state, at some time origin
t = 0. Rather, we assume that there is some unknown
time t0, after which all correct nodes faithfully execute the
code of their algorithm. The state (local variables etc.) from
which every node starts is completely arbitrary, though. Note
carefully that this assumption allows massive transient failures
to (repeatedly) wipe out the state of the entire system; our
algorithms will nevertheless be able to recover from such an
event after some short stabilization time.

Every node is also equipped with a discrete-valued short
clock Ci(t) of length λ bits, which is incremented (mod 2λ)
in perfect synchrony2 at all correct nodes after t0, but can
behave arbitrarily before that time. In the extreme case λ = 0,
this assumption merely implies the existence of a common
clock signal. Note carefully, though, that it is outside the scope
of this work (in fact, irrelevant) how the short clocks are
implemented. Ideally, one would use a self-stabilizing pulse
generation algorithm (like, e.g., in [19]) for this purpose.

To retain compatibility with the distributed computing re-
search results we will be using, the time interval between two
consecutive clock ticks is called a (lock-step) round in the
sequel: We assume that, after time t0, every B-bit message
sent by a correct node at the beginning of a round is received
by every correct receiver by the end of the same round.

We can now specify the problem we want to solve:

1Recast in NoC terminology, we assume a flit size equal to the phit size =
B, i.e., we send only B bits per cycle (= round in our terminology).

2This assumption is only made for the ease of presentation. It is straight-
forward to relax this assumption to clocks with bounded imprecision π ≥ 0,
as outlined in Section V.

2



Algorithm 1: (λ, l)-round labeling algorithm at node i ∈
V . P is a consensus protocol.

1 while true do
2 (ci, bi) := red(L(i)) // reduction
3 oi := P(bi) // run consensus
4 if oi = true then L(i) := ci // agreed on ci
5 else L(i) := 0 // agreed on default
6 wait until round number modulo 2λ is 0
7 L(i) := L(i) + 1 mod 2l // increase clock

Problem III.1 ((λ, l)-round labeling). Every correct node i ∈
V maintains an l-bit variable called round label L(i), the
concatenation of which with the short clock Ci(t) provides a
logical clock Li(t). For every pair of correct nodes i, j ∈ V ,
after some bounded stabilization time after t0, it holds that
Li(t) = Lj(t) and that both logical clocks are incremented
(mod 2λ+l) in perfect synchrony at the end of every round.

Our generic solution, shown in Algorithm 1, reduces (λ, l)-
round labeling to binary consensus. More specifically, it breaks
down the problem to (i) the determination of a candidate label
(done via Algorithm 2) followed by (ii) reaching agreement
(via some suitable binary consensus algorithm). Recall that
consensus is characterized by the following properties [5]:

Agreement: Non-faulty nodes output the same value.
Validity: The output is input of a non-faulty node.
Termination: Non-faulty nodes eventually terminate.
In some more detail, Algorithm 1 works as follows: When-

ever the short clock of node i reads Ci(t) = 0, an iteration
of the while loop starts. It consists of (i) determining a
candidate label L and (ii) reaching consensus on whether to
set L(i) := L or to reset L(i) := 0. Note that Algorithm 1 is
indeed generic, in the sense that we can plug in any consensus
protocol that works with 1-bit channels, provided it terminates
sufficiently fast for both Algorithm 2 and the protocol to be
run between two consecutive wrap-arounds of the clocks Ci.

Algorithm 2 shows the other major building block red(L(i))
of Algorithm 1: At node i, it takes the current round label L(i)
as input and outputs a candidate label ci and a flag bi that
signals agreement on the candidate label. More specifically,
for each bit of the round labels L(i), it determines whether
there is an overwhelming majority (≥ n − f ) for a (unique)
value of this bit in the current labels of all nodes in the system.
If this is the case for all l bits, a suitable candidate label has
been determined; otherwise, the candidate label is set to 0 (=
reset). In a second phase, an attempt is made to convince nodes
that did a reset of a non-zero candidate. This works for sure
if at least n− f nodes have selected the candidate in the first
phase, in which case bi = true will be returned. Otherwise,
bi = false can be output, with or without ci being equal to
the candidate label.

The following Theorem III.2 provides the major properties
guaranteed by Algorithm 2. Most importantly, it guarantees
that there is at most one candidate label L (or 0) system-
wide, and that if just one correct node returns bi = true, then

Algorithm 2: Algorithm red(L(i)): reduces (λ, l)-round
labeling to binary consensus.

input : leading l bits L(i) of i’s logical clock
output: candidate clock value ci

Boolean trust value bi
1 ci := L(i) // holds candidate clock value
2 for j ∈ {1, . . . , l} do
3 broadcast ci(j) // jth bit of candidate value
4 if received ≥ n− f times value c then
5 ci(j) := c // can happen for only one c
6 else
7 ci := 0 // input values differ, default to 0
8 break
9 sleep until end of round l // maintain signal 0

10 broadcast(ci 6= 0)
11 store set Si of nodes that sent true
12 bi := true
13 for j ∈ {1, . . . , l} do
14 if ci 6= 0 then broadcast ci(j)
15 if received ≥ n− f times c from Si then
16 ci(j) := c // all others see ≥ f + 1 times c
17 else if received ≥ f + 1 times c from Si then
18 bi := false // input values differ
19 ci(j) := c // candidate bit still known
20 else bi := false // inputs differ, known to all
21 return (ci, bi)

all correct processes agree on the same candidate label.

Theorem III.2. Using 1-bit channels, Algorithm 1 can be
executed in 2l + 1 rounds. For non-faulty nodes i:

(1) ∃L∀i : ci ∈ {0, L} after the first for-loop.
(2) (∀i : bi = false) or (∀i : ci = L).
(3) If ∃L 6= 0∀i : L(i) = L, then ∀i : ci = L and bi = true.
(4) If ∀i : L(i) = 0, then ∀i : ci = 0 and bi = false.

Proof: The time complexity follows by adding the 2l
rounds required by the two for-loops and the single broadcast
round in between.

To show property (1), assume that some non-faulty node
i leaves the first for-loop with ci = L 6= 0, as otherwise
the statement is trivially satisfied. Thus, it must hold that in
each round j ∈ {1, . . . , l}, i received at least n − f times
the value ci(j) (which need not coincede with its own input).
Hence, at least n − 2f ≥ f + 1 non-faulty nodes sent ci(j)
in this round. Consequently, if any non-faulty node i′ sets
ci′(j) 6= ci(j) in this round, it received at most n − f − 1
times ci′(j) and therefore executes the else-statement in the
loop, setting ci′ := 0 and leaving the loop.

Regarding property (2), suppose that some non-faulty node
i leaves the second for-loop with bi = true. Thus, in each
round of the loop, it executed the if-statement (Line 16). It
follows that there are at least n−2f ≥ f+1 non-faulty nodes
i′ ∈ Si, each of which satisfies ci′ 6= 0 after the first for-loop.
By property (1), we conclude that there is some L 6= 0 with
ci′ = L for all nodes in Si. In the jth round of the second for-
loop, where j ∈ {1, . . . , l}, the at least f+1 non-faulty nodes
that broadcasted 1 in the intermediate round broadcast the jth

bit of L. Since there are at most f faulty nodes, no node i will

3



receive more than f times a value different from the jth bit
of L from a node in Si in the jth round of the second loop.
Hence, each non-faulty node will execute Line 16 or Line 19
with respect to the jth bit of L in round j of the loop.

The remaining two properties can be verified easily by
observing that if all inputs are identical, all at least n−f non-
faulty nodes i leave the first for-loop with ci = L, then either
all broadcast 1 (if L 6= 0) or all broadcast 0 (if L = 0); thus,
either always all execute Line 16 or Line 20 in the second for-
loop, resulting in output (L, true) or (0, false), respectively.

Note that there are two (orthogonal) modifications of Algo-
rithm 2 that could be used for decreasing the running time.
First, if B-bit channels with B > 1 are available, the nodes
can transmit blocks of B bits in each of the for-loops—
instead of just a single bit—and apply the threshold conditions
blockwise. This will reduce the running time to 2dl/Be + 1
rounds. Second, local computations may be fast in comparison
to communication delays. In this case, we can speed up the
algorithm by means of pipelining: If it is possible to send a bit
over a channel every τ time, the for-loops each can be executed
in `τ time. Denoting by d the (maximal) communication delay
and assuming that the clock resolution is appropriate, the
algorithm then can be executed in 3d + 2lτ time. In both
cases, Theorem III.2 continues to hold.

Equipped with Theorem III.2, it is not too difficult to prove
the correctness and determine the stabilization time of the
generic Algorithm 1, as given in the following Theorem III.3:

Theorem III.3. Suppose that P is a deterministic r-round
consensus protocol and that λ ≥ log(2dl/Be + r + 1). Then
Algorithm 1 solves (λ, l)-round labeling and stabilizes within
2 · 2λ rounds.

Proof: By the prerequisites and Theorem III.2, the code
in the while-loop will execute in 2dl/Be+ r + 1 rounds and
therefore can be controlled by a clock with wrap-around every
2λ rounds. Less than 2λ rounds after round t0, it will thus be
executed again. Hence the theorem follows if we can show
that (i) after a complete execution of the while-loop all values
L(i) at non-faulty nodes i are identical, and (ii) if they are
identical at the beginning of a complete execution of the loop,
they do not change except in its last line.

For both statements, we distinguish two cases. The first case
for (i) is that the call to Algorithm 2 returns bi = false at all
non-faulty nodes i. Hence, by validity, the call to P returns
false at all non-faulty nodes which therefore set L(i) := 0.
On the other hand, if bi = true for some non-faulty node i,
Theorem III.2 states that there is some value L satisfying that
ci = L for all non-faulty nodes i. By the agreement property,
it follows that either all non-faulty nodes set L(i) := L after
executing P or they all set L(i) := 0, establishing (i).

With respect to (ii), suppose that L(i) = L for all non-faulty
nodes at the beginning of an iteration of the while-loop. In case
L = 0, Theorem III.2 states that the call to Algorithm 2 results
in bi = false for all non-faulty nodes i; by validity, P returns
false at all non-faulty nodes which “set” L(i) := 0. On the

Algorithm 3: Phase King protocol at node i ∈ V .
input: binary value bi

1 for j ∈ {1, . . . , f + 1} do
2 broadcast bi // we want to identify a candidate value
3 if received at least n− f times b then
4 broadcast 1b // announce candidate value
5 else broadcast 00 // no unique candidate value identified
6 if received at least n− f times 1b then
7 bi := b
8 if i = j then broadcast bi // king’s broadcast
9 else

10 if i = j then
11 // king’s broadcast
12 if received at least f + 1 times 01 then
13 broadcast 1 // nodes with value 0 will follow
14 else broadcast 0 // nodes with value 1 will follow
15 if received b from j then bi := b
16 return bi

other hand, if L 6= 0, the last statement of Theorem III.2 yields
that Algorithm 2 returns (L, true) at all non-faulty nodes. By
validity, P thus must output true at all non-faulty nodes. Non-
faulty nodes will hence “set” L(i) := L, concluding the proof.

IV. APPOINTING PHASE KINGS AND QUEENS

In [6], two deterministic consensus algorithms that work
with 1-bit channels are introduced, which are perfectly suited
for our purposes: The Phase King protocol [23] shown in
Algorithm 3 achieves optimal resilience (n ≥ 3f + 1) and
requires 4(f + 1) rounds with 1-bit channels (and 3(f + 1)
rounds if 2-bit channels were available). The Phase Queen
protocol requires n ≥ 4f + 1 but needs only 2(f + 1) rounds.

Plugging in the phase-king algorithm into our generic (λ, l)-
round labeling solution Algorithm 1 while recalling Theo-
rem III.3 yields the following result:

Corollary IV.1. With 1-bit resp. B-bit channels. B > 1 and
sufficiently large λ, (λ, l)-round labeling can be solved for
λ ≥ log(2(2l + 4f + 5)) resp. λ ≥ 2(2dlog(l/Be+ 3f + 4))
if n ≥ 3f + 1. For n ≥ 4f + 1, this can be achieved for
λ ≥ log(2(2l+ 2f + 3)) resp. λ ≥ log(2dl/Be+ 2f + 3). The
stabilization time is at most 2 · 2λ rounds.

We remark that the dependency on l could be further
decreased by the pipelining approach suggested in Section III.
With respect the dependency on f , we note that there is a
fundamental lower bound of f + 1 rounds for deterministic
consensus solutions [24], which entails that λ > log(f + 1).
Since f is at most O(n), λ = O(log n) is hence sufficient
for our solution to work. In sharp contrast to the existing
self-stabilizing Byzantine fault-tolerant clock synchronization
solutions surveyed in Section II, the resulting stabilization time
is hence at most O(n) as well. In Section VI, we will utilize
randomization to further decrease the dependency on n.

V. IMPLEMENTATION AND EXPERIMENTS

In this section, we present the cornerstones of our VHDL
prototype implementation and its experimental evaluation in

4



an FPGA, which demonstrates that our algorithms are not
just of theoretical interest. Note that it is not the purpose of
this implementation to optimize performance, area, or power
efficiency, however.

Inspecting Algorithm 1, Algorithm 2, and Algorithm 3
reveals the need for implementing the following basic building
blocks:
(i) Lock-step round simulation and synchronous state ma-

chine for executing the algorithm at each node.
(ii) Subystem for broadcasting 1-bit messages.

(iii) Threshold modules with n inputs.
For the randomized Algorithm 4, a random generator imple-
menting coin flipping with head/tail probability 1/n vs. 1−1/n
must be added.
Lock-step Round Simulation. Since assuming perfectly syn-
chronized short clocks is unrealistic in practice, we rather
assume λ′-bit wide short clocks that can differ by at most
by π > 0 ticks at any point in time. We employ a standard
lock-step round simulation technique for simulating a perfectly
synchronized λ-bit clock with λ = λ′ − dlog(2π + 1)e,
which works as follows: Computations for consecutive lock-
step rounds r and r + 1 need to be separated by at least π
ticks, to ensure that every node’s round r message arrives
before a node performs round r + 1. This is, however, not
sufficient, since a node needs to be able to determine whether
a received message belongs to round r or r+1. We follow the
simple approach of separating the computing steps by another
π ticks: Node i sends the previously computed message when
Ci mod (2π + 1) = 0 and performs computations when
Ci mod (2π + 1) = π + 1 (the additional tick accounts for
the setup and hold times of the message buffers, which are
just flip-flops due to our single-bit channels here).

While this decreases the number of simulated rounds (and
hence the effective clock frequency of the simulated short
clocks) by a factor close to 2, it avoids the need for non-
trivial encoding and buffering of more than a single message.
Note carefully, though, that we do not a priori restrict that
resolution (i.e., the clock frequency) of the underlying λ′-wide
short clock. Moreover, it is possible to devise faster lock-step
round simulations.
Communication subsystem. The communication system used
in our implementation is very simple: At the sender side, it
consists of a flip-flop that is set to the single-bit value to be
communicated to all nodes in round k, according to the state
machine’s state, at short clock tick k(2π + 1). The output of
this sender flip-flop is routed to all receivers, that is, to the
data input of a dedicated receiver flip-flop corresponding to
the respective sender. It samples the data value when clock
tick k(2π + 1) + π + 1 occurs at the receiver short clock.
Threshold modules. A threshold module with n inputs and
threshold f + 1 resp. n − f sets its single output to 1 when
at least f + 1 resp. n − f of the inputs are 1. In our
implementation, we use an adder tree plus one comparator
per threshold acting on the sum for this purpose. Since (i)
the inputs of all the required threshold modules originate in
the receiver flip-flops, and (ii) the threshold modules’ output is

only evaluated synchronously, i.e., when it is stable (at least for
non-faulty nodes), as argued above, glitches possibly produced
by this implementation cannot cause harm.
Metastability issues. Despite the guarantees provided by our
lock-step round simulation, we cannot assume that setup and
hold times will never be violated. After all, they rest upon
the assumption that (a) the underlying clocks are indeed
synchronized with imprecision π, which may be violated
during stabilization of the short clocks, and (b) that sender and
receiver are correct; Byzantine faulty nodes may not be syn-
chronized with the other nodes, however. Hence, metastability
[25] cannot be avoided in all circumstances. Nevertheless,
it can reasonably be assumed that metastability does not
compromise our system, for the following reasons:
(I) Guaranteed metastability-freedom by construction in fault-
free executions, i.e., during normal operation, by our lock-step
round simulation.
(II) Low probability of metastable upsets: The window of vul-
nerability of a setup/hold violation of a flip-flop is very small.
In addition, mechanisms for decreasing the upset probability
like synchronizers [26] or elastic pipelines acting as metasta-
bility filters [27] can easily be incorporated in our single-bit
channels. Note that this increases communication latency, but
does not require to further decrease clock frequency.
(III) Metastability containment: Non-faulty nodes are very
robust w.r.t. propagation of metastable upsets, since the thresh-
old gates usually (albeit not in all cases, and not with all
implementations) mask metastable upsets in the buffers.
(IV) Limited impact of metastable upsets: As long as the fault-
tolerance limit f is not reached, from the system’s perspective
upsets are masked as faults. Moreover, upsets that occur in
during the stabilization phase may only delay stabilization.
Since they are rare events even then, they have a very small
impact on the (expected) stabilization time.
Experiments. We implemented a prototype system of n = 8
nodes, which tolerates at most 2 = b(8 − 1)/3c persistent
Byzantine faults. To facilitate systematic experiments, we also
built a test bench that provides the following functionality:

(1) Start the algorithm from arbitrary (deterministic or ran-
dom) states, including buffers.

(2) Reset a node to its initial state, at any time.

Setting initial states is realized by adding a scan-chain to
the implementation, which allows to serially shift-in arbitrary
initial system states at run-time. Repeated random experiments
are controlled via a Python script executed at a PC workstation,
which is connected via RS232 to an ATMega 1280 microcon-
troller (uC) that acts as a scan-controller towards the FPGA.
The uC takes a bit-stream representing an initial configuration,
sends it to the FPGA via the serial scan-chain interface, and
signals the FPGA to start execution of the algorithm. When the
system has stabilized, which is recognized by the monitoring
unit in the testbench and signaled to the uC via a dedicated
output signal, the uC informs the Python script that records the
stabilization time and proceeds with sending the next initial
configuration.

5



Consensus faults f 1 2 ∞
Phase King 2 0.737 0.263 0
Phase King late j. 0 1.0 0
none 2 0.586 0.073 0.341

TABLE I
REL. FREQUENCY OF STABILIZATION TIMES OF ALGORITHM 1 (OVER

50000 RANDOMLY INITIALIZED RUNS).

Our test bench also provided the short clocks for all nodes.
Alternatively, short clocks provided by our current FATAL+

prototype implementation could be used. Moreover, the test
bench also allows to monitor the internal state of all nodes
and, hence, the generated round labels L(i), and facilitates
experiments with up to f = 2 Byzantine nodes. To this end, the
state machines of f nodes can be replaced by special variants,
which communicate conflicting information to the receivers
(to keep the system as inconsistent as possible).

The test bench used for the experiments described below
provides n = 8 nodes, up to f = 2 of which may be
Byzantine faulty, with a synchronized λ′ = 9-bit short clock,
which is incremented every 40 ns. Its least significant bit hence
corresponds to a 12.5 MHz periodic signal, which is further
divided by 2 in order to obtain the clock signal driving the
state machine and the send-flip-flops (rising transition) and
receive-flip-flops (falling transition). This simplification entails
that a simulated round takes 4 clock ticks and the simulated
perfect short clocks have λ = 7 bits. Note that we choose this
low clock frequency just for (a) convenience and simplicity
of experiment control and (b) to match the clock frequency
provided by the FATAL+ prototype implementation. Without
these constraints, it would of course be possible to dramatically
raise the clock frequency even in our FPGA implementation.

The entire implementation has been written in VHDL and
compiled for an Altera Cyclone IV FPGA using the Quartus
tool. For l = 16-bit labels and n = 8, it consumes 3407 (resp.
4193 for late joiners) logic blocks, about 375 per node and
407 (resp. 1193) for the test bench.
Results. The first row in Table I shows the stabilization
times (measured in wrap-arounds of the short clock) and their
relative frequency provided by Algorithm 1 with the Phase
King protocol, for f = 2 Byzantine nodes. In each run,
all nodes start simultaneously from random initial states, at
random times of the short clock. A stabilization time of 1
means that the nodes reached agreement on the round labels
already at the very first wrap-around after their initialization;
stabilization time 2 corresponds to runs that stabilized after the
first complete execution of the while loop. As predicted by the
analysis, all nodes are in synchrony at the 2nd wrap-around.
The second row gives the stabilization time for the case where
some node joins an already running system. Late joining
almost always completed after the first complete execution of
the while loop of the joining node, as expected. The results for
the fault-free case f = 0 are very similar and hence omitted.

In every run in the above experiments, we also determined
whether the reduction (Algorithm 2) alone, i.e., without the
subsequent Phase King, would have been sufficient to reach

consensus on L(i). (Note that this is always true in the special
case where all communication is by broadcasts, i.e., even
faulty nodes send the same messages to all recipients.) The
third row in Table I shows the stabilization times for this
setting, where the clock is always set to the value ci returned
by Algorithm 2. It is apparent that a significant number of runs
never stabilize, as our Byzantine nodes persistently dissemi-
nate inconsistent information; as they follow a deterministic
pattern, there are no runs that stabilize after the first complete
iteration of the while loop of the algorithm. Even though such
worst-case behavior is not very likely in practice, this reveals
that omitting the consensus protocol is usually not an option.

VI. A RANDOMIZED ALGORITHM

In this section, we present a randomized solution for the
(λ, l)-round labeling problem, based on merging a novel
randomized self-stabilizing Byzantine fault-tolerant algorithm
into Algorithm 1. It uses only 1-bit channels and and achieves
binary consensus among n ≥ 3f + 1 nodes in 2n rounds with
probability 1−2Ω(n). Randomization in conjunction with local
counters is used to overcome the need for large synchronized
clocks required by deterministic consensus algorithms, such
that a short clock with only 3 bits is sufficient to execute
the consensus algorithm. We assume that faulty nodes cannot
predict random choices before they are made; apart from this,
the adversary has full knowledge of the system, including
communication between non-faulty nodes.

For conciseness, we will present and analyze this algorithm
in conjunction with Algorithm 1. The combined algorithm is
shown in Algorithm 4. For notational simplicity, we identify
true = 1 and false = 0.

As in Section III and Section IV, we assume that the
short clocks are perfectly synchronized (π = 0) and that an
iteration of the while-loop is started at node i whenever its
short clock Ci(t) reads 0. Informally, the consensus part of
Algorithm 4, consisting of the outermost for-loop, uses l voting
phases (termed phases for conciseness) to reach agreement
on the binary value bi, initially supplied by Algorithm 2. In
each phase, it first determines whether there is already an
overwhelming number (≥ n − f ) of nodes with the same
bi = b. If so, and if this fact is recognized by ≥ n − f
nodes, the variable locked is set to true. If this ever happens
simultaneously at all nodes, all bi (at correct nodes) will be
identical in all subsequent phases.

The purpose of the code starting at Line 13 is to eventually
achieve this. The value bi = b′ of one (or more) processor(s)
determined by the random choice in Line 16 will force bi = b′

at all correct processors in Line 22; the (f + 1)-threshold
in Line 9 ensures that no correct node will ever try to
convince others to set bi = 0 if there is a node with bi = 1
and locked = true (or vice versa). The counters ∆i,j limit
the ability of Byzantine faulty nodes to thwart this process
repeatedly, as their information is only considered once in
every n consecutive voting phases.

Definition VI.1 (Voting Phases). An iteration of the outer for-
loop within the while-loop of Algorithm 4 is called a voting

6



Algorithm 4: Randomized (λ, l)-round labeling algorithm
at node i ∈ V . The persistent variables ∆i,j can take values
from the range 1, . . . , n.

1 while true do
2 (ci, bi) := red(L(i)) // reduction
3 for l times do
4 broadcast bi
5 if received ≥ n− f times b then
6 broadcast 1b // b is unique
7 else broadcast 00 // 2 rounds for 2-bit bcast
8 locked := false
9 if received ≥ f + 1 times 1b then

10 bi := b // b remains unique
11 if received ≥ n− f times 1b then locked := true
12 for j ∈ V do ∆i,j := max{0,∆i,j − 1}
13 for b ∈ {0, 1} do
14 pb := false // indicates if b is proposed
15 if ∆i,i = 0 and bi = b then
16 broadcast 1 with probability 1/n
17 else broadcast 0
18 for each node j that sent 1 do
19 if ∆i,j = 0 then pb := true
20 ∆i,j := n
21 broadcast pb
22 if locked = false and received ≥ n− f times true

then
23 bi := b
24 locked := true
25 if bi = 1 then L(i) := ci
26 else L(i) := 0
27 wait until round number modulo 2λ is 0
28 L(i) := L(i) + 1 mod 2l // increase clock

phase.

We start our proof by showing that a safe configuration will
be maintained deterministically.

Lemma VI.2. If after Line 2 or any phase of Algorithm 4
all non-faulty nodes i have the same values bi and ci, this
statement becomes an invariant. Moreover, ci = L(i) after
Line 2 of subsequent phases and L(i) will be increased by
1 mod 2l.

Proof: For the first claim of the lemma, we need to show
(i) that the invariant does not become violated when executing
a phase at whose beginning it holds and (ii) that it does not
become violated when executing Line 2 if it held after the last
phase of the previous iteration of the while-loop.

To see (i), observe that if bi = b for all (at least n − f )
non-faulty i, they will all broadcast 1b, “set” bi = b and
locked = true, and therefore not modify bi during the phase.
Since during a phase ci and L(i) cannot be changed, this
shows (i).

To see (ii), observe that after the last voting phase of the
previous while-loop, all L(i) are set to a unique value L =
ci (at non-faulty nodes i). Subsequently, each such node sets
L(i) := L(i) + 1 mod 2l. Hence, by Theorem III.2, the call
to Algorithm 2 in Line 2 will return (L+1 mod 2l, b) (with b
being unanominously either true or false). This proves (ii) and

also shows that L(i) will increase by 1 mod 2l in subsequent
iterations of the while-loop, completing the proof.

A simple condition for stabilization follows.

Corollary VI.3. If in any phase of a complete iteration of
its while-loop all non-faulty nodes i have locked = true and
bi = b, Algorithm 4 has stabilized once the current iteration
of the while-loop is complete.

Proof: Examining the code, we see that the precondition
of the corollary becomes satisfied in some round after the
execution of Line 8 of the respective phase. Since all nodes
have locked = true, in the latter case they will not change their
values bi. By Theorem III.2, after Line 2 at the beginning of
the current iteration non-faulty nodes share the same value ci.
Therefore, the precondition of Lemma VI.2 becomes satisfied
at the end of the phase in which the precondition of the
corollary becomes true, and the claim of the corollary follows
from the lemma.

Our goal is to ensure that Corollary VI.3 can eventually be
applied. To this end, we will use the following definition.

Definition VI.4 (Active Phases). Non-faulty node i is active
in a given phase if it satisfies that ∆j,i = 0 for all non-faulty
nodes j at its beginning. A phase is active if at least n/12
nodes are active in this phase.

We next establish that within linear time, with overwhelm-
ing probability there are many active phases.

Lemma VI.5. For any m > n, the mth voting phase is active
with probability 1 − 2−Ω(n). With probability 1 − 2−Ω(n) all
phases n+ 1, . . . , 2n are active.

Proof: In voting phase m, each non-faulty node i will
satisfy that ∆j,i = 0 for all non-faulty nodes j unless
i broadcasted 1 in Line 16 in one of the voting phases
m− n, . . . ,m− 1 (since ∆j,i decreases by one in each such
phase without such a broadcast). Due to independence of the
random choices, the probability i is active in round m is
thus at least (1 − 1/n)n ≈ 1/e, independently for each i.
Since there are at least n − f > 2n/3 non-faulty nodes,
the expected number of active nodes in phase m is at least
2n(1− 1/n)n/3 ≈ 2n/(3e). By Chernoff’s bound, it follows
that the probability that less than n/5 nodes are active is lower
bounded by 1− 2−Ω(n). The union bound then yields second
statement of the lemma.

Definition VI.6 characterizes phases in which the algorithm
is certain to reach agreement. It is used in a few technical
lemmas, which establish Theorem VI.10.

Definition VI.6 (Good Phases). A phase is called good if (i)
an active node broadcasts 1 in the first execution (for b = 0)
of Line 16 of that phase or (ii) at most f non-faulty nodes
broadcast p0 = true in the first execution of Line 21 of the
phase and an active node broadcasts 1 in the second execution
of Line 16 (for b = 1) of that phase.

Lemma VI.7. In a good phase of a complete execution of the
while-loop all non-faulty nodes i have locked = true and the

7



same value bi at some point.

Proof: Case 1: An active node broadcasts 1 in the first
execution of Line 16 of the phase. Hence, it received at most f
times 11 in Line 9, implying that no non-faulty node i received
more than 2f < n − f times 11 and set locked := true and
bi = 1. Therefore, all non-faulty nodes with locked = false set
locked := true and those with bi = 1 set bi := 0 in Line 24.
Case 2: An active node broadcasts 1 in the second execution of
Line 16 of the phase. By definition of good phases, at most f
non-faulty nodes broadcast p0 = true in the first execution of
Line 21 of the phase. Thus, no non-faulty nodes i sets bi := 0
or locked := true in the first execution of the second for-
loop of the phase. Thus, we can argue analogously to Case
1: no non-faulty node i has locked = true and bi = 0 at
the beginning of the second iteration of the second for-loop
of the phase, and therefore all nodes will have bi = 1 and
locked = true at its end.

We need to show that despite the Byzantine nodes’ inter-
ference, a good phase occurs within n phases.

Lemma VI.8. Each active phase m > n is good with constant
probability or at least f + 1 variables ∆j,k, j non-faulty and
k faulty, are reset to n. This holds independently of random
choices made in other phases and the state of the nodes at the
beginning of the phase.

Proof: Case 1: At least half of the active nodes, i.e., n/24,
have bi = 0 after Line 11 of the phase. With probability at
least 1 − (1 − 1/n)n/24 ∈ Ω(1) at least one them broadcasts
1 in the first execution of Line 16 of that phase. The claim
follows by Lemma VI.7.
Case 2: At least n/24 active nodes have bi = 1 after Line 11
of the phase.
Case 2a: A non-faulty node i broadcasts 1 in the first
execution of Line 16. Since we consider phase m > n, such
a node has not broadcasted in Line 16 for the previous n− 1
phases: otherwise it would have set ∆i,i = n and not decreased
it by more than n−1 until the current phase. Hence, the node
is active and the claim follows analogously to Case 1.
Case 2b: At least f + 1 variables ∆j,k, j non-faulty and k
faulty, are reset to n in the first iteration of the second for-loop
of the phase. The claim is immediate.
Case 2c: No non-faulty node i broadcasts 1 in the first
execution of Line 16 and at most f variables ∆j,k, j non-
faulty and k faulty, are reset to n in the first iteration of the
second for-loop of the phase. Since non-faulty nodes broadcast
0 in Line 16, each non-faulty node j that broadcasts p0 = true
in the first execution of Line 21 must reset ∆j,k := n for
some faulty node k. Since there are at most f such events,
non-faulty nodes i receive at most 2f < n − f times true in
Line 21 and do neither modify locked nor bi. Hence, there are
still at least n/24 active nodes with bi = 1 when Line 16 is
executed for the second time in this phase. With probability
at least 1 − (1 − 1/n)n/24 ∈ Ω(1), at least one of them will
broadcast 1, implying that the phase is good. Because the cases
are exhaustive, this concludes the proof.

Lemma VI.9. With probability 1− 2−Ω(n), one of the phases
n+ 1, . . . , 2n is good.

Proof: By Lemma VI.5, all phases n + 1, . . . , 2n are
active with probability 1−2−Ω(n). Conditioning on this event,
we apply Lemma VI.8 to each of these phases, showing
that each of them is good with independently and constantly
lower bounded probability unless at least f +1 variables ∆j,k

for non-faulty nodes j and faulty nodes k are set to n in
the respective phase. As it takes at least n phases for these
variables to decrease to 0 again, during phases n + 1 to 2n
this can happen at most once for each such variable. There
are f(n − f) such variables, implying that there can be at
most f(n − f)/(f + 1) < n − f < 2n/3 phases in which
more than f of them are set from 0 to n. Hence at least n/3
phases remain that are good with independent and constant
probability.

By Chernoff’s bound, with probability 1 − 2−Ω(n) one of
these phases is good. Thus, the unconditional probability that
a good phase occurs is (1− 2−Ω(n))2 = 1− 2−Ω(n).

Theorem VI.10. Suppose that λ ≥ dlog(9l+ 1)e. Then, with
1-bit channels, Algorithm 4 solves (λ, l)-round labeling with
probability 1, and actually stabilizes in O(l+ n) rounds with
probability 1− 2−Ω(l+n).

Proof: It is easy to see that each iteration of the while-
loop of Algorithm 4 takes 9l+ 1 rounds, 2l+ 1 for the call to
Algorithm 2 (by Theorem III.2) and 7l since each voting phase
takes 7 rounds. Hence, if the wrap-around of the common
clock occurs every 2λ rounds, this is sufficient to control the
execution of the while-loop. By Lemma VI.2, the algorithm
will have stabilized once an iteration of the loop is complete
in which the preconditions of the lemma are met in some
round. According to Lemma VI.7, this will happen once a
phase is good, which by Lemma VI.9 is guaranteed to be the
case for some phase m ∈ {n + 1, . . . , 2n} with probability
1 − 2−Ω(n+l). Since we make no assumptions on the initial
state of the variables of the algorithm, this result can actually
be applied to any sequence of 2n phases. We conclude that
the algorithm stabilizes with probability 1 − 2−Ω(l+n) once
(i) the first (not necessarily complete) iteration of the while-
loop is complete and n phases have passed and (ii) another n
phases have passed and the iteration of while-loop containing
the last of these phases is complete. This takesO(n+l) rounds,
proving the first part of the claim. The second follows by
recalling that the first statement applies independently of the
inital state and applying it repeatedly.

We remark that using B-bit channels, pipelining, and reduc-
ing the number of voting phases per iteration of the while-loop
can all reduce the minimal feasible value of λ. In the event that
λ is still too small, we can apply the technique recursively, at
small overhead either in terms of bandwidth or running time.

Definition VI.11 (Log-star). For x ∈ R+, we define that
log∗ x := 0 if x ≤ 1 and log∗ x := 1 + log∗ log x else.

Corollary VI.12. Suppose that λ ∈ O(1) is sufficiently large

8



and nodes can broadcast B ∈ O(log∗ l) bits in each round.
Then (λ, l)-round labeling can be solved with probability 1,
stabilizing in O(l+ n) rounds with probability 1− 2−Ω(l+n).

Proof: Consider the algorithm where we run B copies
of Algorithm 4 on top of each other, each using the clock
the subjacent instance outputs to control its while-loop. The
communication is done in parallel by using one bit in each
round for each instance.

The first instance needs to rely on the the given clock with
wrap-around every 2λ ∈ O(1) rounds in order to control its
while-loop. Maximizing the value l1, the number of clock bits
in its output, yields an exponentially larger clock of λ2 := l1 ∈
2Ω(λ) bits. Now we have a clock of λ2 bits that we can utilize
in the second instance to produce an even larger clock for
the third instance. Proceeding inductively using the relations
λi+1 := li and li ∈ 2Ω(λi) (for i ∈ {1, . . . , B − 1}), we can
see that the number of clock bits produced by the top instance
is an iterated exponential in B. Hence, for B ∈ O(log∗ l), we
will arrive at clocks of lB ≥ l bits as desired.

By Theorem VI.10, the ith instance of the algorithm will
stabilize within O(n+ l) rounds with probability 1−2−Ω(n+l)

once the (i − 1)th instance has done so (except for i = 1,
where this statement is unconditional), and by the union
bound this will happen for all instances with probability
1− 2−Ω(n+l) log∗ l = 1− 2−Ω(n+l). However, following this
naive approach, the total time to stabilize all instances with
this probability is O((n+ l) log∗ l).

A minor modification of the algorithm can get rid of this
factor log∗ l overhead. Instead of handling the values ∆j,k,
j, k ∈ V for each instance separately, we now maintain only
one set of these variables. ∆j,k is set to n if node k broadcasts
a 1 in Line 16 for any of the concurrently running instances of
the algorithm. The decision whether to broadcast in Line 16
of the algorithm is also made for all instances (that currently
are in a voting phase) together. That is, if ∆j,j = 0 and in
any instance node j satisfies that and bj = b in the condition
to execute Line 16, the node will do so with probability 1/n
for all instances satisfying bj = b. Note that this causes no
problems if we align the voting phases of all instances that
are currently not executing Algorithm 2, which does not affect
the asymptotic growth of the size of clocks.

This modification implies that the new algorithm satisfies
that (i) each node executes Line 16 with probability at most
1/n in a given round, (ii) each node that is active in any in-
stance executes the line with probability 1/n in the respective
round, and (iii) the number of variables ∆j,k with j non-faulty
and k faulty is at most f(n− f). Hence, the same reasoning
as in Theorem VI.10 applies again, however, as the variables
∆j,k are now the same for all instances, the faulty nodes now
cannot stall all instances for a linear number of rounds.

Formally, we adapt the definitions of active nodes and
phases and good phases so that they apply to the instance of
the algorithm that is lowest in the hierarchy that has not yet
stabilized. Applying Chernoff’s bound in essentially the same
manner as in Lemma VI.9, we can in fact infer that there are

with probability 1 − 2−Ω(n+l) at least Ω(n + l) ⊃ Ω(log∗ l)
good phases in which there is a round satisfying the pre-
requisites of Lemma VI.2 for the next instance that has not
stabilized yet.3 We conclude that for all instances i ≤ i0,
where i0 is such li0 ≥ n (if there such an i0, otherwise
i0 = B), the probability to stabilize within O(n) rounds is
at least 1− 2−Ω(n). For the remaining levels i ≥ i0, li is the
dominating term in the time complexity. Overall, we infer the
statement of the corollary.

Corollary VI.13. Suppose that λ ∈ O(1) is sufficiently large.
Then (λ, l)-round labeling can be solved with probability 1
using 1-bit channels and stabilization in O((l + n) log∗ l)
rounds with probability 1− 2−Ω(l+n).

Proof: We modify the algorithm from the previous corol-
lary to operate with 1-bit channels. To this end, we use time
division to simulate larger bandwidth, trading in a reduction
in bandwidth requirements for a larger time complexity. Note
that if we simulate a bandwidth that is by factor f larger,
this necessitates also clocks that have a by factor f larger
wrap-around. Clearly this is not a problem once the clock
wrap around happens after Ω(log∗ l) rounds (for sufficiently
large constants). In order to resolve this bootstrapping issue,
we reserve, say, a fraction of 1/3 of all rounds solely for one
instance of the algorithm from the previous corollary. With the
resulting larger clocks, we can run (at least) three instances
concurrently (using time division) in a fraction of 1/9 of the
rounds reserved solely for this purpose. Repeating this process
and taking into account that the number of instances that we
can run concurrently using time division grows exponentially
in each step, we can bound the fraction of rounds occupied
so far by the geometric series in 1/3, i.e., we will reserve a
fraction of 1/2 of the rounds that we can still use.

We halt this process once we arrive at sufficiently large
clocks, i.e., a wrap-around of Ω(log∗ l). Applying Corol-
lary VI.12 to each instance, we see that the total time
required for stabilization with probability 1 − 2−Ω(n+l) is
O(n + l) times the inverse fraction of the assigned rounds
(accounting for the increase in running time due to time
division). Thus, the total stabilization time for this probability
threshold, which by the union bound is upper bounded by
the sum of the individual stabilization times, is asymptotically
dominated by the stabilization time of either the final or the
second last instance. As we reserved a constant fraction of
the round for the final instance and it simulates bandwidth
O(log∗ l) by means of time division, it stabilizes within
O((n + l) log∗ l) rounds with probability 1 − 2−Ω(n+l). The
second last instance needs to construct clocks of O(log∗ l)
bits with access to clocks of size O(log∗ log∗ l), and it is
assigned a fraction of at least 2−O(log∗ log∗ l) of the rounds.
Since 2O(log∗ log∗ l) log∗ log∗ l ⊂ O(log∗ l), the stabilization

3A detail is here that there may be part of an exectution of the while-loop
of the algorithm that is “wasted time” because the nodes did not agree on the
current clock value until the next lower level stabilized. Note, however, that
even when summing over all instances this amounts to a total of O(l) “lost”
rounds.

9



1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

wrap-arounds

re
l. 

o
cc

u
rr

e
n

ce

Fig. 1. Stabilization times of Algorithm 4 (over 50000 randomly initialized
runs with f = 2).

time of the last instance is asymptotically dominant, proving
the corollary.
Experiments. We conclude this section with a brief glance
of the performance of our implementation of Algorithm 4.
For l = 4-bit labels and n = 8, it consumed 4597 logic
blocks, with about 545 per node, in the setup described in
Section V. Figure 1 shows the stabilization times (measured in
wrap-arounds of the short clocks) for f = 2 Byzantine faulty
nodes. It can be seen that the algorithm stabilizes within only
2 wrap-arounds in most of the cases.

VII. CONCLUSION

For arbitrary integer l, we demonstrated how to efficiently
establish (λ+ l)-bit-wide synchronized clocks at each of the n
nodes of a SoC, provided every node is already equipped with
a λ-bit-wide synchronized short clock. Our generic Byzan-
tine fault-tolerant self-stabilizing solution uses a reduction to
Byzantine fault-tolerant binary consensus and requires only
a few bit wide channels between nodes. Different solutions
can be obtained by plugging in different consensus imple-
mentations: Utilizing the deterministic phase king algorithm,
a solution for λ ∈ O(log n) that stabilizes in O(n) time is
obtained; utilizing a novel randomized consensus algorithm
even provides a solution for λ ∈ O(1) that stabilizes in
O(n + l) time with probability 1. FPGA implementations
of our solutions, which demonstrate that they can indeed be
implemented directly in VHDL, have been used for experi-
mentally validation of the results of our correctness proofs
and analytic performance analyses.

REFERENCES

[1] L. Lamport, “Using Time Instead of Timeout for Fault-Tolerant Dis-
tributed Systems,” ACM Transactions on Programming Languages and
Systems, vol. 6, no. 2, pp. 254–280, Apr 1984.

[2] A. Hansson, M. Subburaman, and K. G. W. Goossens, “Aelite: A Flit-
Synchronous Network on Chip with Composable and Predictable Ser-
vices,” in Proceedings Design, Automation & Test in Europe Conference
and Exhibition (DATE 2009), Nice, France. Los Alamitos: IEEE
Computer Society, April 2009, pp. 250–255.

[3] R. Obermaisser, H. Kopetz, C. El Salloum, and B. Huber, “Error
Containment in the Time-Triggered System-On-a-Chip Architecture,”
in Embedded System Design: Topics, Techniques and Trends, ser. IFIP,
A. Rettberg, M. Zanella, R. Dömer, A. Gerstlauer, and F. J. Rammig,
Eds. Springer US, 2007, vol. 231, pp. 339–352.

[4] R. Baumann, “Radiation-Induced Soft Errors in Advanced Semicon-
ductor Technologies,” IEEE Transactions on Device and Materials
Reliability, vol. 5, no. 3, pp. 305–316, Sept. 2005.

[5] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the
Presence of Faults,” Journal of the ACM, vol. 27, pp. 228–234, 1980.

[6] P. Berman, J. A. Garay, and K. J. Perry, “Asymptotically Optimal
Distributed Consensus,” 1992. [Online]. Available: http://www.bell-labs.
com/user/garay/#distributed-pub

[7] T. K. Srikanth and S. Toueg, “Optimal Clock Synchronization,” Journal
of the ACM, vol. 34, no. 3, pp. 626–645, 1987.

[8] J. L. Welch and N. A. Lynch, “A New Fault-Tolerant Algorithm for
Clock Synchronization,” Information and Computation, vol. 77, no. 1,
pp. 1–36, 1988.

[9] P. Thambidurai, A. Finn, R. Kieckhafer, and C. Walter, “Clock Synchro-
nization in MAFT,” in 19th Int. Symp. on Fault-Tolerant Computing, Jun
1989, pp. 142 –149.

[10] P. S. Miner, “Verification of Fault-Tolerant Clock Synchronization
Systems,” NASA Technical Paper 3349, Nov. 1993.

[11] W. Steiner and M. Paulitsch, “The Transition from Asynchronous to Syn-
chronous System Operation: An Approach for Distributed Fault-Tolerant
Systems,” Proceedings of the The 22nd International Conference on
Distributed Computing Systems, Jul 2002.

[12] J. Widder and U. Schmid, “Booting Clock Synchronization in Partially
Synchronous Systems with Hybrid Process and Link Failures,” Dis-
tributed Computing, vol. 20, no. 2, pp. 115–140, Aug 2007.

[13] D. Dolev and E. Hoch, “Byzantine Self-Stabilizing Pulse in a Bounded-
Delay Model,” in Proc. 9th Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS), vol. 4280, 2007, pp. 350–362.

[14] S. Dolev and J. L. Welch, “Self-Stabilizing Clock Synchronization in
the Presence of Byzantine Faults,” Journal of the ACM, vol. 51, no. 5,
pp. 780–799, 2004.

[15] A. Daliot, D. Dolev, and H. Parnas, “Self-Stabilizing Pulse Synchro-
nization Inspired by Biological Pacemaker Networks,” in Proc. 6th
Symposium on Self-Stabilizing Systems (SSS), 2003.

[16] A. Daliot and D. Dolev, “Self-Stabilizing Byzantine Pulse Synchroniza-
tion,” Computing Research Repository, vol. abs/cs/0608092, 2006.

[17] M. Malekpour, “A Byzantine-Fault Tolerant Self-stabilizing Protocol for
Distributed Clock Synchronization Systems,” in Proc. 9th Conference on
Stabilization, Safety, and Security of Distributed Systems (SSS), 2006,
pp. 411–427.

[18] ——, “A Self-Stabilizing Byzantine-Fault-Tolerant Clock Synchroniza-
tion Protocol,” NASA, Tech. Rep., 2009, tM-2009-215758.

[19] D. Dolev, M. Függer, C. Lenzen, and U. Schmid, “Fault-Tolerant
Algorithms for Tick-Generation in Asynchronous Logic: Robust Pulse
Generation - [Extended Abstract],” in Proc. 13th Symposium on Sta-
bilization, Safety, and Security of Distributed Systems (SSS), 2011, pp.
163–177.

[20] D. Dolev, M. Függer, C. Lenzen, and U. Schmid, “Fault-Tolerant
Algorithms for Tick-Generation in Asynchronous Logic: Robust Pulse
Generation,” Computing Research Repository, vol. abs/1105.4780, 2011.

[21] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson, “A
survey of Rollback-Recovery Protocols in Message-Passing Systems,”
ACM Comput. Surv., vol. 34, no. 3, pp. 375–408, Sep 2002. [Online].
Available: http://doi.acm.org/10.1145/568522.568525

[22] B. Kemme, A. Bartoli, and O. Babaoglu, “Online Reconfiguration in
Replicated Databases Based on Group Communication,” in Dependable
Systems and Networks, 2001. DSN 2001. International Conference on,
Jul 2001, pp. 117 –126.

[23] P. Berman, J. A. Garay, and K. J. Perry, Bit Optimal Distributed
Consensus. New York, NY, USA: Plenum Press, 1992, pp. 313–321.

[24] D. Dolev and H. R. Strong, “Polynomial Algorithms for Multiple Pro-
cessor Agreement,” in Proc. 14th Symposium on Theory of Computing
(STOC), 1982, pp. 401–407.

[25] L. Marino, “General Theory of Metastable Operation,” IEEE Transac-
tions on Computers, vol. C-30, no. 2, pp. 107–115, 1981.

[26] D. J. Kinniment, A. Bystrov, and A. V. Yakovlev, “Synchronization
Circuit Performance,” IEEE Journal of Solid-State Circuits, vol. SC-37,
no. 2, pp. 202–209, 2002.

[27] G. Fuchs, M. Függer, and A. Steininger, “On the Threat of Metasta-
bility in an Asynchronous Fault-Tolerant Clock Generation Scheme,” in
Proc. 15th Symposium on Asynchronous Circuits and Systems (ASYNC),
Chapel Hill, N. Carolina, USA, 2009, pp. 127–136.

10

http://www.bell-labs.com/user/garay/#distributed-pub
http://www.bell-labs.com/user/garay/#distributed-pub
http://doi.acm.org/10.1145/568522.568525

	Introduction
	Related work
	System Model and Generic Solution
	Appointing Phase Kings and Queens
	Implementation and Experiments
	A Randomized Algorithm
	Conclusion
	References

