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Abstract. We present a near-optimal distributed algorithm for (1 + o(1))-approximation of
single-commodity maximum flow in undirected weighted networks that runs in (D +

\surd 
n) \cdot no(1)

communication rounds in the CONGEST model. Here, n and D denote the number of nodes and the
network diameter, respectively. This is the first improvement over the trivial bound of O(n2), and
it nearly matches the \~\Omega (D+

\surd 
n)-round complexity lower bound. The development of the algorithm

entails two subresults of independent interest: (i) A (D+
\surd 
n) \cdot no(1)-round distributed construction

of a spanning tree of average stretch no(1). (ii) A (D +
\surd 
n) \cdot no(1)-round distributed construction

of an no(1)-congestion approximator consisting of the cuts induced by O(logn) virtual trees. The
distributed representation of the cut approximator allows for evaluation in (D +

\surd 
n) \cdot no(1) rounds.

All our algorithms make use of randomization and succeed with high probability.
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1. Introduction. Computing a maximum flow is a fundamental task in network
optimization. While the problem has a decades-old history rich with developments
and improvements in the sequential setting, little is known in the distributed setting.
In fact, prior to this work, the best known distributed time complexity in the standard
CONGEST model remained at the trivial bound of O(m), where m is the number of
edges, i.e., the time to collect the entire topology and solve locally. This article
improves this unsatisfying state to near-optimality.

Theorem 1.1. Given any \varepsilon > 0 and an undirected weighted graph G with dis-
tinguished vertices s and t, a (1 + \varepsilon )-approximate maximum s-t flow in G can be
computed in the CONGEST model with high probability in (D+

\surd 
n) \cdot no(1)\varepsilon  - 3 rounds,

where D and n are the diameter and the number of vertices in G, respectively.

This round complexity almost matches the \~\Omega (D+
\surd 
n) lower bound of Das Sarma

et al. [13]. This bound extends to any nontrivial approximation, i.e., any \varepsilon \in polyn.
Note also that, w.l.o.g., \varepsilon > 1/

\surd 
n, as otherwise the trivial algorithm collecting the

entire input in O(n2) rounds and solving locally is faster than our approximation
algorithm.

Before we proceed, let us formalize the model and the problem.
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1.1. Model and problem.
Computational model. We use the standard CONGEST model of synchronous

computation [26]. We are given a simple, connected, weighted graph G = (V,E, cap),
where cap : E \rightarrow \BbbR + specifies the capacity of each edge. We follow the notational
convention that n = | V | and m = | E| . We shall assume henceforth that capacities are
natural numbers of polynomial (in n) magnitude. This assumption is made without
loss of generality, but possibly with some cost in complexity: See Appendix A for de-
tails. By D, we denote the (unweighted) diameter of G. Each node hosts a processor
with a unique identifier of O(log n) bits, and O(log n) bits can be sent in each syn-
chronous round of communication over each edge; we assume that nodes have access
to infinite strings of independent unbiased random bits. We say that an event occurs
with high probability (w.h.p.) if it happens with probability 1  - n - c for any desired
constant c > 0 specified upfront.1 Initially, each node only knows its identifier, its
incident edges, and their capacities. We fix an arbitrary orientation of the edges: for
\{ u, v\} \in E we write (u, v) \in E if the orientation is u\rightarrow v. This orientation is known
to the nodes.

Problem statement. An instance of the max-flow problem is given by G and two
distinguished nodes s, t \in V called source and sink, respectively (in the distributed
version, each node knows whether it is a source, sink, or neither). A (feasible) flow is
a vector \bfitf \in \BbbR m satisfying

1. capacity constraints (edges): \forall e \in E : | fe| \leq cap(e);
2. conservation constraints (nodes): \forall u \in V \setminus \{ s, t\} :

\sum 
(u,v)\in E fe - 

\sum 
(v,u)\in E fe =

0; and
3.
\sum 

(s,u)\in E fe  - 
\sum 

(u,s)\in E fe =  - 
\sum 

(t,u)\in E fe +
\sum 

(u,t)\in E fe. We denote this
common value by F \in \BbbR and call it the value of the flow \bfitf .

A max flow is a flow of maximum value. For \varepsilon > 0, a (1 + \varepsilon )-approximate max flow
is a flow whose value is at most a factor 1 + \varepsilon smaller than that of a max flow. In
this work, we focus on solving the problem of finding a (1+ \varepsilon )-approximate max flow
in the above model, where it suffices that each node u learns fe for its incident edges
\{ u, v\} \in E.

1.2. Related work. Network flow, being one of the canonical and most useful
optimization problems, has been the target of innumerable research efforts since the
1930s (see, e.g., [30], the classic book [2], and the more recent survey [16]). For
the general, directed case, the fastest known sequential algorithm is by Goldberg and
Rao [15]; it solves the max-flow problem in time \~O(min

\bigl\{ 
m3/2,mn2/3

\bigr\} 
).2 Particularly

relevant from the point of view of the present paper are recent efforts to obtain
fast algorithms to compute (approximate) max-flow solutions in the undirected case.
Using the graph sparsification technique of Bencz\'ur and Karger [10], any graph can be
partitioned into k = \~O(m\varepsilon 2/n) sparse graphs, each with \~O(n/\varepsilon 2) edges, such that the
max-flow problem can be approximately solved by combining max-flow solutions for
each of these sparse graphs. Using the algorithm of Goldberg and Rao, this results
in an algorithm with running time \~O(mn1/2). In [12], Christiano et al. improved
this running time to \~O(mn1/3) by applying the nearly linear-time Laplacian solver
of Spielman and Teng [33] to iteratively minimize a soft-max approximation of the
edge congestions. Kelner et al. [17] and Sherman [32] independently published two

1Conversely, ``low probability"" means n - \Omega (1). By the union bound, the probability that any
of polynomially many low-probability events occurs is still ``low."" We use this fact frequently and
implicitly throughout the paper.

2We use the soft asymptotic notation like \~O to hide factors of (logn)O(1).
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algorithms which allow computation of a (1+ \varepsilon )-approximation to an undirected max
flow problem in time almost linear in m. Finally, Peng [27] proved the first running
time in O(m polylog(n)).

However, to the dismay of many, and despite the fact that the word ``network""
even appears in the problem's name, only little progress was made over the years
from the standpoint of distributed algorithms. For example, Goldberg and Tarjan's
push-relabel algorithm, which is very local and simple to implement in the CONGEST
model, requires \Omega (n2) rounds to converge, where n is the number of nodes. This is
very disappointing, because in the CONGEST model, any problem whose input and
output can be encoded with O(log n) bits per edge can be trivially solved in O(m)
rounds by collecting all input at a single node, solving it there, and distributing the
results back.

Early attempts focused, as was customary in those days, on reducing the number
of messages in asynchronous executions. For example, Segall [31] gives an O(nm2)-
messages, O(n2m)-time algorithm for exact max flow, and Marberg and Gafni [23]
give an algorithm whose message and time complexities are O(n2m1/2). Awerbuch has
attacked the problem repeatedly with the following results. In an early work [5], he
adapts Dinic's centralized algorithm using a synchronizer, giving rise to an algorithm
whose time and message complexities are O(n3). With Leighton, in [8], he gives
an algorithm for solving multicommodity flow approximately in O(\ell m logm) rounds,
where \ell < n is the length of the longest flow path. Later he considers the model
where each flow path (variable) has an ``agent"" which can find the congestion of all
links on its path in constant time. In this model, he shows with Khandekar [6] how
to approximate any positive linear program (max flow with given routes included)
to within (1  - \epsilon ) in time polynomial in log(mnAmax/\epsilon ) (here n is the number of
variables, which is at least the number of paths considered). The same model is used
with Khandekar and Rao in [7], where they show how to approximate multicommodity
flow to within (1  - \epsilon ) in O(\ell log n) rounds. Using a straightforward implementation
of this algorithm in the CONGEST model results in an \~O(n2)-time algorithm.

Thus, up until the current paper, there has been no distributed implementation of
a max-flow algorithm which always requires a subquadratic number of rounds. Even
an O(n)-time algorithm would have been considered a significant improvement, even
for the 0/1 capacity case.

1.3. Organization of this article. Our result builds heavily on a few major
breakthroughs in the understanding of max flow in the centralized setting, most no-
tably [32], as well as a few other contributions. Our presentation goes in a top-down
fashion for the most part.

We start by carefully revisiting Sherman's approach [32] and the main building
blocks he relies on in section 2. This sets the stage for shedding light on the chal-
lenges that must be overcome for its distributed implementation and presentation of
our results in section 3. There, we also provide a top-level view of the components of
the algorithm, alongside pointers to the detailed proofs showing that we can imple-
ment each of them by efficient distributed algorithms; these are given in sections 5--8.
However, before delving into the technical details of our construction, we outline the
distributed construction of an no(1)-congestion approximator in section 4. This is our
key technical contribution; the role of a congestion approximator is to estimate the
congestion induced by optimally routing an arbitrary demand vector very quickly,
which lies at the heart of our algorithm.



NEAR-OPTIMAL DISTRIBUTED MAXIMUM FLOW 2081

2. Overview of the centralized framework. Sherman's approach [32] is
based on gradient descent (see, e.g., [24]) for congestion minimization with a clever
dualization of the flow conservation constraints. The flow problem is reformulated as
a demand vector \bfitb \in \BbbR n such that

\sum 
i\in V bi = 0. In the case of the s-t flow problem,

we have a positive bs and negative bt with the same absolute value and the demand is
zero everywhere else. The objective is to find a flow \bfitf \ast that meets the given demand
vector, i.e., the total excess flow in node i is equal to bi, and minimizes the maximum
edge congestion, which is the ratio of the flow over an edge to its capacity. Formally,

(1) minimize
\bigm\| \bigm\| C - 1\bfitf 

\bigm\| \bigm\| 
\infty subject to B\bfitf = \bfitb ,

where C = (Cee\prime )e,e\prime \in E is an m\times m diagonal matrix with

Cee\prime =

\biggl\{ 
cap(e) if e = e\prime ,

0 else ,

and B = (Bve)v\in V,e\in E is an n\times m matrix with

Bve =

\left\{   1 if e = (u, v) for some u \in V,
 - 1 if e = (v, u) for some u \in V,
0 else .

In the following, we refer to the condition B\bfitf = \bfitb as the flow constraints. Note that
given a general vector \bfitf \in \BbbR m, when viewed as a flow, (B\bfitf )v is exactly the excess
flow at node v. If we can solve problem (1), we can find an approximate maximum
flow using binary search as follows. Given a value F , set bs = F , bt =  - F , bv = 0 for
all other nodes v, test whether

\bigm\| \bigm\| C - 1\bfitf 
\bigm\| \bigm\| 
\infty \leq 1, and adjust the value of F accordingly.

Instead of directly solving this constrained system, Sherman allows for general
flows and adds a penalty term for any violation of the flow constraints B\bfitf = \bfitb , i.e.,

minimize
\bigm\| \bigm\| C - 1\bfitf 

\bigm\| \bigm\| 
\infty + 2\alpha \| R(\bfitb  - B\bfitf )\| \infty ,

where \alpha \geq 1 and the matrix R \in \BbbR x\times n for some x \in \BbbN are chosen so that the optimum
of this unconstrained optimization problem does not violate the flow constraints. As
we are interested in an approximate maximum flow, we can compute an approximate
solution and argue that the violation of the flow constraints will be small, too. We thus
get a flow that almost satisfies the demand vector \bfitb . To obtain a flow that satisfies
the flow constraints, we have to superpose the existing flow with a flow that satisfies
the demand vector \bfitb  - B\bfitf . One can find this remaining flow in a trivial manner,
e.g., on a spanning tree, to obtain a near-optimal solution. Finally, to ensure that the
objective function is differentiable (i.e., a gradient descent is actually possible), \| \cdot \| \infty 
is replaced by the so-called soft-max function (a differentiable approximation of the
maximum; cf. (2)).

The congestion approximator R. The congestion of an edge e (for a given flow
\bfitf ) is defined as the ratio | fe| /cap(e). When referring to the congestion of a cut in
a given flow, we mean the ratio between the net flow crossing the cut (in a given
direction) to the total capacity of the cut. Suppose for a moment that \alpha = 1 and R
contains one row for each of the 2n - 1  - 1 cuts of the graph, chosen such that each
entry of the vector RB\bfitf equals the congestion of the corresponding cut. In particular,
R would correctly reproduce the congestion of min cuts (which give rise to maximal
congestion). Moreover, the vector R\bfitb describes the inevitable congestion of the cuts
for any feasible flow. Thus, the components of R(\bfitb  - B\bfitf ) are the residual congestions
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to be dealt with to make \bfitf feasible (neglecting possible cancellations within \bfitf ). The
max-flow min-cut theorem and the factor of 2 in the second term of the objective
function imply that routing the demands arising from a violation of flow constraints
optimally always improves the value of the objective function. Moreover, gradient
descent focuses on the most congested edges and those that are contained in cuts
with the top residual congestion. In particular, flow is pushed over the edges into
the cut with the highest residual congestion to satisfy its demand until other cuts
become more important in the second part of the objective, i.e., determine the second
infinity-norm. The first part of the objective impedes flow on edges the more they
are congested (on an absolute scale and relative to others). Thus, approximately
minimizing the objective function is equivalent to simultaneously approximating the
minimum congestion and having a small violation of the flow constraints; solving up
to polynomially small error and naively resolving the remaining violations then yields
sufficiently accurate results.

Unfortunately, trying to make R capture congestion exactly is far too inefficient.
Instead, one uses an \alpha -congestion approximator, that is, a matrix R such that for any
demand vector \bfitb , it holds that

\| R\bfitb \| \infty \leq opt(\bfitb ) \leq \alpha \| R\bfitb \| \infty ,

where opt(\bfitb ) is the maximum congestion caused on any cut by optimally routing
\bfitb . Since the second term in the objective function is scaled up by factor \alpha , we are
still guaranteed that optimally routing any excess demands improves the objective
function. However, this implies that the gradient of the objective function may be
dominated by the second term, and thus emphasis is shifted to feasibility rather than
optimality. Sherman proves that this slows down the gradient descent by at most a
factor of \alpha 2, and hence, if \alpha \in no(1), then the number of gradient descent iterations
needs to be increased only by an no(1) factor.

Congestion approximators: R\"acke's construction. For any spanning tree T of G,
deleting an edge partitions the nodes into two connected components and thus induces
an (edge) cut of G. Note that in T , this cut contains only the single deleted edge, and
that in terms of congestion, any cut of T is dominated by such an edge-induced cut:
For any cut, the maximum congestion of an edge is at least the average congestion of
the cut, and in T , there is a cut containing only this edge.

These basic properties motivate the question of how well the cut structure of an
arbitrary graph can be approximated by trees. Intuitively, the goal is to find a tree T
(not necessarily a subgraph) spanning all nodes with edge weights such that routing
any demand vector in G and in T results in roughly the same maximal congestion.
Because routing flows on trees is trivial, such a tree T would give rise to an efficient
congestion approximator R: R would consist of one row for each cut induced by an
edge (u, v) of T with capacity C, where the matrix entry corresponding to node w
is 1/C if w is on u's ``side"" of the cut and 0 otherwise; multiplying a demand vector
with the row then yields the flow that needs to pass through (u, v) divided by the
capacity of the cut.

In a surprising result [29], R\"acke showed that, using multiplicative weight updates
(see, e.g., [4, 28, 34]), one can construct a distribution of \~O(m) trees so that (i) in
each tree of the distribution, each cut has at least the same capacity as in G, and (ii)
given any cut of G of total capacity C, sampling from the distribution results in a tree
T where this cut has expected capacity O(\alpha C), where \alpha here is the approximation
ratio of a low average stretch spanning tree algorithm, used as a subroutine in R\"acke's
construction. Note that this bound on the expectation implies that for any cut of
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Fig. 1. A j-tree for j = 5. The core links are drawn thicker.

capacity C, there must be a tree in the distribution for which the cut has capacity
O(\alpha C). Hence, the cuts given by all trees in the distribution give rise to an O(\alpha )-
congestion approximator R with \~O(mn) rows.

Low average stretch spanning trees. To implement R\"acke's construction, an effi-
cient algorithm for computing low average stretch spanning trees is required. More
precisely, given a graph G = (V,E, \ell ) with polynomially bounded lengths \ell : E \rightarrow \BbbN ,
the goal is to construct a spanning tree T of G so that\sum 

\{ u,v\} \in E

dT (u, v) \leq \alpha 
\sum 

\{ u,v\} \in E

\ell (\{ u, v\} ) ,

where dT (u, v) is the sum of the lengths of the unique path from u to v in T and \alpha is
the stretch factor.

Sherman's algorithm builds on a sophisticated low average stretch spanning tree
algorithm that achieves \alpha \in O(log n(log log n)2) within \~O(m) centralized steps [1].

We use a simpler approach providing \alpha \in 2O(
\surd 
logn log logn) [3] that has been shown to

parallelize well, i.e., has an efficient implementation in the PRAM model [11].
Congestion approximators: Madry's construction. R\"acke's construction has the

drawback that one needs to sequentially compute a linear number of trees, which is
prohibitively expensive from the distributed computation point of view. Madry [21]
generalized R\"acke's approach to a construction that produces a distribution over
\~O(m/j) so-called j-trees, where j is a parameter. A j-tree consists of a forest of
j connected components (trees) and a core graph, which is an arbitrary connected
graph with j nodes: one from each tree (see Figure 1).

The properties of the distribution are the same as for R\"acke's: sampling from the
distribution preserves cut capacities up to an O(\alpha )-factor in expectation, where \alpha is
the average stretch of a utilized spanning tree algorithm. Given a j-tree, we say that
a cut is dominant if it is induced either by a single edge of the forest or by a cut of
the core. All dominant cuts of all j-trees in the distribution to construct R yield an
O(\alpha )-congestion approximator. Note that any cut in a j-tree is dominated by some
dominant cut in the following sense: Consider any demand vector and any ``mixed""
cut that either separates the endpoints of more than one of the tree edges or separates
the endpoints of both tree and core edges. If there is an edge in the forest crossing the
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cut that has at least the same congestion as the whole cut, then the cut induced by
the forest edge dominates the mixed cut. Otherwise, we can remove all forest edges
from the mixed cut without reducing its congestion. As routing demands in the forest
part of the graph is trivial, Madry's construction can be seen as an efficient reduction
of the problem size.

Congestion approximators: Combining cut sparsifiers with Madry's construction.
Using j-trees, Sherman derives a suitable congestion approximator, i.e., one with
\alpha \in no(1) that can be constructed and evaluated in \~O(m+n1+o(1)) rounds, as follows.
First, a cut sparsifier is applied to G. A (1 + \varepsilon )-sparsifier computes a subgraph of G
with modified edge weights so that the capacities of all cuts are preserved up to factor
1+\varepsilon . It is known how to compute a (1+o(1))-sparsifier with \~O(n) edges in \~O(m) steps
using randomization [10]. As the goal is merely to compute a congestion approximator
with \alpha \in no(1), the multiplicative 1 + o(1) approximation error is negligible. Hence,
this essentially breaks the problem of computing a congestion approximator down to
the same problem on sparse graphs.

Next, Sherman applies Madry's construction with j = n/\beta , where \beta = 2
\surd 
logn.

This yields a distribution of \~O(\beta ) many n/\beta -trees. The issue is now that the cores
are arbitrary graphs, implying that it may be difficult to evaluate congestion for cuts
in the cores. However, the number of nodes in the core is n\prime = n/\beta . Thus, recursion
does the trick: apply the cut sparsifier to the core, use Madry's construction on
the resulting graph (with j\prime = n\prime /\beta = n/\beta 2), rinse and repeat. In total, there
are log\beta n =

\surd 
log n levels of recursion until the core becomes trivial, i.e., we arrive

at a tree. For each level of recursion, the approximation ratio deteriorates by a
multiplicative \alpha \in polylogn, where \alpha is the stretch factor of the low-stretch spanning
tree algorithm, and a multiplicative 1 + o(1), for applying the cut sparsifier. This
yields an \alpha \prime -congestion approximator with

\alpha \prime \in ((1 + o(1))\alpha )
\surd 
logn \subset 2O(

\surd 
logn log logn) \subset no(1) .

While the total number of constructed trees is still \~O(\beta log\beta n) = \~O(n), the number
of nodes in a graph (i.e., a core from the previous level) on the ith level of recursion
is only n/\beta i - 1. The cut sparsifier ensures that the number of edges in this graph
is reduced to \~O(n/\beta i - 1) before recursing. Since the number of edges in the core is
(trivially) bounded by the number of edges of the graph in Madry's construction, the
total number of sequential computation steps for computing the distribution is thus
bounded by

\~O(m) +

log\beta n\sum 
i=1

\~O(\beta i \cdot n/\beta i - 1) \subset \~O(m+ n1+o(1)) .

Step complexity of the flow algorithm. The above recursive structure can also be
exploited to evaluate the \alpha \prime -congestion approximator Sherman uses in n1+o(1) steps.
As mentioned earlier, the cuts of a j-tree are dominated by those induced by edges of
the forest and those which are crossed by core edges only (cf. Figure 1). In the forest
component, routing demand is unique, takes linear time in the number of nodes (sim-
ply start at the leaves), and results in a modified demand vector at the core on which
it is recursed. Sherman shows that the algorithm obtains a (1+\varepsilon )-approximate flow in
O(\varepsilon  - 3\alpha 2 log2 n) gradient descent steps, provided R is an \alpha -congestion approximator.
It is straightforward to see (cf. section 3.2) that each of these steps requires O(m)
computational steps besides doing two matrix-vector multiplications with R and R\top ,
respectively. Using the above observation and plugging in the time to construct the
(implicit) representation of R, one arrives at a total step complexity of \~O(mno(1)).
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3. Distributed algorithm.

3.1. The distributed toolchain. For a distributed implementation of Sher-
man's approach, many subproblems need to be solved sufficiently quickly in the
CONGEST model. We summarize them in the following list, in which stars indicate
readily available components.

* Decomposing trees into O(
\surd 
n) components of strong diameter O(

\surd 
n), within

\~O(
\surd 
n+D) rounds. This can, e.g., be done by techniques pioneered by Kutten

and Peleg for the purpose of minimum-weight spanning tree construction [20].
* Constructing cut sparsifiers. Koutis [18] provides a solution that runs in
polylogn rounds of the CONGEST model. In section 7, we specify an emula-
tion strategy that allows us to use it in our recursive construction.

1. Constructing low average stretch spanning trees on multigraphs (section 8).
2. Applying Madry's construction in the CONGEST model, even when recursing

in the context of Sherman's framework (section 6).
3. Sampling from the recursively constructed distribution of spanning trees (sec-

tion 6).
4. Avoiding the use of the entire distribution for constructing the congestion

approximator (see below).
5. Performing a gradient descent step. This involves matrix-vector multiplica-

tions with R, R\top , and C - 1, evaluation of the soft-max, etc. (section 3.2).

Let us elaborate a little on the distributed implementation of tasks 1--4 from the list
above.

3.1.1. Low average stretch spanning trees. In section 8, we prove the the-
orem given below. But first, let us formalize the intuitive notion of edge contraction.

Definition 3.1. Edge contraction is an operation that takes a graph G = (V,E)
and an edge (u, v) \in E and produces a graph G\prime = (V \prime , E\prime ) defined by

\bullet V \prime = V \setminus \{ v, u\} \cup \{ \u w\} , where \u w is a fresh node (i.e., w /\in V ), and

\bullet E\prime = \.\bigcup 
\{ x,y\} \in E\setminus \{ \{ v,u\} \} \{ \{ f(x), f(y)\} \} , where

f(x) =

\Biggl\{ 
\u w if x \in \{ u, v\} ,
x otherwise.

Note that this means that the resulting set of edges is a multiset and the resulting
graph is a multigraph.

Theorem 3.2. Suppose H is a multigraph obtained from G by assigning arbitrary

edge lengths in [1, 2n
o(1)

] to the edges of G (known to incident nodes) and performing
an arbitrary sequence of contractions. Then we can compute a spanning tree of H of
expected stretch 2O(

\surd 
logn log logn) within (

\surd 
n+D)no(1) rounds.

To obtain this result, we adapt a PRAM algorithm by Blelloch et al. [11] to the
CONGEST model. The main issue in the adaptation is that in the PRAM model, any
piece of information can be accessed instantaneously by any processor, while in the
CONGEST model, access takes time due to distance and congestion in the underlying
network. The standard solution to this issue is using pipelining over a depth-O(D)
spanning tree of G (dubbed ``global breadth-first search (BFS) tree""); communication
over O(

\surd 
n) hops of already computed parts of the spanning tree is handled using

the edges that have already been selected for inclusion in the spanning tree and the
spanning trees of the contracted regions of G.
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3.1.2. Implementing Madry's scheme. This is technically the most challeng-
ing part. Also here, we have to overcome the potential difficulty of how to commu-
nicate a large amount of information over many hops; doing this naively results in
excessive contention, which slows the algorithm down. We therefore modify Madry's
construction as follows.

\bullet Instead of ``aggregating"" edges so that the core becomes a graph, we allow
the core to be a multigraph.

\bullet Instead of explicitly constructing the core, we simulate both the sparsifier
and the low average stretch spanning tree algorithms using the abstraction
of cluster graphs (see section 5).

\bullet In the simulation, we maintain the invariant that every core edge is also a
graph edge, allowing us to use it for communication.

\bullet Clusters (of the cluster graph) are the forest components rooted at core nodes.
We maintain the invariant that forest components have depth \~O(

\surd 
n). While

not strictly necessary, this simplifies the description of the corresponding
distributed algorithms, as the communication within each cluster can then
be performed via its (previously constructed) spanning tree.

\bullet The cluster hierarchy, as established during the construction, allows for a
straightforward recursive evaluation of the corresponding congestion approx-
imator.

Section 6 gives the details of the construction.

3.1.3. Sampling from the distribution. This task is actually straightforward
in our framework, because for each sample, on each level of the recursion we need to
construct only no(1) different j-trees for some j. More specifically, we show that if the
number of j-trees in the distribution constructed when recursing on a core is \~O(\beta ),
then one can sample a virtual tree from the distribution used in Sherman's framework
within \~O((

\surd 
n +D)\beta ) rounds. Moreover, the distributed representation allows us to

evaluate the dominant cuts of the tree when using it in a congestion approximator
within \~O(

\surd 
n+D) rounds. See Theorem 6.13 for details.

3.1.4. Avoiding the use of the entire distribution for constructing the
congestion approximator. While sequentially, one can afford to use all trees in the
(recursively constructed) distribution, the result mentioned above is not sufficient to
allow for fast evaluation of all \~\Theta (n) trees. As Madry points out [21], it suffices to
sample and use O(log n) j-trees from the distribution he constructs to speed up any
\beta -approximation algorithm for an ``undirected cut-based minimization problem,"" at
the cost of an increased approximation ratio of 2\alpha \beta , where \alpha is the approximation
ratio of the congestion approximator corresponding to the distribution of j-trees. The
reasoning is as follows:

\bullet The number of cuts that need to be considered for such a problem is polyno-
mially bounded.

\bullet The expected approximation ratio for any fixed cut when sampling from the
distribution is \alpha . By Markov's inequality, with probability at least 1/2 it is
at most 2\alpha .

\bullet For O(log n) samples, the union bound shows that w.h.p. all relevant cuts
are 2\alpha -approximated.

\bullet Applying a \beta -approximation algorithm relying on the samples only, which
can be evaluated much faster, results in a 2\alpha \beta -approximation w.h.p.

Recall that the problem of approximating the maximum flow was reduced to mini-
mizing congestion for demands F at s and  - F at t, and performing binary search
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over F . The max-flow min-cut theorem implies the respective congestion to be the
function of a single cut, which can be used to verify that the problem falls under
Madry's definition.

Applying Madry's sampling strategy directly will yield an approximation which
is too loose for our (1 + \varepsilon ) goal. Alternatively, we can apply it in the construction of
a congestion approximator. However, a congestion approximator must return a good
approximation for any demand vector. There are exponentially many such vectors
even if we restrict the demand in each node to be in \{  - 1, 0, 1\} , and we are not aware
of any result showing that the number of min cuts corresponding to the respective
optimal flows is polynomially bounded.

We resolve this issue with the following simple, but essential, insight, at the cost
of squaring the approximation ratio of the resulting congestion approximator.

Lemma 3.3. Suppose we are given a distribution \scrD over K \in nO(1) trees so that
given any cut of G of capacity C, sampling from \scrD results in a tree whose corre-
sponding cut has capacity at least C always, and at most \alpha C in expectation. Then
sampling O(log n) trees from \scrD and constructing a congestion approximator from their
single-edge induced cuts results, w.h.p., in a 2\alpha 2-congestion approximator of G.

Proof. Recall that an approximator estimates the maximum congestion when op-
timally routing an arbitrary demand. Consider any demand vector \bfitb and let C denote
the capacity of the corresponding cut that is most congested when routing \bfitb . As sam-
pling from \scrD yields approximation factor \alpha C in expectation, there must be some tree
T in the support of \scrD whose corresponding cut has capacity at most \alpha C. However,
this means that when routing \bfitb over T , there is some edge e \in T that experiences
congestion at least 1/\alpha times the maximum when routing the demand optimally in
G. As cap(e) \geq C, it follows that the corresponding cut of G has congestion at least
1/\alpha of the congestion of e when routing the demand \bfitb .

As there are K \in nO(1) trees in the support of \scrD , each of which has n  - 1
edges, this shows that there is a set of K(n  - 1) \in nO(1) cuts of G, such that for
any demand vector, one of these cuts has congestion at least 1/\alpha times the optimal
maximum congestion for that demand vector. By Markov's inequality, when sampling
from the distribution, for each such cut, with probability at least 1/2, the sampled
tree approximates the congestion up to factor 2\alpha . Accordingly, when taking O(log n)
samples, w.h.p. this approximation guarantee is achieved for each such cut. By the
union bound, we thus obtain the desired 2\alpha 2-congestion approximator of G.

3.2. The high-level algorithm. As mentioned already, our algorithm, pre-
sented in Algorithm 1, is a distributed implementation of Sherman's algorithm [32].
It calls Algorithm AlmostRoute (described shortly) a logarithmic number of times,
followed by computing a maximum-weight spanning tree and routing the leftover de-
mand through this tree.

Before we explain the implementation AlmostRoute (which is the heart of the
algorithm), let us first quickly outline how to implement the endgame of Steps 5--6.

Lemma 3.4. Steps 5--6 of Algorithm 1 can be implemented in the CONGEST model
in \~O(D +

\surd 
n) rounds w.h.p.

Proof. Amaximum weight spanning tree T can be computed in \~O(D+
\surd 
n) rounds

using the minimum weight spanning tree algorithm of Kutten and Peleg [20] (say, by
assigning weight w(e) :=  - cap(e) for each edge e). To compute the flow, we use the
following observation: if T were rooted at one of its nodes, then to route the demand
\bfitb t over T , it would be sufficient for each node v to learn the total demand dv in the
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Algorithm 1. Max flow. Input: demand vector \bfitb \in \BbbR n; output: flow vector \bfitf \in \BbbR m.

1: \bfitb 0 \leftarrow \bfitb ; \bfitf 0 \leftarrow \bfzero 
2: \bff \bfo \bfr i\leftarrow 1 to (logm+ 1) \bfd \bfo 
3: \bfitf i \leftarrow \sansA \sansl \sansm \sanso \sanss \sanst \sansR \sanso \sansu \sanst \sanse (\bfitb i,

1
2
)

4: \bfitb i \leftarrow \bfitb i - 1  - B\bfitf i - 1.

5: Compute a maximum weight spanning tree T on G, where weights are the capacities of
edges.

6: Route the residual demand \bfitb t through T ; let \bfitf T be the resulting flow.
7: Output \bfitf T +

\sum 1+logm
i=1 \bfitf i.

subtree rooted at v. In this case each node v assigns dv units of flow to the edge
leading from v to its parent.

We now show how to root the tree and find the total demand in each subtree
in \~O(D +

\surd 
n) rounds. The algorithm is as follows. Remove each edge of the tree

independently with probability 1/
\surd 
n. With high probability,

(i) each connected component induced by the remaining edges has strong diameter
\~O(
\surd 
n),

(ii) O(
\surd 
n) edges are removed, and hence

(iii) the number of components is O(
\surd 
n).

Within each component, all demands are summed up, and this sum is made known
to all nodes. The summation takes \~O(

\surd 
n) rounds due to (i), and we can pipeline the

announcement of the sums over the global BFS tree in \~O(
\surd 
n+D) rounds due to (iii).

Moreover, within the same asymptotic time we assign unique identifiers to the
components (e.g., the minimum identifier) and broadcast the ``cluster tree"" (which
results from contracting components) to all. Using local computation only, nodes
then can root this tree (e.g., at the cluster of minimum identifier) and determine the
sum the demands of the clusters that are fully contained in their subtree. Using a
simple broadcast, the orientation of edges within components is determined, and using
a convergecast on the components, each node can determine the sum of demands in
its subtree. These steps take another \~O(

\surd 
n) rounds.

Algorithm AlmostRoute: The gradient descent. We now explain how to implement
Algorithm AlmostRoute in a distributed setting. The idea is to use gradient descent
with the potential function

\phi (\bfitf ) = smax(C - 1\bfitf ) + smax(2\alpha R(\bfitb  - B\bfitf )) ,

where the ``soft-max"" function, defined by

(2) smax(\bfity ) = log

\Biggl( 
k\sum 
i=1

eyi + e - yi

\Biggr) 
for all \bfity \in \BbbR k ,

is used as a differentiable approximation to the ``max"" function.3

Given this potential function, AlmostRoute performs O(\alpha 2\varepsilon  - 3 log n) updates on
\bfitf and outputs a flow \bfitf that optimizes the potential function up to a (1 + \varepsilon ) factor.
Pseudocode for this centralized algorithm is given in Algorithm 2.

To implement this algorithm in a distributed setting, we need to compute R,
and to perform multiplications by R or its transpose R\top , distributively. These mul-
tiplications are needed for evaluating \phi (\bfitf ) and its partial derivatives (distributed

3Throughout this paper, we consider natural logarithms whenever the base is relevant.



NEAR-OPTIMAL DISTRIBUTED MAXIMUM FLOW 2089

Algorithm 2. AlmostRoute(\bfitb , \varepsilon ).

1: kb \leftarrow 2\alpha \| R\bfitb \| \infty \varepsilon /(16 logn); \bfitb \leftarrow kb\bfitb .
2: \bfr \bfe \bfp \bfe \bfa \bft 
3: kf \leftarrow 1
4: \bfw \bfh \bfi \bfl \bfe \phi (\bfitf ) < 16\varepsilon  - 1 logn \bfd \bfo 
5: \bfitf \leftarrow \bfitf \cdot (17/16); \bfitb \leftarrow \bfitb \cdot (17/16); kf \leftarrow kf \cdot (17/16)
6: \delta \leftarrow 

\sum 
e\in E | cap(e)

\partial \phi 
\partial fe
| 

7: \bfi \bff \delta \geq \varepsilon /4 \bft \bfh \bfe \bfn 

8: fe \leftarrow fe  - sgn
\Bigl( 

\partial \phi 
\partial fe

\Bigr) 
\cdot cap(e) \delta 

1+4\alpha 2 for all edges e \in E

9: \bfe \bfl \bfs \bfe 
10: fe \leftarrow fe/kf for all edges e \in E
11: bv \leftarrow bv/(kbkf ) for all nodes v \in V
12: \bfr \bfe \bft \bfu \bfr \bfn 
13: \bfu \bfn \bft \bfi \bfl done

multiplications by B are easy). We remark that R and R\top are not constructed ex-
plicitly, as we need to ensure a small time complexity for each iteration. Assuming
that we can perform these operations, each step of AlmostRoute can be completed in
\~O(D) additional rounds, required to compute and broadcast global quantities such
as \delta .

We maintain the invariant that at the beginning of each iteration of the repeat
loop, each node v knows the current flow over each of the links incident to v, and the
current demand at v (i.e., (\bfitb  - B\bfitf )v).

We proceed as follows. We break the potential function \phi in two, i.e.,

\phi (\bfitf ) = \phi 1(\bfitf ) + \phi 2(\bfitf ) , where

\phi 1(\bfitf ) = smax(C - 1\bfitf ) , and

\phi 2(\bfitf ) = smax(2\alpha R(\bfitb  - B\bfitf )) .

First, we compute \phi 1(\bfitf ): to find smax(C - 1\bfitf ), it is sufficient to sum exp(fe/cap(e))
and exp( - fe/cap(e)) over all edges e, which can be done in O(D) rounds. As Sherman
points out, \phi (\bfitf ) = \Theta (\varepsilon  - 1 log n) due to the scaling in line 5 of Algorithm 2, and thus,
any desired relative accuracy that is polynomial in \varepsilon 

n can be achieved with messages
of O(log n) bits. To avoid messages that contain numbers in the order of exp(\phi (\bfitf )),
we use a well-known trick for numerical stable computation of smax(y). That is, we
first aggregate | | y| | \infty , broadcast the result, and then exploit that

smax(y) = | | y| | \infty + log

\left(    k\sum 
i=1

\Bigl[ 
1 + e - 2| yi| 

\Bigr] 
\underbrace{}  \underbrace{}  

\leq 2

\cdot e| yi|  - | | y| | \infty \underbrace{}  \underbrace{}  
\leq 1

\right)    .

Hence, we only have to accumulate values in the range [0, 2], which we can again do
with a granularity that is polynomial in \varepsilon 

n using messages of O(log n) bits. The error
introduced by rounding these values is small enough to not affect the asymptotics of
the running time.

Define
\bfity = 2\alpha R(\bfitb  - B\bfitf ).

To determine \phi 2(\bfitf ), we compute the vector \bfity and then do an aggregation on a BFS
tree as for \phi 1(\bfitf ). Since \bfitb  - B\bfitf can be computed instantly (because (B\bfitf )v is exactly
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the net flow into v), this boils down to multiplying a locally known vector with R. To
explain how to implement this operation, we first discuss the structure of R and how
we determine \partial \phi 

\partial fe
, as required in lines 6 and 8 of the algorithm.

The linear operator R is induced by graph cuts. More precisely, in the matrix
representation of R, there is one row for each cut our congestion approximator (ex-
plicitly) considers. We will clarify the structure of R shortly; for now, let I denote
the set of row indices of R. Observe that

(3)
\partial \phi (\bfitf )

\partial fe
=

exp(fe/cap(e)) - exp( - fe/cap(e))
cap(e) exp(\phi 1(\bfitf ))

+
\partial \phi 2(\bfitf )

\partial fe
,

and hence, given that \phi 1 is known, the first term is locally computable. The second
term expands to

\partial \phi 2(\bfitf )

\partial fe
=
\sum 
i\in I

\partial \phi 2(\bfitf )

\partial yi
\cdot \partial yi
\partial fe

=
\sum 
i\in I

exp(yi) - exp( - yi)
exp(\phi 2(\bfitf ))

\cdot 2\alpha Bi,e
cap(i)

,

where cap(i) is the capacity of cut i in the congestion approximator and Bi,e \in 
\{  - 1, 0, 1\} depends on whether e is outgoing ( - 1), incoming (1), or not crossing cut i.4

The cuts i \in I are induced by the edges of a collection of (rooted, virtual, ca-
pacitated) spanning trees \BbbT that we construct. The cuts are induced as follows. For
\scrT \in \BbbT , we write (v, \^v) \in \scrT if \^v is the parent of v and denote by \scrT v the subtree rooted
at v. Given \scrT \in \BbbT , each edge (v, \^v) \in \scrT induces a (directed) cut (Tv;Tv) with index
i(\scrT , (v, \^v)). We denote the set of edges crossing this cut by \delta (\scrT v). Let us also define

p(\scrT , (v, \^v)) =
exp(yi(\scrT ,(v,\^v))) - exp( - yi(\scrT ,(v,\^v)))

exp(\phi 2)
\cdot 2\alpha 

cap\scrT ((v, \^v))
.

With this notation, we have that

\partial \phi 2
\partial fe

=
\sum 
\scrT \in \BbbT 

\sum 
(v,\^v)\in \scrT 

\sum 
e\in \delta (\scrT v)

p(\scrT , (v, \^v)) \cdot Bi(\scrT ,(v,\^v)),e.

We call p(\scrT , (v, \^v)) the price of the (virtual) edge (v, \^v) \in \scrT . Let \scrP v,\scrT denote the
edge set of the unique path in \scrT from v to the root of \scrT . We define a node potential
for each node v by

\pi v :=
\sum 
\scrT \in \BbbT 

\sum 
(w, \^w)\in \scrP v,\scrT 

p(\scrT , (w, \^w)).

For any e = (u, v), the cuts induced by edges in \scrT \in \BbbT that e crosses correspond
to the edges on the unique path from u to v in \scrT . For all edges (w, \^w) \in \scrT on
the path from u to the least common ancestor of u and v in \scrT , Bi(\scrT ,(w, \^w)),e =  - 1,
while Bi(\scrT ,(w, \^w)),e = +1 for the edges on the path between v and this least common
ancestor. Thus, for any e = (u, v) we have

(4)
\partial \phi 2
\partial fe

= \pi v  - \pi u,

and our task boils down to determining the value of the potential \pi v at each node
v \in V . To this end, we need two subroutines to distributively compute the following
key quantities.

4Technically, Bi,e =
\sum 

v\in Si
Bve where Si is the set of nodes defining cut i.
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\bullet For each cut i: yi. As mentioned above, \bfitb  - B\bfitf is known distributively; i.e.,
each node knows its own coordinate of this vector. For each tree in \scrT \in \BbbT , we
need to aggregate this information from the leaves to the root. This means
to simulate a convergecast on the virtual tree \scrT .

\bullet For each node v: \pi v. Provided that each (virtual) tree edge knows its cor-
responding y-value and \phi 2, the prices can be computed locally. Then the
contribution of each tree to the node potentials can be computed by a down-
cast from the corresponding root to its leaves.

With these routines, one iteration of the repeat loop is now executed as follows:
1. Compute \phi 1, \bfity (local knowledge), and \phi 2 (aggregation on the BFS tree once

\bfity is known).
2. Check the condition in line 4. If it holds, locally update \bfitb , \bfitf , and kf , and go

to Step 1.
3. Compute the potential \bfitpi (local knowledge).
4. For each e \in E, its incident edges determine \partial \phi 

\partial fe
(based on (3) and (4), it

suffices to exchange \pi u and \pi v over e).
5. Compute \delta (aggregation on the BFS tree).
6. Locally update fe and bv for all e \in E and v \in V .

Note that all of the individual operations except for computation of \bfity and \bfitpi can
be completed in O(D) rounds. It is shown in [32] that AlmostRoute terminates after
\~O(\varepsilon  - 3\alpha 2) iterations. As it is only called O(log n) times by Algorithm 1, Theorem 1.1
follows once we show how to compute \bfity and \bfitpi in (

\surd 
n + D)no(1) rounds, for an

\alpha -congestion approximator with \alpha = no(1). Hence, the remainder of the article is
concerned with constructing a suitable congestion approximator.

4. Congestion approximator: Outline of the distributed construction.
In this section, we outline how to adapt Madry's construction to its recursive ap-
plication in the distributed setting. In section 6, we formally prove that we achieve
the same guarantees as Madry's distribution [21] in each recursive step and that our
distributed implementation is fast. Here, we focus on presenting the main ideas of
the required modifications to Madry's scheme and its distributed implementation; to
this end, it suffices to consider the construction of a single step of the recursion.

Centralized algorithm. As a starting point, let us summarize the main steps of one
iteration of the centralized construction. It is convenient to state a slightly simplified
variant of Madry's construction, which offers the same worst-case performance. It
is assumed that an edge length function \ell e is known (in the distributed setting, this
knowledge will be local). Given j \leq n - 1, the following construction yields a \Theta (j)-tree.

1. Compute a spanning tree \scrT of G of stretch \alpha .
2. For each edge e = \{ v, w\} \in E of the graph G, route cap(e) units of a com-

modity come from v to w on (the unique path from v to w in) \scrT .5 Denote
by \bfitf the vector of the sum of absolute flows passing through the edges of \scrT .
Recall that edge capacities are polynomial in n, and hence so are the flows.

3. For e \in \scrT , define the relative load of e as rload(e) = | fe| /cap(e) \in nO(1). Par-
tition the edge set of \scrT into O(log n) subsets \scrF i, i \in \{ 1, . . . , \lceil log(\| \bfitf \| \infty +1)\rceil \} ,
of roughly equal relative load: Let W denote the maximal relative load over
all edges. Then Fi contains all edges with relative load in (W/2i,W/2i - 1].
As \scrT has n - 1 \geq j edges, there must be some \scrF i with \Omega (j/ log n) edges; let

5For our purpose, the difference between multi- and single-commodity flows is just that distinct
flows in opposing directions do not cancel out, and hence any feasible (i.e., congestion-1) flow in G
can be routed on T with at most the congestion of this multicommodity flow.
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i0 be minimal with this property. Define \scrF := \{ e \in \scrT | rload(e) > W/2i0 - 1\} .
Note that | \scrF | \leq j, because it is the union of the subsets \scrF 1 . . . ,\scrF i0 - 1, each
containing fewer than j/\lceil log(\| \bfitf \| \infty + 1)\rceil \in \Omega (j/ log n) edges.

4. \scrT \setminus \scrF is a forest of at most j+1 components. Define H as the graph on node
set V whose edge set is the union of \scrT \setminus \scrF and all edges of G that connect
different components of (V, \scrT \setminus \scrF ).

5. For any two components C and C \prime of (V, \scrT \setminus \scrF ), let p(C,C \prime ) be the node in
C closest to C \prime in \scrT . Replace each edge between different components C,C \prime 

of (V, \scrT \setminus \scrF ) by an edge \{ p(C,C \prime ), p(C \prime , C)\} of the same weight. This results
in a multigraph with (possibly) parallel edges.

6. Let P = \{ p(C,C \prime ) | C,C \prime are components of \scrT \setminus \scrF \} be the set of portal nodes.
In the multigraph defined above, iteratively delete nodes from V \setminus P of degree
1 until no such node remains. Note that the leaves of the induced subtree of
\scrT must be in P , showing that the number of remaining nodes in V \setminus P of
degree larger than 2 is bounded by | P |  - 1 < 2j. Add all such nodes to P ;
i.e., V \setminus P then only contains nodes of degree 2.

7. For each path with endpoints in P and no inner nodes in P , delete an edge
of minimum capacity and replace it by an edge of the same capacity between
its endpoints.

8. Re-add the nodes and edges of \scrT \setminus \scrF that have been deleted in Step 6.
9. For any p, q \in P , merge all parallel edges \{ p, q\} into a single one whose

capacity is the sum of the individual capacities. The result is a j\prime -tree for
j\prime = | P | < 4j.

In his paper, Madry provides a scheme for updating the edge lengths between iter-
ations so that this construction results in a distribution on \~O(m/j) \Theta (j)-trees that
approximate cuts up to an expected O(\alpha )-factor, where \alpha is the stretch of the span-
ning tree construction. Updating the edge length function poses no challenge, so
here we focus on the distributed implementation of the procedure above steps in this
section.

Modifications of the centralized algorithm. Before we specify the distributed al-
gorithm, we introduce a few changes to the algorithm in centralized terms. These
do not affect the reasoning underlying the scheme but greatly simplify its distributed
implementation.

\bullet We omit Step 9, and instead operate on cores that are multigraphs. This
changes the computed distribution, as we formally use a different graph as
input to the recursion. However, R\"acke's arguments (and Madry's generaliza-
tion) work equally well on multigraphs. To see that, replace each edge of the
multigraph by a path of length 2, where both edges have the same capacity
as the original edge. This recovers a graph of 2m edges from a multigraph
of m edges without changing the min-cut structure, and the resulting trees
can be interpreted as trees on the multigraph by contraction of the previ-
ously expanded edges. Similarly, both the low average stretch spanning tree
construction and the cut sparsifier work on multigraphs without modification.

\bullet After computing the spanning tree in Step 1, we delete a subset of \~O(
\surd 
n)

edges to ensure (w.h.p.) that the new clusters have low-depth spanning trees.
The deleted edges are replaced by all edges of G crossing the corresponding
cuts and will end up in the core. The same procedure is, in fact, applied to
all edges selected into \scrF in Step 3 of the centralized routine; Madry shows
that replacing any subset of edges of \scrT this way can only improve the quality
of cut approximation. In our case, the number of replaced edges is negligible
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relative to the size of the core, and there is no effect on the asymptotic progress
guarantee.

\bullet In the counterpart to Step 6 in Madry's routine, nodes from P may also be
removed if their degree drops to 1. Also here, there is no asymptotic difference
in the worst-case performance of our routine from Madry's.

To simplify presentation, in this section we assume that all trees involved in the
construction have depth \~O(

\surd 
n). This means that we can omit the deletion of \~O(

\surd 
n)

additional edges and further related technicalities. The general case is handled by
standard techniques for decomposing trees into O(

\surd 
n) components of depth \~O(

\surd 
n)

and relying on a BFS tree to communicate ``summaries"" of the components to all
nodes in the graph within \~O(

\surd 
n + D) rounds (full details are given in section 6).

This approach was first used for MST construction [20]; we use a simpler randomized
variant (cf. Lemma 6.5).

Cluster graphs. Recall that we shall recursively invoke (a variant of) the above
centralized procedure on the core. We need to simulate the algorithm on the core by
communicating on G. To this end we use cluster graphs (see section 5), in which G
is decomposed into components that play the role of core nodes. We maintain the
following invariants during the recursive construction:

1. There is a 1-1 correspondence between core nodes and clusters.
2. Each cluster c has a rooted spanning tree of depth \~O(

\surd 
n).

3. No other edges exist inside clusters. Contracting clusters yields the multi-
graph resulting from the above construction without Step 9. From now on,
we shall refer to this multigraph as the core.

4. All edges in the (noncontracted) graph are also edges of G, and the nodes at
their endpoints know their assigned lengths.

Overview of the distributed routine. We follow the same strategy as the centralized
algorithm, with the modifications discussed above. This implies that the core edges for
the next recursive call will simply be the graph edges between the newly constructed
clusters. The main steps of our distributed implementation are as follows.

1. Compute a spanning tree \scrT of stretch \alpha of the core. This is done by the
spanning tree algorithm of Theorem 3.2, which can operate on the cluster
graph.

2. For each edge e \in \scrT , determine its absolute flow | fe| (and thus also rload(e) =
| fe| /cap(e)): this is not completely trivial because the edge represents all
edges connecting nodes in the two sides of the cut (in G) induced by e in the
cluster tree (cf. Figure 2). We use the following idea.
(a) Let each cluster c learn of all its ancestor clusters in the spanning tree.
(b) Let e = (c, \^c) where c is the child of \^c in the tree. Observe that an edge

contributes to the cut corresponding to e if and only if exactly one of its
endpoints has c as an ancestor. This condition can be tested by letting
each node exchange ancestor information with its neighbors.

(c) Using aggregation on the spanning tree, we compute | fe| as the sum of
capacities contributing to it, which is known to the nodes in \scrT c. These
aggregations are performed concurrently for all clusters c, where we ex-
ploit pipelining to handle the resulting contention.

3. Determine the index i0 (as in Step 3 of the centralized routine). Given that
rload(e) for each e \in \scrT is locally known, this is performed in \~O(D) rounds
using binary search in combination with convergecasts and broadcasts on a
BFS tree. We set \scrF := \{ e \in \scrT | rload(e) > W/2i0 - 1\} .
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c 

ĉ 

Fig. 2. Illustration of the underlying idea of the aggregation scheme for the cut capacities. For
a cluster c with parent \^c, the cut corresponding to edge (c, \^c) has a total capacity given by all graph
edges leaving the subtree \scrT c (dashed lines). By having each node learn the list of its ancestor clusters
and sending them to its neighbors, each node can determine for each ancestor cluster which of its
incident edges contribute to the respective cut. Using pipelining, all communication can be done in
time proportional. Pipelining the respective aggregations on the tree for each such edge (c, \^c), all
aggregations can be completed within time proportional to the depth of the tree.

4. Define P as the set of clusters incident to edges in \scrF . A simple broadcast on
the cluster spanning trees makes membership of each cluster in P known to
all nodes.

5. Iteratively mark clusters c /\in P with at most one unmarked neighboring
cluster, until this process stops. Add all unmarked clusters that retain more
than two unmarked neighboring clusters to P .

6. For each path with endpoints in P whose inner nodes are unmarked clusters
not in P , find the edge e \in \scrT \setminus \scrF of minimal capacity and add it to \scrF . This
disconnects any two clusters c, c\prime \in P , c \not = c\prime , in \scrT \setminus \scrF .

7. Each component of \scrT \setminus \scrF and the spanning trees of clusters induce a spanning
tree of the corresponding component of G. Each such component is a new
cluster. Make the identifier of the unique c \in P of each cluster known to its
nodes and delete all edges between nodes in the cluster that are not part of
its spanning tree.

If all trees have depth \~O(
\surd 
n), all the above steps can be completed in \~O(

\surd 
n + D)

rounds. Clearly, the first three stated invariants are satisfied by the given construc-
tion. As mentioned earlier, it is also straightforward to update the edge lengths, i.e.,
establish the fourth invariant. Once the distribution on the current level of recursion
is computed, one can hence sample and then move on to the next level.

For the detailed description of the algorithm and its analysis, the reader is referred
to section 6.

5. Cluster graphs. On several levels, our distributed congestion approximator
construction is done in a hierarchical way. As a consequence many of the distributed
computations used by our algorithm have to be run on a graph induced by clusters of
the network graph. In order to be able to deal with such cluster graphs in a systematic
way, we formally define cluster graphs and we describe how to simulate distributed
computations on a cluster graph by running a distributed algorithm on the underlying
network graph.

Definition 5.1 (distributed cluster graph). Given an n-network graph G =
(V,E), a distributed N -node cluster graph \scrG = (\scrV , \scrE ,\scrL ,T, \psi ) of size n is defined by a
set of N clusters \scrV = \{ S1, . . . , SN\} partitioning the vertex set V , a set (or multiset) of
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edges \scrE \subseteq 
\bigl( \scrV 
2

\bigr) 
, a set of cluster leaders \scrL , a set of cluster trees T, and a function \psi that

maps the edges \scrE of the cluster graph to edges in E. Formally, the tuple (\scrV , \scrE ,\scrL ,T, \psi )
has to satisfy the following conditions.

(I) The clusters \scrV = (S1, . . . , SN ) form a partition of the set of vertices V of the
network graph, i.e., \forall i \in [N ] : Si \subseteq V , \forall 1 \leq i < j \leq N : Si \cap Sj = \emptyset , and\bigcup N
i=1 Si = V .

(II) For each cluster Si, | Si \cap \scrL | = 1. Hence, each cluster has exactly one cluster
leader \ell i \in \scrL \cap Si. The ID of the node \ell i also serves as the ID of the cluster
Si and for the purpose of distributed computations, we assume that all nodes
v \in Si know the cluster ID and the size ni := | Si| of their cluster Si.

(III) Each cluster tree Ti = (Si, Ei) is a rooted spanning tree of the subgraph G[Si]
of G induced by Si. The root of Ti is the cluster leader \ell i \in Si \cap \scrL . We assume
that each node of u \in Si \setminus \{ \ell i\} knows its parent node v \in Si in the tree Ti.

(IV) The function \psi : \scrE \rightarrow E maps each edge \{ Si, Sj\} \in \scrE to an (actual) edge
\{ vi, vj\} \in E connecting the clusters Si and Sj; i.e., it holds that vi \in Si and
vj \in Sj. The two nodes vi and vj know that the edge \{ vi, vj\} is used to connect
clusters Si and Sj. If the cluster graph is weighted, the two nodes vi and vj
also know the weight of the edge \{ Si, Sj\} .

Note that (III) in particular implies that the subgraph of G induced by each
cluster Si is connected. When dealing with a concrete distributed cluster graph \scrG ,
we use \scrG \scrV , \scrG \scrE , \scrG \scrL , \scrG T, and \scrG \psi to denote the corresponding sets of clusters, edges,
etc. Further, when only arguing about the cluster graph and not its mapping to G,
we only use the pair (\scrV , \scrE ) to refer to it. In the following, we say that a cluster S \in \scrV 
knows something if all nodes v \in S know it. That is, e.g., the last part of condition
(II) says that every cluster knows its ID and its size.

We next define a weak version of the (synchronous) CONGEST model, and we
show that algorithms in this model can be efficiently simulated in distributed cluster
graphs.

Definition 5.2 (B-Bounded Space CONGEST model). For a given parameter
B, the B-Bounded Space CONGEST model is the CONGEST computational model
that uses messages of size O(B) bits with the following additional requirement: For
any d \geq 0, each step (i.e., a round of receive messages, compute, and send messages)
of a node v in the B-Bounded Space model can be emulated as follows. Node v is
replaced by a tree T (v) of depth at most d. Each node of T (v) knows the entire state
of v and each edge incident to v is incident to some node of T (v). Then, after each
node of T (v) has received the messages on its incident edges, the new state of v and the
correct messages to be sent on all incident edges can be computed in O(d) CONGEST
model rounds on T (v).

The definition of the B-Bounded Space model is tailored for emulation. The
definition immediately implies that if each node is emulated by a tree, then emulating
a global step in time proportional to the maximal tree depth (which could be \Omega (n))
is trivial. However, the following lemma shows that this can actually be done in time
O(D +

\surd 
n).

Lemma 5.3. Given an underlying n-node graph G = (V,E) and a cluster graph
\scrG = (\scrV , \scrE ,\scrL ,T, \psi ), a t-round distributed algorithm \scrA in \scrG in the B-Bounded Space
CONGEST model can be simulated in the (ordinary) CONGEST model in G with mes-
sages of size at most B in O

\bigl( 
(D +

\surd 
n) \cdot t

\bigr) 
rounds, where D is the diameter of G.

Proof. We assume that we are given a global BFS tree of G. If such a BFS
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tree is not available, it can be computed in O(D) rounds in the CONGEST model.
We simulate the algorithm \scrA in a round-by-round manner. Consider the end of the
simulation of round r  - 1 and assume that in each cluster Si \in \scrV , the leader node \ell i
knows the message Mi to be sent in round r. (For r = 1, we assume that this is true
at the beginning of the simulation.)

To start the simulation of round r, we first make sure that for every Si \in \scrV , every
node v \in Si knows the message Mi to be sent to the neighbors in round r. In clusters
Si of size at most

\surd 
n, this can be done in at most

\surd 
n rounds by broadcasting Mi

on the spanning tree Ti of G[Si]. For larger clusters, we use the global BFS tree to
disseminate the information. We first send all the messages Mi of clusters Si of size
larger than

\surd 
n to the root of the global BFS tree. Because the BFS tree has radius

at most D and because there are at most
\surd 
n clusters of size larger than

\surd 
n, this can

be done in D +
\surd 
n rounds (using pipelining). Now, in another D +

\surd 
n rounds, all

these messages can be broadcast to all nodes of G (and thus also to the nodes of the
clusters that need to know them).

Now, for every two clusters Si and Sj such that \{ Si, Sj\} \in \scrE , let \{ ui, uj\} =
\psi (\{ Si, Sj\} ) be the physical edge connecting Si and Sj . The node ui \in Si sends the
message Mi to uj and the node uj \in Sj sends Mj to ui. This step can be done in
a single round. Now, in each cluster Si, each incoming message of round r is known
by one node in Si and we need to aggregate these messages in order to compute the
outgoing message of each cluster. In clusters of size at most

\surd 
n, this can again be

done locally inside the cluster (by Definition 5.2). Also, for the clusters of size larger
than

\surd 
n (there are at most

\surd 
n of them), we again use the global BFS tree. Since in

a tree of depth D, k independent convergecasts and broadcasts6 can be done in time
D + k, the messages of the large clusters can be computed and disseminated to the
cluster leaders in time O(D +

\surd 
n).

6. Distributed construction of \bfitj -trees. From the distributed implementa-
tion point of view, the core technical challenge is to efficiently compute a congestion
approximator in a distributed way. As already pointed out, the congestion approxima-
tor is constructed based on applying the j-tree construction of Madry [21] recursively.
In the following, we review Madry's construction and we show how to implement an
adapted version of it in a distributed network. The main objective of the construction
is to approximate the flow structure of a given graph by a distribution of graphs from
a simpler class of graphs (i.e., j-trees). Formally, the similarity of the flow structure
of two graphs is captured by the following definition from [21].

Definition 6.1 (graph embeddability [21]). Given \beta \geq 1 and two multigraphs
G = (V,E, cap) and G\prime = (V,E\prime , cap\prime ) on the same set of nodes, we say that graph G
is \beta -embeddable into G\prime if there exists a multicommodity flow \bfitf \prime = (\bfitf \prime 

e)e\in E such that
for every edge e \in E of G connecting nodes u and v, \bfitf \prime 

e is a flow on (V,E\prime , \beta cap\prime )
that routes cap(e) units of flow between u and v, and for every edge e\prime \in E\prime of G\prime , it
holds that | \bfitf \prime (e\prime )| :=

\sum 
e\in E | (\bfitf \prime 

e)(e
\prime )| \leq \beta cap\prime (e\prime ).

Intuitively, a graph G is \beta -embeddable into a graph G\prime if for every (multicommod-
ity) flow problem there is a solution in G\prime such that the maximum relative congestion
of all edges is at most a factor \beta larger than for the optimal solution in G. As a
generalization of the cut-based graph decompositions of R\"acke [29], Madry defines

6In the broadcast operation, the root sends a message to all nodes, where each node sends the
message to all its children; convergecast is the inverse operation, where nodes have messages whose
aggregate value is to reach the root. See [26] for details.
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the notion of an (\alpha ,\BbbG )-decomposition.

Definition 6.2 ((\alpha ,\BbbG )-decomposition [21]). Given a (multi)graph G = (V,E, cap)
and a family \BbbG of graphs on the nodes V , an (\alpha ,\BbbG )-decomposition of G is a set of
pairs \{ (\lambda i, Gi)\} i\in I satisfying that

\bullet \forall i \in I : \lambda i > 0;
\bullet 
\sum 
i\in I \lambda i = 1;

\bullet \forall i \in I : Gi = (V,Ei, capi) is a graph in \BbbG ;
\bullet \forall i \in I : G is 1-embeddable into G\prime ; and
\bullet the graph defined by the convex combination7

\sum 
i\in I \lambda i \cdot Gi is \alpha -embeddable

into G.
In words, \{ (\lambda i, Gi)\} i\in I is a distribution on I graphs from \BbbG , each of which can be
1-embedded into G, such that the distribution \alpha -embeds into G.

Observe that such a decomposition can form the basis for a good congestion ap-
proximator: 1-embeddability of each Gi into G guarantees that congestion is never
overestimated, and the embeddability of the convex combination ensures that when
sampling from the distribution, the expected factor by which we underestimate con-
gestion on a cut is at most \alpha . Our goals are now to choose \BbbG and the distribution
such that

\bullet \alpha is small,
\bullet we can construct the distribution efficiently, and
\bullet we can evaluate the induced congestion when routing demand optimally on
a graph from the distribution efficiently.

The plan. Let G = (V,E, cap) be a weighted (multi)graph, 0 \leq j \leq | V | be an
integer, and \BbbJ be the family of j-trees over the node set V . In [21], it is shown that
based on a protocol for computing spanning trees with average stretch \alpha , there exists
an (\alpha , \BbbJ )-decomposition of G. This is shown in several steps. It is first shown that a
sparse (\alpha ,\BbbH )-decomposition exists for a graph family \BbbH which contains graphs that
are closer to the original graph G, and it is then shown that every graph \scrH \in \BbbH can
be O(1)-embedded into a j-tree and vice versa.

As described, we have to apply the j-tree construction recursively to the core
graph. Each node in the core graph is represented by a set of nodes (a cluster) in
the network graph. On the network graph, the core graph therefore corresponds to
a graph between clusters of nodes. We therefore have to be able to apply the j-tree
construction on a cluster graph. As we will see, we can construct j-trees such that
whenever two nodes u and v of the core are connected by a (virtual) edge, there also
is a physical edge between the two trees (i.e., clusters of nodes) corresponding to u
and v. Throughout our algorithm, we can therefore work with a cluster multigraph
such that (a) the induced graph of each cluster is connected, and (b) for every edge
between two clusters c and c\prime , there are nodes u \in c and v \in c\prime such that u and v
are connected by an edge in the underlying network graph. When doing distributed
computations, we assume that each cluster has a leader and that every node knows
the ID of the leader and also its parent in a rooted spanning tree which is rooted
at the leader. In section 5, we gave a precise definition of a distributed cluster graph
and showed that several basic algorithms that we use as building blocks can be run
efficiently in distributed cluster graphs.

7The sum of two weighted graphs G1 = (V,E1, cap1) and G2 = (V,E2, cap2) is defined as

G1 +G2 = (V,E1 \cup E2, cap12), where cap12(e) =

\Biggl\{ 
cap1(e) + cap2(e) if e \in E1 \cap E2,

capi(e) if e \in Ei \setminus E3 - i.
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In the following, we go through Madry's j-tree construction step by step and
describe how to adapt it so that we can implement it efficiently on a distributed
cluster graph (i.e., in the CONGEST model in the underlying network graph).

6.1. Low-stretch spanning trees. In the following, we consider the computa-
tion of the (\alpha , \BbbJ )-decomposition of some core graph. Assume that the core graph is
given as a distributed cluster graph \scrG = (\scrV , \scrE , cap,T, \psi ), where for each edge e \in \scrE ,
cap(e) is the capacity of \psi (e).8 As the time complexity of some of the steps for com-
puting an (\alpha , \BbbJ )-decomposition of \scrG depends on the number of edges of \scrG , as a first
step, we sparsify \scrG . In Lemma 7.1, it is shown that in O

\bigl( 
(D+

\surd 
n) \cdot polylogn

\bigr) 
rounds,

it is possible to compute an (1 + 1/polylogn)-spectral sparsifier of \scrG with at most
O(| \scrV | \cdot polylogn) edges. Further, for each edge \{ c, c\prime \} \in \scrE of the sparsifier, one of the
nodes of the edge manages the edge. As in general \scrG is a cluster graph, c and c\prime are
clusters of physical nodes, and an edge connecting clusters c and c\prime is represented by
a physical edge \{ u, v\} for two (network) nodes u \in c and v \in c\prime . We will maintain
that every pair of nodes u \in c and v \in c\prime needs to represent at most one edge between
c and c\prime in \scrG . The two nodes u and v know about the edge between c and c\prime and its
capacity.

In the following, we assume that \scrG is the graph after sparsification. If the number
of nodes | \scrV | of \scrG is less than n1/2+o(1), using a global BFS tree of the network graph,
the whole structure of \scrG can be collected in O(D+ | \scrV | polylogn) = O(D+ n1/2+o(1))
rounds. In that case, we can therefore perform all remaining operations locally at
the nodes (recall that local computation is free). Consequently, we will henceforth
assume that | \scrV | \geq n1/2+o(1).

During the construction of the (\alpha , \BbbJ )-decomposition of \scrG , each edge e \in \scrE is
assigned a length \ell (e). At the beginning \ell (e) is proportional to 1/cap(e), and before
adding each j-tree, \ell (e) is adapted for each edge. As the first step of constructing
each j-tree in the decomposition, Madry computes a spanning tree \scrT of \scrG for which
it holds that
(5)\sum 
e=\{ c,c\prime \} \in \scrE 

d\scrT (c, c
\prime ) \cdot cap(e) =

\sum 
e=\{ c,c\prime \} \in \scrE 

stretch\scrT (e) \cdot \ell (e) \cdot cap(e) \leq \delta \alpha \cdot 
\sum 

e=\{ c,c\prime \} \in \scrE 

\ell (e) \cdot cap(e)

for a sufficiently small positive constant \delta . In the above expression, d\scrT (u, v) denotes
the sum of edge lengths on the path between u and v on \scrT . Hence, \scrT is a spanning
tree with a bounded weighted average stretch. Such a spanning tree can be computed
by computing an (unweighted) low average stretch spanning tree for a multigraph \~\scrG 
which is obtained from \scrG by (logically) replacing some of the edges of \scrG with multiple
copies of the same edge (overall, the number of edges is as most doubled) [3, 21].

In our distributed implementation of Madry's j-tree construction, we adapt the
parallel low average stretch spanning tree algorithm from [11] to our setting. The
algorithm of [11] already works in a mostly decentralized fashion, and we can therefore
also apply it in a distributed setting. In section 8, we show how to run the algorithm
of [11] on a distributed cluster graph. We note that the low average stretch spanning
tree algorithm of [11] directly tolerates multiedges as described above, even if the same
physical edge has to be used to represent multiple edges between the same clusters.

Theorem 6.3 (Theorem 3.2 restated and rephrased). Suppose \scrG is a multigraph

obtained from G by assigning arbitrary edge lengths in 2n
o(1)

to the edges of G (known

8Recall that \psi maps an edge of the cluster graph to an edge in the original graph.
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to incident nodes) and performing an arbitrary sequence of contractions. Then we

can compute a rooted spanning tree of \scrG of expected stretch 2O(
\surd 
logn log logn) within

(
\surd 
n+D)no(1) rounds, where the edges of the tree in \scrG and their orientation are locally

known to the endpoints of the corresponding edges in G.

Given the spanning tree \scrT = (\scrV \scrT , \scrE \scrT ) of \scrG , we need to compute capacities cap\scrT (e)
for the spanning edges such that \scrG is embeddable into \scrT , which essentially boils down
to computing the absolute value of the multicommodity flow \bfitf \prime routing cap(e) units
of flow on \scrT for each e \in E. As routing is trivial in trees, \bfitf \prime is unique. Once | \bfitf \prime | is
computed, the edge capacities of \scrT can be chosen accordingly, and it is straightforward
to pick a suitable \lambda i and update the length function \ell (e). However, computing the
absolute value of the multicommodity flow quickly in the distributed setting requires
some work.

Computing the multicommodity flow. In the following, assume that the edges of
\scrT are oriented towards the root; i.e., we will write (c, \^c) \in \scrT if \^c \in \scrV is the parent of
cluster c \in \scrV . Denote by \scrT c the subtree of \scrT rooted at c. When embedding \scrG into \scrT ,
we have to route a total of

| \bfitf \prime (c, \^c)| =
\sum 
c1\in \scrT c

c2 /\in \scrT c

\sum 
\{ c1,c2\} uv\in \scrE 

cap(\{ c1, c2\} uv)

units of commodity through the edge \{ c, \^c\} \in \scrT , where we indexed the different edges
of the multigraph (V, \scrE ) by using that for each e \in \scrE between c1 and c2, the embedding
maps e to a unique edge \{ u, v\} \in E with u \in c1 and w \in c2. Note that u and v know
that \{ c1, c2\} uv \in \scrE , that they are in the clusters c1 and c2, respectively, and what
cap(\{ c1, c2\} uv) is. We thus have to solve the task of determining this sum for each
edge \{ c, \^c\} \in \scrT via computations on the graph G underlying (\scrV , \scrE ).

Observe that the spanning trees of the clusters together with \scrT induce a (rooted)
spanning tree T of G. Essentially, we would like to perform, for each edge \{ c, \^c\} \in \scrT ,
an aggregation on T and pipeline these aggregations to achieve good time complexity.
However, as shown in the following lemma, the result is a running time linear in the
depth of the tree, which may be \Omega (n) irrespective of D.

Lemma 6.4. If T has depth d, for each edge e = (c, \^c) \in \scrT , c can determine
| \bfitf \prime (e)| within O(d) rounds.

Proof. Consider the following algorithm.
1. For each cluster, all of its nodes learn the ancestors of the cluster in \scrT .
2. For each edge \{ c1, c2\} uv \in \scrE , u and v exchange the ancestor lists of c1 and c2.
3. Each node u \in c1 \in \scrT locally computes for each ancestor c of c1 the value

capc(u) :=
\sum 

\{ c1,c2\} uv\in \scrE 
c is not ancestor of c2

cap(\{ c1, c2\} uv).

4. For each edge e = (c, \^c) \in \scrT , we aggregate
\sum 
u\in Tc

capc(u) on Tc, where Tc is
the subtree of T corresponding to \scrT c.

Observe that, by definition,

| \bfitf \prime (c, \^c)| =
\sum 
c1\in \scrT c

c2 /\in \scrT c

\sum 
\{ c1,c2\} uv\in \scrE 

cap(\{ c1, c2\} uv) =
\sum 
u\in Tc

capc(u),
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as each edge \{ c1, c2\} uv \in \scrE with c1 \in \scrT c and c2 \in \scrT \setminus \scrT c satisfies that either u \in Tc or
v \in Tc. Hence, it remains to show that the above routine can be implemented with a
running time of O(d).

Clearly, the first step takes d rounds: T has depth d, and we can perform concur-
rent floodings on all subtrees without causing contention. The second step requires at
most d - 1 rounds, as no node has more than d - 1 ancestors. The third step requires
local computations only. Finally, the fourth step can be performed in d rounds as
well, since we can perform concurrent convergecasts on all subtrees without causing
contention.

To handle the general case, i.e., d \gg 
\surd 
n, we first decompose \scrT into O(

\surd 
n)

parts of small diameter. There are different ways to achieve such a decomposition of
\scrT efficiently in a distributed way (e.g., by using techniques from [20]). The easiest
way is to use randomization. Suppose c\prime is the parent cluster of nonroot cluster c.
We sample edge e = (c, \^c) \in \scrT into the edge set \scrR with independent probability
qe := min \{ 1, | c| /

\surd 
n\} . Then, w.h.p. the forest T \setminus \psi (\scrR ) consists of \~O(

\surd 
n) trees of

depth \~O(
\surd 
n).

Lemma 6.5. Let \scrT be a rooted spanning tree of a cluster (multi)graph \scrG , let \scrR 
be a subset of the edges chosen at random as described above, and assume that the
spanning tree of each cluster has depth at most d. With high probability, the forest
T \setminus \psi (\scrR ) induced by the edges \scrT \setminus \scrR and the cluster spanning trees consist of O(

\surd 
n)

rooted trees of depth d+O(
\surd 
n log n).

Proof. Clearly, the number of trees in the forest induced by \scrE \scrT \setminus \scrR is equal to
| \scrR | + 1. The expected value for | \scrR | is given by the sum of the probabilities qe and
thus \BbbE [| \scrR | ] \leq 

\surd 
n. A standard Chernoff bound implies that | \scrR | does not exceed

\surd 
n

by more than a constant factor w.h.p.
To bound the depth of each (rooted) tree in T \setminus \psi (\scrR ), consider a cluster c \in \scrT 

and a path p from the leader \{ r\} := \scrL \cap c to some node in the subtree Tr of T rooted
at r. The depth of Tr \cap c is bounded by d. Denote by Ep the set of edges of p that
correspond to edges in \scrT , i.e., each e \in Ep satisfies that e = \psi (e\prime ) for some e\prime \in \scrT .
Denote by c(e) the child cluster of e, i.e., the endpoint further away from the root of
T . By construction, c(e) \in e\prime is also the cluster further away from the root of \scrT (for
the e\prime \in \scrT with \psi (e\prime ) = e). Therefore, the length of p is bounded by

d+ | Ep| +
\sum 
e\in Ep

(| c(e)|  - 1) = d+
\sum 
e\in Ep

| c(e)| ,

i.e., the sum of the number of its edges in c, the number of edges between clusters
| Ep| , and the total number of nodes in all traversed clusters except c. The probability
that no edge of p was removed by the sampling procedure is

P [\scrR \cap \psi  - 1(Ep) = \emptyset ] =
\prod 
e\in Ep

(1 - qe).

For each e \in Ep, we have that qe = min\{ 1, | c(e)| /
\surd 
n\} . If qe = 1 for any e \in Ep, the

above probability is 0. Otherwise, we have that

P [\scrR \cap \psi  - 1(Ep) = \emptyset ] =
\prod 
e\in Ep

\biggl( 
1 - | c(e)| \surd 

n

\biggr) 
\leq e

 - 
\sum 

e\in Ep
| c(e)| /

\surd 
n
.

By the above upper bound on the length of p, we conclude that p has length d +
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O(
\surd 
n log n) or is w.h.p. not present in T \setminus \psi (\scrR ). As the number of simple paths in

a tree is bounded by O(n2), applying the union bound completes the proof.

For simplicity, in the following we assume that the high probability statements
of the above lemma hold with certainty; the final statements then follow by applying
the union bound.

Throughout the construction, we will maintain that edges of \scrR are never retained.
As there will be o(log n) levels of recursion, by inductive use of the above lemma, it
follows that clusters always have spanning trees of depth \~O(

\surd 
n). Exploiting this

property together with the small number of connected components of \scrT \setminus \scrR , we
obtain a fast routine for the general case.

Lemma 6.6. With high probability, within \~O(
\surd 
n+D) rounds, for each edge e =

(c, \^c) \in \scrT , c can determine | \bfitf \prime (e)| .
Proof. Denote by \scrC the connected components of \scrT \setminus \scrR . For c \in \scrT , denote by C \in 

\scrC its connected component. We rewrite (the absolute value of) the multicommodity
flow

| \bfitf \prime (c, \^c)| =
\sum 
c1\in \scrT c

c2 /\in \scrT c

\sum 
\{ c1,c2\} uv\in \scrE 

cap(\{ c1, c2\} uv) = | \bfitf \prime 
1(c, \^c)| + | \bfitf \prime 

2(c, \^c)|  - | \bfitf \prime 
3(c, \^c)| ,

where

| \bfitf \prime 
1(c, \^c)| :=

\sum 
c1\in \scrT c\setminus C
c2 /\in \scrT c\setminus C

\sum 
\{ c1,c2\} uv\in \scrE 

cap(\{ c1, c2\} uv),

| \bfitf \prime 
2(c, \^c)| :=

\sum 
c1\in \scrT c\cap C
c2 /\in \scrT c

\sum 
\{ c1,c2\} uv\in \scrE 

cap(\{ c1, c2\} uv), and

| \bfitf \prime 
3(c, \^c)| :=

\sum 
c1\in \scrT c\cap C
c2\in \scrT c\setminus C

\sum 
\{ c1,c2\} uv\in \scrE 

cap(\{ c1, c2\} uv).

Note that | \bfitf \prime 
1(c, \^c)| does not depend on the component of c; i.e., we need to

determine and make known only | \scrC | \in O(
\surd 
n) values to cover this term. For the other

terms, we will reduce the problem to an aggregation on the spanning tree of C in the
vein of Lemma 6.4.

Concerning | \bfitf \prime 
1(c, \^c)| , we employ the following routine.

1. Using its spanning tree, each component C \in \scrC determines a unique identifier
(say, the smallest cluster identifier) and makes it known to all its nodes.

2. For each \{ c1, c2\} uv \in \scrE , u and v exchange their component identifiers.
3. The list of component identifiers and edges (C, \^C) for each (c, \^c) \in \scrR is made

known to all nodes. This enables each node to locally compute the tree
resulting from contracting the components C \in \scrC in \scrT .

4. For each C \in \scrC , fix an arbitrary c \in C. Each node u \in \scrT c\setminus C locally computes

capC(u) :=
\sum 

\{ c1,c2\} uv\in \scrE 
c2 /\in \scrT c\setminus C

cap(\{ c1, c2\} uv);

we set capc(u) := 0 for all u /\in \scrT c \setminus C (nodes can determine whether they are
in \scrT c \setminus C based on the information collected in the previous two steps).
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5. For each C \in \scrC , make
\sum 
u\in V capC(u) known to all nodes via a BFS tree of

G. For all c \in C, we have that | \bfitf \prime 
1(c, \^c)| =

\sum 
u\in V capC(u).

As discussed earlier, components' spanning trees have depth \~O(
\surd 
n) and | \scrC | \in O(

\surd 
n).

Hence, Step 1 takes \~O(
\surd 
n) rounds, and Steps 3 and 5 take O(

\surd 
n+D) rounds. Step

2 requires only one round of communication, and Step 4 is local. Overall, the routine
requires \~O(

\surd 
n+D) rounds.

To determine | \bfitf \prime 
2(c, \^c)| and | \bfitf \prime 

3(c, \^c)| for each c, we proceed similarly to Lemma 6.5.
1. For each C \in \scrC and each c \in C, all nodes in c learn the list of ancestors of c

that are in C (using the spanning tree of C in G).
2. For each \{ c1, c2\} uv \in \scrE , u and v exchange their component identifiers, as well

as the ancestor lists determined in the previous step.
3. The list of component identifiers and edges (C, \^C) for each (c, \^c) \in \scrR is made

known to all nodes.
4. For each C \in \scrC , c \in C, and u \in \scrT c \cap C, u locally computes

capc(u) :=
\sum 

\{ c1,c2\} uv\in \scrE 
v\in c2 /\in \scrT c

cap(\{ c1, c2\} uv) - 
\sum 

\{ c1,c2\} uv\in \scrE 
v\in c2\in \scrT c\setminus C

cap(\{ c1, c2\} uv).9

5. For each edge e = (c, \^c) \in \scrT , we aggregate
\sum 
u\in Tc\cap C capc(u) on Tc\cap C, where

Tc is the subtree of T (the spanning tree of G) corresponding to \scrT c.
Note that, by definition of capc(u), we have that\sum 

u\in Tc\cap C
capc(u) = | \bfitf \prime 

2(c, \^c)|  - | \bfitf \prime 
3(c, \^c)| .

Hence, it remains to analyze the running time of this second subroutine. Again, using
that components' spanning trees have depth \~O(

\surd 
n) and that | \scrC | \in O(

\surd 
n), we can

conclude that Steps 1, 2, and 5 take \~O(
\surd 
n) rounds, while Step 3 takes O(

\surd 
n + D)

rounds. As Step 4 requires local computation only, the resulting running time is
\~O(
\surd 
n) rounds. Overall, we conclude that | \bfitf \prime (c, \^c)| can be computed for each c within

\~O(
\surd 
n + D) rounds, by running each of the two subroutines and summing up their

outputs.

6.2. Approximating \bfscrG by a distribution over simpler graphs. Using the
techniques of [29] and the above construction of low average stretch spanning trees,
it is possible to design a distributed algorithm to compute a distribution of such
spanning trees which approximates the cut structure of the underlying network graph
within a factor 2O(

\surd 
logn log logn) (i.e., in the order of the average stretch of the com-

puted spanning trees). However, when doing this, the number of spanning trees we
need to compute can be linear in the size of \scrG . We follow the same general idea as
Sherman, who applied the construction by Madry [21] recursively to decrease the step
complexity, to avoid this sequential bottleneck and achieve a small time complexity
in the distributed setting.

For each edge e \in \scrT , we define rload\scrT (e) := cap\scrT (e)/cap(e) \geq 1 to be the relative
load of e (edges e \in \scrE \setminus \scrT have rload\scrT (e) = 0). The construction of [29] builds up a
potential for each edge e of \scrG , where with each new tree added to the distribution,
the potential of e grows by a term proportional to rload\scrT (e)/maxe\prime \in \scrE \{ rload\scrT (e\prime )\} .
The potential of each edge is bounded by \alpha = no(1), and hence with every additional

9If v \in C, u can decide whether v \in \scrT c based on the ancestor lists. If v /\in C, u can decide
whether v \in \scrT c based on v's component identifier and the information collected in Step 3.
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spanning tree we are guaranteed to make progress for all edges e \in \scrE with rload\scrT (e)
close to maxe\prime \in \scrE \{ rload\scrT (e\prime )\} . In the worst case, this can just be a single edge for each
spanning tree \scrT . The key idea of Madry [21] is to augment the tree \scrT with additional
edges in order to reduce the maximum relative load so that in the new graph, a large
number of edges have a relative load close to the maximum one.

Basically, we can reach a large number of edges with relative load close to the
maximum relative load by repeatedly deleting the edge with largest relative load until
a large number of the remaining edges have a relative load that is within a constant
factor of the remaining maximum relative load. When deleting some edges of \scrT , one
has to add back some of the original edges of \scrG in order to maintain the property
that \scrG is embeddable into the resulting graph. Formally, let \scrF \subseteq \scrT be a subset of
the spanning tree edges. The edge set \scrT \setminus \scrF defines a spanning forest of \scrG consisting
of | \scrF | + 1 components. We define a subgraph \scrH (\scrT ,\scrF ) of \scrG as follows. The node
set of \scrH (\scrT ,\scrF ) is \scrV . Further, \scrH (\scrT ,\scrF ) contains all edges in \scrT \setminus \scrF and it contains all
edges \{ c, c\prime \} uv \in \scrE of \scrG for which c and c\prime are in different components in the forest
induced by the edges in \scrT \setminus \scrF . Let \scrE \scrH be the set of edges of \scrH . We set the capacities
cap\scrH (e) of edges e \in \scrE \scrH to be cap\scrH (e) := cap\scrT (e) if e \in \scrT \setminus \scrF and cap\scrH (e) := cap(e)
otherwise. Note that this guarantees that \scrG is 1-embeddable into \scrH . For the following
discussion, we define \BbbH [j] to be the set of graphs \scrH (\scrT ,\scrF ) for a spanning tree \scrT of \scrG 
and a set of edges \scrF of \scrT of size | \scrF | \leq j.

Assume that the weighted average stretch of the spanning tree \scrT as given by (5)
is bounded from above by \alpha . Also recall that we assume that all capacities of G are
integers that are polynomially bounded in the number of nodes n. As throughout our
construction, each edge capacity always approximately corresponds to the capacity of
some cut in G, it is not hard to guarantee that all capacities of \scrG are integers between
1 and poly(n). Given a spanning tree \scrT of \scrG , let R := maxe\in \scrT \{ rload\scrT (e)\} be the
largest relative load of all edges of \scrT . In order to determine the set of edges \scrF , we start
by partitioning the edges in \scrT into imax = O(log n) classes \scrF 1, . . . ,\scrF imax , where class
\scrF i contains all edges with relative load in (R/2i, R/2i - 1]. Now, for any j0 \leq | \scrT | , there
exists an edge class \scrF i such that

\bigm| \bigm| \bigcup 
i\prime <i \scrF i\prime 

\bigm| \bigm| \leq j0 and | \scrF i| \geq j0/imax = \Omega (j0/ log n);

otherwise, | \scrT | =
\bigm| \bigm| \bigcup 

i \scrF i
\bigm| \bigm| < j0 \leq | \scrT | , a contradiction. We define \scrF \prime :=

\bigcup 
i\prime <i \scrF i\prime .

In [22], this set of edges is used to construct the graph \scrH (\scrT ,\scrF \prime ). For the dis-
tributed computation, it will be useful to have a graph \scrH (\scrT ,\scrF ) in which all the
trees of the forest induced by \scrE \scrT \setminus \scrF have small diameter. We therefore rely on the
same technique as for computing the capacities of \scrT and remove a few random addi-
tional edges of \scrT . In fact, we can simply use the same subset of edges \scrR \subseteq \scrT that
has been determined and used before, prior to Lemma 6.5. We define \scrF := \scrF \prime \cup \scrR 
and use the graph \scrH = (\scrV , \scrE \scrH , cap\scrH ) := \scrH (\scrT ,\scrF ). Since all the edges of \scrT with
rload\scrT (E) > R/2i - 1 are removed, all edges of \scrH have relative load at most R/2i - 1.
Further, all the \Omega (j/ log n) edges of \scrF i have relative load larger than R/2i. Based on
Theorem 5.2 and Corollary 5.6 of [22] and on Theorem 3.2, we can show the following
lemma.

Lemma 6.7. Given are a distributed cluster (multi)graph \scrG = (\scrV , \scrE , cap\scrG ) consist-
ing of | \scrV | = N clusters and | \scrE | = N polylog(n) edges and a parameter j \geq 1 such that

j = \omega (
\surd 
n log n). There is a distributed algorithm to compute a

\bigl( 
2O(

\surd 
logN log logN),\BbbH [j]

\bigr) 
-

decomposition of \scrG on 2O(
\surd 
logN log logN) \cdot N/j graphs, which runs in the CONGEST

model on the underlying network graph G in (D +
\surd 
n) \cdot no(1) \cdot N/j rounds.

Proof. Let \alpha = 2O(
\surd 
logn log logn) be the average stretch guarantee of the spanning
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tree algorithm. It follows directly from Theorem 5.2 and Lemma 5.5 in [22] and
Lemma 6.6 that we can compute an (O(\alpha ),\BbbH [| \scrE | \cdot \alpha log(n)/s])-decomposition of \scrG on
s graphs in time s \cdot Ttree if the following conditions are satisfied:
(1) The time for computing one low average stretch spanning tree is upper bounded

by Ttree.
(2) Given \scrT and edge set \scrF as computed above, let rloadmax := maxe\in \scrT \setminus \scrF \{ rload\scrT (e)\} .

The number of edges of\scrH (\scrT ,\scrF ) with relative load at least rloadmax /2 is \Omega (| \scrE | \alpha /s).
As observed above, in \scrT , all edges in the set \scrF i have relative load between rloadmax /2
and rloadmax. When constructing \scrH (\scrT ,\scrF ), the relative load of edges in \scrT \setminus \scrF 
does not change, and thus, all nodes in \scrF i \setminus \scrF = \scrF i \setminus \scrR have relative load be-
tween rloadmax /2 and rloadmax. Recall that | \scrF i| = \Omega (j/ log n). By Lemma 6.5,
w.h.p., we have | \scrR | = O(

\surd 
n). Since we assumed that j = \omega (

\surd 
n log n), we have

| \scrF i| = \omega (| \scrR | ), and thus | \scrF | = \Omega (j/ log n). The second condition is now satisfied by

choosing s = \Theta (| \scrE | \alpha log(n)/j) = 2O(
\surd 
logN log logN) \cdot N/j.

Assuming that the time to compute a single low average stretch spanning tree
can be bounded from above by Ttree = (D +

\surd 
n) \cdot no(1), the lemma now follows. By

Theorem 3.2, this is guaranteed as long as all edge lengths are integers between 1

and 2n
o(1)

. Inspecting the construction in [22] and [29], we can observe that the edge
lengths cannot get larger than a value exponential in \alpha . By rounding them to integers,
we introduce an additional multiplicative error of factor 2, which does not affect the
asymptotic behavior. As \alpha = 2O(

\surd 
logn log logn), the claim of the lemma follows.

6.3. Transforming \bfscrH (\bfscrT ,\bfscrF ) into a \bfitj -tree. Given a graph \scrH (\scrT ,\scrF ) \in \BbbH [j],
it remains to transform \scrH (\scrT ,\scrF ) into an O(j)-tree \scrJ such that the two graphs are
O(1)-embeddable into each other. In the following, we first describe the construction
and we formally prove that the resulting O(j)-tree \scrJ and the given graph \scrH (\scrT ,\scrF )
are O(1)-embeddable into each other. We then show how to efficiently construct \scrJ 
in a distributed way.

Assume that we are given a spanning tree \scrT of \scrG and a graph \scrH (\scrT ,\scrF ) which is
constructed as described above. Consider the forest induced by the edges in \scrT \setminus \scrF .

Let P1 \subseteq \scrV be the set of clusters of \scrT \setminus \scrF which are incident to one of the deleted
tree edges in \scrF . We call P1 the primary portals of \scrT \setminus \scrF . Given P1, we define the
skeleton \scrS \scrT \setminus \scrF of \scrT \setminus \scrF as follows. \scrS \scrT \setminus \scrF is obtained from \scrT by repeatedly deleting
nonportal clusters of degree 1 until all remaining clusters are either in P1 or they
have degree at least 2. Denote by P2 all clusters of degree larger than 2 that are not
primary portals; P2 are the secondary portals. The set of all portal clusters now is
P := P1 \cup P2. The skeleton \scrS \scrT \setminus \scrF is thus a forest consisting of a set of portals and
paths connecting them, where all inner clusters of these paths have degree 2.

Given the skeleton \scrS \scrT \setminus \scrF , let \scrP be one of these portal-connecting paths. In the
last step, we remove the edge with the smallest capacity from each such \scrP . In doing
so, we split the forest into trees so that each tree contains exactly one portal. It is
straightforward to bound the number of resulting trees in terms of \scrF .

Lemma 6.8. Let \scrH (\scrT ,\scrF ) \in \BbbH [j], i.e., | \scrF | \leq j. Then, in the above construction,
the total number of portal nodes is less than 4j.

Proof. Clearly, | P1| \leq 2| \scrF | \leq 2j. As when computing the skeleton \scrS \scrT \setminus \scrF , non-
portal clusters of degree 1 are successively removed, and we obtain a forest whose
leaves are primary portals. As the sum of the degrees in an N -node forest is at most
2(N  - 1), the number of nodes of degree at least 3 is upper bounded by the number
of leaves minus 2. We conclude that | P2| < | P1| \leq 2j, and hence | P | < 4j.
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Finally, we identify each of the resulting trees with its portal and logically move
all edges between different trees to the portals. For each edge e = \{ c, c\prime \} \in \scrE \scrH \setminus (\scrT \setminus \scrF )
(i.e., each nontree edge of\scrH (\scrT ,\scrF )), we add a virtual edge of capacity cap\scrG (e) between
the portals of the trees containing c and c\prime , respectively. Further, let \scrD be the set of
edges that were deleted from the paths of degree-2 clusters connecting portals in the
skeleton. For every edge e \in \scrD , we add a virtual edge of capacity cap\scrH (e) = cap\scrT (e)
between the two portals that were connected by the path from which e was deleted.

Let us summarize this part of the construction; see Figure 3 for an example of a
possible result. Starting from a forest \scrT \setminus \scrF , do as follows:

1. Define P1 as the endpoints of edges in \scrF ;
2. iteratively delete degree-1 clusters that are not in P1 until this process halts;
3. define P2 as the clusters retaining degree larger than 2 that are not in P1 and

set P := P1 \cup P2;
4. delete from each (maximal) path without clusters from P the edge e \in \scrD of

minimum capacity and replace it by an edge of the same capacity between
the endpoints of the path; and

5. for each edge e \in \scrE \scrH between different components of \scrT \setminus (\scrF \cup \scrD ), add an
edge of the same capacity between the unique portals in these components.

Hence, the resulting graph consists of the forest induced by \scrT \setminus (\scrF \setminus \scrD ) and (possibly
parallel) edges between the unique portals of the trees of the forest. By Lemma 6.8,
the number of such portals is smaller than 4j, implying that the resulting graph is a
4j-tree. In the following, we denote this 4j-tree by \scrJ .

Mutual embeddability of \scrH (\scrT ,\scrF ) and \scrJ . Before discussing how to efficiently con-
struct (and represent) \scrJ in a distributed way, let us first show that \scrH (\scrT ,\scrF ) and \scrJ 
are O(1)-embeddable into each other.

The proofs of the following two lemmas are very similar to the corresponding
result by Madry [21]. However, since our j-tree construction slightly deviates from
Madry's, the claims do not readily follow from any lemma in [21, 22].

Lemma 6.9. \scrH (\scrT ,\scrF ) is O(1)-embeddable into \scrJ .

Proof. There are three types of edges of \scrH (\scrT ,\scrF ) to distinguish:
(a) edges in (\scrT \setminus \scrF ) \setminus \scrD ,
(b) edges in \scrD , and
(c) the remaining edges from \scrE \scrH connecting different trees of the forest \scrT \setminus \scrF .
Case (a) is the most straightforward, as all these edges are also present in \scrJ with
the same capacity. Edges from e \in \scrD were deleted from a path \scrP connecting two
portals in the skeleton. In \scrJ , they can therefore be routed through the path \scrP and
the virtual edge with capacity cap\scrT (e) connecting the portal nodes at the ends of \scrP .
Because e is the lowest capacity edge of \scrP , this adds relative load at most 1 to each
edge of \scrP .

Finally, let us consider one of the remaining edges e \in \scrE \scrH . The edge e = \{ c1, c2\} 
connects two trees T1 \not = T2 of \scrJ . Let us assume that c1 \in T1 and c2 \in T2. When
routing from c1 to c2, we follow

1. the path from c1 in T1 to the first skeleton cluster s1 \in T1 on the path to the
(unique) portal p1 \in T1 \cap P ,

2. the skeleton path from s1 to p1,
3. the virtual edge corresponding to e between p1 and the (unique) portal p2 \in 
T2 \cap P ,

4. the skeleton path from p2 to the last skeleton cluster s2 \in T2 when going from
p2 to c2 in T2, and
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(a)

(b)

Fig. 3. An example j-tree at the second level of recursion. In (a), dashed circles indicate the
components of the forest of this j-tree, which are each made of a number of 1-clusters, indicated by
thick circles. Edges inside 1-clusters are not shown. Solid thin edges indicate virtual edges of level
1 that became edges of the level-2 forest. For each of these thin edges, there is a real edge between
some two nodes of the same two level-1 components (not shown). Dashed edges represent (virtual)
core edges, and they are mapped (by arrows) to corresponding real edges (thick lines). In (b), real
edges related to the virtual forest edges are represented as solid thin edges between two nodes of the
same connected component.

5. the path from s2 to c2 in T2.
Let us compare the path from c1 via s1 to p1 with the path on which e is routed on
the spanning tree \scrT . The part from c1 to s1 is also used when routing in \scrT . If from
s1 we follow the same direction to p1 as in \scrT , the two paths are, in fact, identical
up the point when we reach p1. In this case, the capacities on this path suffice by
construction, as we defined cap\scrT (e

\prime ) = | \bfitf \prime (e\prime )| . Let us therefore consider the case
in which we set out in the opposite direction from s1 on the skeleton path \scrP \ni s1
connecting p1 to some other portal p2 than we would in \scrT . In that case, routing on
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\scrT would cross the edge e\prime \in \scrD that was deleted from \scrP . Because e\prime is the edge from
\scrP of smallest capacity, the contribution to the relative load of all edges crossed on \scrP 
is upper bounded by the relative load contributed to e\prime when routing on \scrT . Again,
summing over all edges from \scrE \scrH falling under case (c), this may increase their total
relative loads only by an additive 1. Trivially, the third step causes relative load 1 on
the virtual edge corresponding to e, since it is not used for routing any other edge.
Reasoning symmetrically for Steps 4 and 5, we can conclude that embedding \scrH (\scrT ,\scrF )
into \scrJ leads to constant relative load on all edges.

Lemma 6.10. \scrJ is O(1)-embeddable into \scrH (\scrT ,\scrF ).

Proof. All the edges of the trees of \scrJ are also present in \scrH (\scrT ,\scrF ) with the same
capacity; they are hence straightforward to embed. Let us therefore consider the
virtual edges connecting the portals of \scrJ . There are two types of virtual edges---the
ones representing edges from \scrD and those that correspond to the nontree edges of
\scrH (\scrT ,\scrF ). We first have a look at a virtual edge e corresponding to an edge e\prime \in \scrD .
The edge e is routed by following the path from which e\prime was removed. Since the
capacity of each edge on the path is at least the capacity of e, this contributes at
most 1 to the relative load of each edge.

Now consider a virtual edge e = \{ c, c\prime \} corresponding to an edge e\prime \in \scrE \scrH of
\scrH (\scrF , \scrT ). The edge e is routed on the trees of \scrJ the clusters c and c\prime reside in and
via e\prime . The latter causes relative load 1, as e and e\prime have the same capacity and no
other edge uses e\prime . Similarly to the embedding of \scrH (\scrT ,\scrF ) into \scrJ , the tree parts of
the routing path are subpaths of the path between c and c\prime in \scrT and thus will not
cause more than additive relative load 1 when summing over all edges of this type
to embed. If we diverge from this path, this is because an edge from \scrD lies on the
routing path in \scrT ; analogously to Lemma 6.9, following the skeleton path from which
it was deleted to the respective portal increases the maximum relative load by at most
an additional 1.

Distributed implementation. Let us now move on to the distributed implementa-
tion of the above 4j-tree construction. Recall that because \scrF includes the random
set of edges \scrR , by Lemma 6.5, w.h.p., all trees in \scrT \setminus \scrF have depth \~O(

\surd 
n). With

this in mind, constructing the skeleton is fairly simple.

Lemma 6.11. Given are a spanning tree \scrT of a distributed cluster graph and the
set of tree edges \scrF as computed above. We can determine the skeleton \scrS \scrT \setminus \scrF , the set
of portals P , and the set of edges \scrD (i.e., for \{ c, c\prime \} uv \in \scrD , u and v will learn this)
in time O(

\surd 
n log n) in the CONGEST model on the underlying network graph. In the

same time, we can also orient the trees rooted at the portals.

Proof. Without loss of generality, consider a single tree T of the forest \scrT \setminus \scrF . By
Lemma 6.5, the induced tree in G has depth \~O(

\surd 
n). Perform the following steps:

\bullet For each edge e \in \scrF , its incident clusters learn10 that they are primary
portals, i.e., are in P1.

\bullet Iteratively mark nonportal clusters with at most 1 marked neighboring cluster
until this process stops. Unmarked clusters are in the skeleton.

\bullet Unmarked clusters with more than two unmarked neighboring portals are
secondary portals.

\bullet The skeleton paths connecting portals find a minimum capacity edge and add

10A cluster for which edges to children are in \scrF may not ``know"" about its incident edges in \scrF as
a whole, but determining whether there is at least one is trivial.
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it to \scrD .
\bullet Each tree of \scrT \setminus (\scrF \cup \scrD ) is rooted at its unique portal, whose identifier is
made known to all nodes in the induced tree in G (together with clusters'
spanning trees).

\bullet These identifiers are exchanged with all neighbors in G.
From the gathered information, for each edge \{ c, c\prime \} uv \in \scrJ , u and v now can determine
its membership and its capacity in \scrJ . Observe that the bound of \~O(

\surd 
n) on the depth

of the spanning trees of G leveraged for communication in the above construction
implies that all the above steps can be completed in \~O(

\surd 
n) rounds, which completes

the proof.

The trees rooted at the portals now induce the clusters of the new cluster graph.

Corollary 6.12. Given a graph \scrH (\scrT ,\scrF ) \in \BbbH [j/4] as computed above on a
cluster graph whose clusters' spanning trees have maximum depth d, there is an
\~O(D + d+

\surd 
n)-round distributed algorithm to compute

\bullet a cluster graph whose clusters' spanning trees have depth d+ \~O(
\surd 
n); and

\bullet a j-tree \scrJ on this cluster graph, i.e., for each edge e \in \scrJ , there is a corre-
sponding graph edge \{ u, v\} \in E whose constituent nodes know that e \in \scrJ as
well as cap\scrJ (e); such that

\bullet \scrH (\scrT ,\scrF ) is 1-embeddable into \scrJ and \scrJ is O(1)-embeddable into \scrH (\scrT ,\scrF );
and

\bullet the new clusters are induced by the tree components of \scrJ .

Proof. This readily follows from Lemmas 6.5, 6.8, 6.9, 6.10, and 6.11. The only
thing left to note is that clusters can learn the number of nodes they contain by a
simple convergecast and broadcast operation on their spanning trees.

6.4. Sampling from the recursively constructed distribution. We now
have all pieces in place to efficiently sample from a distribution similar to Sherman's
in a distributed fashion. The difference is that Theorem 3.2 and thus Lemma 6.7
merely give \alpha \in 2O(

\surd 
logn log logn), implying that we must use fewer levels of recursion

to ensure that the final approximation guarantee of the congestion approximator will
remain in no(1).

Theorem 6.13. With high probability, within (
\surd 
n + D)no(1) rounds of the

CONGEST model, we can sample a tree \scrT from a distribution of n1+o(1) (virtual)
rooted spanning trees on G with the following properties.

\bullet For any cut of G of capacity C, the capacity of the cut in \scrT is at least C.
\bullet For any cut of G of capacity C, the expected capacity of the cut in \scrT is at
most \alpha C, where \alpha \in no(1).

\bullet The distributed representation of \scrT is given by a hierarchy of cluster graphs
\scrG i = (\scrV i, \scrE i,\scrL i,Ti, \psi i), i \in \{ 0, . . . , i0\} , i0 \in o(log n), on network graph G,
with the following properties.

-- The spanning trees of the clusters of \scrG i have depth \~O(
\surd 
n).

-- | \scrV i0 | = n1/2+o(1).
-- \scrG i is the (rooted) tree resulting from \scrT by contracting the clusters of \scrG i.
-- For i > 0, \scrG i is also a cluster graph on network graph \scrG i - 1.
-- For i > 0, each cluster ci \in \scrV i of \scrG i, interpreted as cluster graph on \scrG i - 1,

contains a unique portal cluster p(ci) \in \scrV i - 1 of \scrG i - 1 that is incident11

to all edges of \scrG i containing ci. That is, \scrG i - 1 is a | \scrV i| -tree with core

11Note that the corresponding physical edges in G may still connect to different subclusters of ci.
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p(\scrV i).
Proof. In the following, we will use w.h.p. statements as if they were deterministic;

the result then follows by taking the union bound over all (polynomially many in n)
such statements we use.

Set \beta := 2log
3/4 n. To start the recursion, we will use G as a cluster graph of

itself. Formally, \~\scrG 0 := (V,E, V, \{ (\{ v\} , \emptyset )\} v\in V , id), where id is the identity function.
We execute the following algorithm until it terminates:

1. Sparsify \~\scrG i - 1 using Lemma 7.1 for some fixed constant \varepsilon , e.g., \varepsilon = 1/2. This
takes (

\surd 
n + D)no(1) rounds. Multiply all edge capacities by 1/(1  - \varepsilon ) (so

\~\scrG i - 1 can be 1-embedded into the sparser graph).
2. If | \scrV i - 1| /\in \omega (

\surd 
n\beta / log n), set i0 := i and stop. This takes O(D) rounds by

communicating over a BFS tree of G.
3. Apply Lemma 6.7 for j = | \scrV i - 1| /(4\beta ) to the sparsified cluster graph; by

the previous step, this choice of j is feasible. As | \scrV i - 1| /j = 4\beta \in no(1),
constructing the distribution requires (

\surd 
n+D)no(1) rounds in total.

4. Sample a cluster graph from the distribution. This is done in O(D) rounds,
letting some node broadcast O(log n) random bits over a BFS tree.

5. Apply Corollary 6.12 to extract a | \scrV i - 1| /\beta -tree of \scrG i - 1. The corollary also
yields a cluster graph \~\scrG i (which is also a cluster graph on network graph \scrG i - 1)
so that each of its clusters ci contains exactly one portal cluster p(ci) of the
| \scrV i - 1| /\beta -tree on \scrG i - 1. This step completes in \~O(

\surd 
n+D) rounds: there are

fewer than log\beta 
\surd 
n \ll log n iterations of the overall construction, as | \scrV i| \leq 

| \scrV i - 1| /\beta , implying that d \in \~O(
\surd 
n) for each application of Corollary 6.12.

6. Recurse on \~\scrG i, i.e., set i := i+ 1 and go back to Step 1.
When the above construction halts, we have that | \scrV i0 - 1| = O(

\surd 
n\beta ) = n1/2+o(1).

Thus, we can make the (sparsified) cluster graph | \scrG i0 - 1| known to all nodes in (
\surd 
n+

D)no(1) rounds via a BFS tree of G. We then continue the construction locally without
controlling the size of components, which removes the constraint on j when applying
Lemma 6.11, until the core becomes empty, i.e., we construct a tree.12 We collapse
the cluster graph hierarchy for all locally performed iterations i \geq i0, which defines
the tree \scrG i0 on clusters \scrC i0 (this is feasible as each \scrG i, i > 0, is also a cluster graph
on network graph \scrG i - 1).

This completes the description of the algorithm. Summing up the running times
of the individual steps and using that i0 = o(log n), we conclude that the construction
takes (

\surd 
n+D)no(1) rounds. The construction also maintained the stated structural

properties of the cluster hierarchy. Hence, it remains to show that (i) we sampled
from a distribution of n1+o(1) trees and (ii) the stated cut approximation properties
are satisfied.

Showing these properties now is straightforward. In each step i > 0 of the recur-
sion, by Lemma 6.7 we constructed a distribution on \~O(\beta ) | \scrV i - 1| -trees. The total num-

ber of recursive steps (including the local ones) is bounded by \lceil log\beta n\rceil = O(log1/4 n),
as | \scrV i| \leq | \scrV i - 1| /\beta for each i > 0. On each level of recursion, we compute a distribu-

tion on 2O(
\surd 

log | \scrV i| log log | \scrV i| )\beta \leq 2O(
\surd 
logn log logn)\beta graphs. Hence, the total number

of virtual trees in the (implicit) distribution of virtual trees from which we sampled
is bounded by\Bigl( 

2O(
\surd 
logn log logn)\beta 

\Bigr) \lceil log\beta n\rceil 
= n \cdot 2O(

\surd 
logn log logn log1/4 n) = n1+o(1).

12This is essentially Sherman's construction on the small constructed cluster graph.
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level-0 cluster = node top-level cluster. 
There are 𝑂 𝑛  such 
clusters 

each cluster is 
spanned in 𝐺 by an 
𝑂 ( 𝑛)-depth tree 

virtual tree 
edge 𝑒 

physical edge 𝑝(𝑒), 
responsible for virtual 
edge 𝑒 

Fig. 4. Hierarchical cluster decomposition of a virtual tree \scrT \in \BbbT . Continuous edges are virtual
tree edges, which are represented by a physical edge connecting the top-level clusters they connect
(the dotted edge p(e) corresponds to the edge labeled e). Each cluster is spanned by a tree in G of
depth \~O(

\surd 
n), which is not shown.

Consider a cut of G of capacity C. By the properties of decompositions and the fact
that we multiplied capacities by 1/(1 - \varepsilon ) whenever we sparsified, G is 1-embeddable
into any of the trees we might construct, implying that the corresponding cut of
the sampled tree has capacity at least C. As in each step, we (i) apply a (1 +
\varepsilon )-sparsifier and multiply capacities by 1/(1  - \varepsilon ) for constant \varepsilon , (ii) construct a

(2O(
\surd 
logn log logn),\BbbH )-decomposition (for some family \BbbH ) from which we sample, and

(iii) transform the resulting graph into a j-tree which can be O(1)-embedded into the
graph from which it is constructed; we overestimate the capacity of a given cut by an
expected factor of 2O(

\surd 
logn log logn) \cdot O(1) = 2O(

\surd 
logn log logn) in each step. Using that

this bound is uniform and the randomness on each level of recursion is independent, it
follows that the expected capacity of a cut of G of capacity C in the sampled virtual
tree is bounded by\Bigl( 

2O(
\surd 
logn log logn)

\Bigr) \lceil log\beta n\rceil 
= 2O(

\surd 
logn log logn log1/4 n) = no(1).

6.5. Congestion approximation. Our congestion approximator R is defined
by the edge-induced cuts of a sample \BbbT of virtual trees \scrT constructed according to
Theorem 6.13. As stated in the theorem, the trees are represented distributively by
a hierarchy of cluster graphs (see Figure 4 for an illustration and recall the formal
definition of cluster graphs from section 5). Intuitively, a cluster graph partitions
the nodes into clusters, each of which has a spanning tree rooted at a leader, and
a collection of edges between clusters that are represented by corresponding graph
edges between some nodes of the clusters they connect.

The first two properties of each \scrT stated in the theorem imply that we can use
them to construct a good congestion approximator R. More precisely, Lemma 3.3
implies the following corollary.

Corollary 6.14. Sampling a collection \BbbT of O(log n) virtual trees given by The-
orem 6.13 and using them as congestion approximator R in the way specified in sec-
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tion 3.2 implies that the total number of iterations of Algorithm 2 is no(1).

All that remains now is to show that the distributed representation of each sam-
pled \scrT \in \BbbT allows us to simulate a convergecast and a downcast on \scrT in (

\surd 
n+D)no(1)

rounds: then we can implement the key subroutines (1) and (2) (i.e., compute \bfity and
\bfitpi ) outlined in section 3.2 with this time complexity, and by Corollary 6.14 the total
number of rounds of the computation is bounded by (

\surd 
n+D)no(1).

Fortunately, the recursive structure of the decomposition is very specific. The
cluster graphs of the different levels of recursion are nested; i.e., the clusters of the
(i  - 1)th level of recursion are subdivisions of the clusters of the ith level. What is
more, each cluster is a subtree of the virtual tree and is spanned by a tree of depth
\~O(
\surd 
n) in G (cf. Figure 4). Hence, while the physical graph edges representing the

virtual tree edges are between arbitrary nodes within the clusters they connect, we can
(i) identify each cluster on each hierarchy level with the root of the subtree induced by
its nodes, (ii) handle such subtrees recursively (both for convergecasts and downcasts),
(iii) on each level of recursion but the last, perform the relevant communication by
broadcasting or upcasting on the underlying cluster spanning trees in G of depth
\~O(
\surd 
n), and (iv) communicate over a BFS tree of G on the final level of recursion,

where merely n1/2+o(1) clusters/nodes of the virtual tree remain.

Corollary 6.15. On each virtual tree \scrT \in \BbbT , we can simulate convergecast and
upcast operations in \~O(

\surd 
n+D) rounds.

Theorem 1.1 now follows from Sherman's results on the number of iterations of
the gradient descent algorithm [32], the discussion in section 3.2, and Corollaries 6.14
and 6.15.

7. Distributed construction of cut sparsifiers. In this section we specify
the distributed implementation of cut sparsifiers. We start with the following lemma.

Lemma 7.1. In a weighted N -node distributed cluster graph of size n, for any
\varepsilon > 0, it is possible to compute a (1 + \varepsilon )-cut sparsifier with O(N \cdot (\varepsilon  - 1 \cdot logN)O(1))
edges (w.h.p.) in the CONGEST model in time O

\bigl( 
(D +

\surd 
n) \cdot (\varepsilon  - 1 \cdot logN)O(1)

\bigr) 
.

Proof. We prove the lemma using the algorithm ParallelSparsify of Koutis [18]
and then orient the edges. Koutis's algorithm relies on the O(log n)-stretch spanner
construction algorithm of Baswana and Sen [9], which we henceforth refer to as BS.
See Figure 5 for a description of the BS algorithm.

We start by showing how to emulate a step of node v in BS by a depth-d tree
(which we shall denote by Tv) in O(d + logN) time, w.h.p. We may assume w.l.o.g.
the existence of a root in each tree (because we can select one in O(d) time); Step 2a
is carried out by the root and the result is broadcast over the tree. For Step 2b, we
note that w.h.p., | Qv| = O(logN) and hence making it known to all nodes of Tv takes
O(d + logN) time using standard convergecast-broadcast. Step 3 is straightforward
given that each node knows its cluster.

Next, given a tree T (v) for each node, we assume that the depth of all trees is at
least c logN for some appropriate constant c > 0. If this assumption does not hold,
we extend T (v) with a dummy path (i.e., pretend as if a path of nodes is attached to
one of the leaves): clearly T (v) can emulate the extended tree without any slowdown.
However, this extension may increase the number of nodes by an O(logN) factor.
Now, under this assumption and the emulation above, we may apply Lemma 5.3 to
conclude that BS can be executed in time O((D +

\surd 
N logN) logN).

Going back to the algorithm of Koutis [18], we note that it consists of (log n/\varepsilon )O(1)
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1. R0 := \{ \{ v\} | v \in V \} .
2. For i := 1 to logN do:

(a) Mark each cluster of Ri - 1 independently with probability 1
2
; let Ri :=

\{ S is marked | S \in Ri - 1\} .
(b) If v \in S for some S \in Ri - 1 \setminus Ri:

i. Define Qv to be the set of edges that consists of the lightest edge
from v to each of the clusters in Ri v is adjacent to.

ii. If v has no neighbor in a cluster in Ri, then v adds to the spanner
all edges in Qv.

iii. Otherwise, let u be the closest neighbor of v in a marked cluster.
Then
\bullet v joins the cluster of u (i.e., if u is in cluster S\prime \in Ri, then

S\prime := S\prime \cup \{ v\} ).
\bullet v adds to the spanner the edge \{ v, u\} , and also all edges \{ v, w\} \in 

Qv with W (v, w) < W (v, u) (breaking ties by ID).
3. Each node v adds, for each cluster S \in RlogN it is adjacent to, the lightest

edge connecting it to S.

Fig. 5. The BS algorithm for O(logN) spanner construction given an N-node weighted graph
G = (V,E,W ). The output is a subset of E.

invocations of BS, and some independent random selection and reweighting of edges.
The former is discussed above, and the latter is trivial to emulate locally.

8. Distributed construction of low average-stretch spanning trees.

Theorem 8.1 (Theorem 3.2 restated and rephrased). Suppose H is an N -node

multigraph obtained from G by assigning arbitrary edge lengths in 2n
o(1)

to the edges
of G (known to incident nodes) and performing an arbitrary sequence of contractions.

Then we can compute a rooted spanning tree of H of expected stretch 2O(
\surd 
logn log logn)

within (
\surd 
n+D)no(1) rounds, where the edges of the tree in H and their orientation

is locally known to the endpoints of the corresponding edges in G.

Proof. We follow [11]: the high-level algorithm is by Alon et al. [3], which uses Al-
gorithm Partition (of [11]) for unweighted graphs. We describe the algorithm bottom-
up. The main component in Algorithm Partition is Algorithm SplitGraph, reproduced
in Figure 6. Algorithm SplitGraph assumes thatH is given as anN -node cluster graph
of the underlying graph G. In line 2(a) of Algorithm SplitGraph, we need to select a
fixed a random subset St of V t of a fixed size xt. This can be done first assigning each
node of V t a random number from a sufficiently large domain such that the numbers
are unique w.h.p. Then, the first xt nodes can be determined in time O(D logN) in
the CONGEST model on the underlying graph G by applying a standard distributed
selection algorithm that can be run on top of a global BFS tree of G [19, 25].

The basic action of Algorithm SplitGraph is growing BFS trees, an action in which
emulating a single node by a tree is trivial. In SplitGraph we may have contending
BFS growths, but note that if two or more BFS traversals collide, only the winning
ID needs to proceed, and hence there are no collisions because no edge needs to carry
more than a single BFS traversal in each direction. Regarding the tree construction,
we first note that the BFS growth naturally creates a spanning tree for each cluster.
Moreover, we can make all nodes know the complete path to the root of their respective
cluster in additional O(\rho ) steps, by letting each node send its ith ancestor to all its
children in round i. Except for the sampling step in line 2(a), the running time of
Algorithm SplitGraph is O(\rho logN) in the bounded-space CONGEST model, because
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1. H1 = (V 1, E1) := H; \scrC := \emptyset .
2. For t = 1 to 2 logN do:

(a) Let St be a random subset of V t of xt := 12 2t/2

N
| V t| nodes; if V t is

smaller than N

12\cdot 2t/2 , S
t := V t.

(b) \scrC := \scrC \cup 
\bigl\{ 
\{ s\} | s \in St

\bigr\} 
.

(c) Each s \in St draws a random delay \delta ts uniformly from [0, \lfloor \rho /(2 logN)\rfloor ].
(d) Each s \in St waits \delta ts rounds and then initiates a BFS for \rho (1 - t - 1

2 logN
) - \delta ts

rounds in Ht.
(e) A node covered by a BFS is added to cluster Cs, where s is the source of

the first BFS to visit it, breaking ties by ID.
(f) V t+1 := V \setminus \{ v | v \in C for some C \in \scrC \} ; Ht+1 := Ht[V t+1].

Fig. 6. Algorithm SplitGraph. The input is an unweighted N-node multigraph H = (V,E) and
a target radius \rho .

each iteration takes O(\rho ) rounds and there are O(logN) iterations. Therefore, using
Lemma 5.3, we conclude that we can run SplitGraph (including line 2(a)) in time
O(\rho log2N(D +

\surd 
N)) in the CONGEST model.

Algorithm SplitGraph is called by Algorithm Partition, whose input is an un-
weighted graph with an arbitrary partition of the edges into K classes. Algorithm
Partition applies Algorithm SplitGraph disregarding classes, and then checks whether
there exists a class where too many edges were split in different clusters. If there is
such an oversplit class, the algorithm is restarted. We can implement each checking
and restart in the CONGEST model in O(D+K) time using a global BFS tree. Since
the number of restarts is bounded by O(logN) w.h.p. [11], and in our implementa-
tion we shall have K = O(

\surd 
N), the overall time for running Algorithm Partition is

O(\rho log3N(D +
\surd 
N)) in the CONGEST model.

The outermost algorithm is the one by Alon et al. [3], whose input is a weighted
graph. The algorithm first partitions the edges into O(

\surd 
logN) classes by weight,

where class Ei contains all edges whose weight is in [zi - 1, zi) for a certain value

z = \~\Theta (2
\surd 
6 logN \cdot log logN ). Then the algorithm proceeds in iterations until the graph is

a single node, where iteration j is as follows.
1. Call Algorithm Partition with edges E1, . . . , Ej and target radius \rho = z/4.

Obtain clusters \{ Ci\} .
2. Output a BFS tree for each cluster Ci.
3. Contract each resulting cluster Ci to a single node. Remove all self loops,

but leave parallel edges in place. The resulting multigraph, augmented with
edge class Ej+1, is the input to iteration j + 1.

For the distributed implementation, note that edge contraction is trivial given that the
endpoints know the identity of the cluster they belong to, and that edge classification
is purely local given z (which can be communicated to all in O(D) time units). It
can be shown [11] that w.h.p., the number of iterations is O(log\Delta /

\surd 
logN log logN),

and hence the running time of the algorithm is O(\rho log\Delta logO(1)N(D +
\surd 
N)) =

log\Delta \cdot 2O(
\surd 
logN log logN) because \rho = z/4 = \~\Theta (2

\surd 
6 logN \cdot log logN ).

The claimed stretch follows from [11].

9. Conclusion. In this paper we have demonstrated that with the help of ran-
domization, a network with capacitated links can compute the value of the maximal
flow between two nodes to any desired accuracy in time close to the worst-case lower
bound of \~\Omega (

\surd 
n+D) while using only small messages. Computing maximal flow has

been a cornerstone of network optimization for more than half a century, and in many
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cases it is given in contexts which are naturally distributed, which makes us believe
that our result may be used to build more advanced distributed systems. However,
our algorithm is not very simple, and a few questions present themselves immediately.

\bullet Can the complexity be reduced to \~O(
\surd 
n+D)?

\bullet Is there a ``competitive"" algorithm for maximal flow, i.e., an algorithm whose
running time is related to the network structure, so that it runs quickly on
``easy"" instances and slowly on harder ones?

\bullet What is the complexity of a deterministic solution to max flow? We note
that classical max-flow algorithms are deterministic, but they do not seem to
parallelize readily.

More interestingly, consider using the link capacities directly: Suppose that a link of
capacity c can transfer c bits per time step (analogously to water pipes). Does this
model allow for faster computation of the maximal flow?

Appendix A. Coping with general capacities. In this appendix we consider
the case that edge capacities may be nonpolynomial (in n) or nonintegral.

First, note that we may assume without any loss of generality that all edge weights
are at least 1; otherwise we can normalize by dividing by min \{ cap(e) | e \in E\} . Next,
we note the following straightforward consequence of the max-flow min-cut theorem.

Corollary A.1. Denote by G>c the graph induced by all edges of capacity more
than c. Then the following hold:

1. If s and t are connected in G>c, deleting all edges of capacity smaller than
\varepsilon c/n2 decreases the value of a max flow by at most factor 1 +O(\varepsilon ).

2. If s and t are not connected in G>c, setting all edge capacities to
max\{ cap(e), n2c\} decreases the value of a max flow by at most factor 1+O(\varepsilon ).

Proof. To see the first claim, observe that a minimum s-t cut has at least capacity
c, even after deleting all edges of capacity at most c. As any cut contains fewer than
n2 edges, deleting all edges of capacity smaller than \varepsilon c/n2 reduces its capacity by less
than \varepsilon c. By the max-flow min-cut theorem, the claim follows.

Concerning the second claim, observe that a minimum s-t cut has capacity smaller
than n2c before modifying the capacities. Capping capacities at \lceil n2c\rceil does not de-
crease the capacity of any cut below this threshold, implying the claim by the max-flow
min-cut theorem.

Using this corollary and binary search to approximate the threshold c at which s
and t become disconnected in G>c, we can reduce to edge weights from a polynomial
range.

Lemma A.2. If edge capacities are from [1, C] \subseteq \BbbR , for any \varepsilon > 0 we can reduce
to the case of edge weights [1, O(n6/\varepsilon )] in \~O((

\surd 
n+D) logC) rounds, at the expense

of factor 1 +O(\varepsilon ) in approximation.

Proof. We perform a binary search to approximate the threshold c0 at which
G>c switches from connecting s and t to not connecting them, up to factor n. Such
a threshold exists, as G is connected and G>C is empty. Clearly, \lceil log(C/n)\rceil \in 
O(logC) iterations of binary search suffice to determine a suitable approximation
\^c \in [c0/n, c0n].

Thus, we need to show how, for a given c \in \BbbR , to determine whether G>c connects
s and t or not. Note that nodes can decide locally whether an edge is in G>c or not;
i.e., we can trivially simulate any distributed algorithm in the CONGEST model on
G>c, without overhead. However, the diameter of (a component of) G>c may be
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significantly larger than D, the diameter of G, so simple flooding could be too slow.
Instead, we invoke the minimum spanning tree algorithm by Kutten and Peleg [20] on
each component of the (unweighted) graph G>c; as each node learns an identifier for
its component in this algorithm, after completion we can check whether s and t are in
the same component within D rounds by, e.g., flooding the respective identifiers for s
and t through G. The algorithm by Kutten and Peleg has running time \~O(

\surd 
n+D),

yielding the claimed round complexity.
Finally, we delete all edges with capacity smaller than \varepsilon \^c/n3, reduce all capacities

larger than n3\^c to this value, and then rescale all capacities by factor n3/(\varepsilon \^c) (this
is reverted after the flow algorithm is complete by multiplying the output by \varepsilon \^c/n3).
This requires no communication and, by Corollary A.1, decreases the value of a max
flow by factor 1 +O(\varepsilon ).

It remains to reduce to integral capacities.

Lemma A.3. If edge capacities are [1, C] \in \BbbR , we can reduce this case to the one
of integral capacities 1, . . . , O(C/\varepsilon ) at the expense of factor 1+O(\varepsilon ) in approximation,
for any choice of \varepsilon > 0.

Proof. For each edge e \in E, replace cap(e) by the capacity given by cutting off
all but the \lceil log(1/\varepsilon )\rceil most significant bits of the mantissa of cap(e) in floating point
representation. This does not increase the value of a max flow and decreases it by at
most factor 1 +O(\varepsilon ).

Next, multiply each edge capacity by 2\lceil log(1/\varepsilon )\rceil , making it integral. The opti-
mum flow value and corresponding flows scale accordingly. Thus, we can solve the
resulting instance with edge capacities 1, . . . , O(C/\varepsilon ), scale down the output by factor
2\lceil log(1/\varepsilon )\rceil , and obtain a (1 +O(\varepsilon ))-approximate flow for the original instance.
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