
Efficient Metastability-Containing
Gray Code 2-Sort

Christoph Lenzen∗ Moti Medina∗
∗Max Planck Institute for Informatics, Saarbrücken, Germany

{clenzen,mmedina}@mpi-inf.mpg.de

Abstract—It is well-established that unsynchronized commu-
nication across clock domains can result in metastable upsets
and that this cannot be avoided deterministically. This, however,
does not preclude the possibility that metastability can be
contained deterministically, in the sense that meaningful and
precise computations can be performed despite metastability of
some bits.

In this work, we provide evidence that this is not only possible,
but can also be done efficiently. We propose a circuit of sizeO(B2)
and depth O(B) that computes the minimum and maximum
of two B-bit Gray code inputs, where each input may contain
one metastable bit (introducing uncertainty regarding whether
it encodes some value x or rather x + 1). This is achieved by
combining the results of a recursive call on the (B − 1)-bit
suffixes in a metastability-containing way. This overcomes the
problem posed by possible metastability of the logic controlling
the recursion, which must occur in some executions.

Index Terms—metastability worst-case propagation model;
sorting networks; combinational circuits;

I. INTRODUCTION

Metastability, the phenomenon of a bistable element en-
tering an unstable third equilibrium state, is a well-known
“problem child” in digital circuits. It is also well-known that
no method of prevention is absolutely safe: any bistable circuit
can be subjected to an input resulting in metastability of its
output [1].

Fortunately, as metastability is a transient state by definition,
simple waiting resolves the problem. The probability that
metastability persists for t time falls exponentially in t [2]. If
time is a critical resource, synchronizers are used to maximize
the prefactor of t in the exponential decay; state-of-the-art
synchronizers for 90 nm technology achieve a factor e−20

decay per nanosecond; however, there is evidence that the
resolution time will increase with further miniaturization [3].

Why Synchronizers Are not Always Good Enough

Whenever communicating across clock domains in an un-
synchronized fashion, synchronizers are used to ensure a
sufficiently small probability of causing metastability of the
receiver’s logic. This is costly in terms of time (i.e., delay)
and space (i.e., buffer size), and can be a limiting factor to
performance.

Our main motivation in this paper is the cost in terms
of time. This is a pivotal concern when implementing the
fault-tolerant clock synchronization algorithm by Lynch and
Welch [4], cf. Figure 1. A key step in this synchronization
primitive is to measure the phase offsets between the n

TDC Sort/Select Ctrl.

Fig. 1. Fault-tolerant clock synchronization algorithm in hardware. Each of
n nodes (i) measures phase differences of each remote clock to its own,
(ii) selects for f < n/3 the (f + 1)-th and (n− f)-th largest among them,
and (iii) derives a correction phase shift.

nodes that synchronize their local time references. Avoiding
a fully analog design, this necessitates to resolve potential
metastability of the digital subcircuits. However, the quality of
synchronization deteriorates linearly in the time required for an
individual synchronization step, i.e., in a classic synchronizer-
based design the time used to resolve metastability negatively
affects performance.

Challenging the Old Ways

Given that metastability cannot be avoided deterministically,
one might conclude that this performance hit is obligatory.
This conclusion is wrong! It turns out that one can carry out
the involved computations in a metastability-containing way:
while metastability might infect some of the output registers
of a computation, it is nonetheless viable to have a meaningful
result for which either interpretation of metastable outputs
yields correct and accurate results.

As a concrete example, consider the outputs of two delay
line TDCs. These are two unary encoded numbers, and if
designed appropriately, each output has at most one metastable
bit [5].1 Taking this into account, one can assume that the
(fixed-length) bit strings produced by the TDCs are of the
form 1∗0∗ or 1∗M0∗, where M denotes a metastable bit.
Determining the maximum or minimum of two such values
is a trivial task, by determining their bit-wise AND or OR,
respectively. The logical masking properties of the AND and
OR gates ensure that, in fact, the output is of the same form
as the inputs – the precision of the original measurements is
fully preserved! This means that we can build 2-sort modules
and combine them into sorting networks. In the end, one
translates the result of the computation back to an (analog)
phase correction applied to the oscillator, so that no harm is
done by the metastability incurred by the TDCs. Overall, the

1Decreasing the per-stage delay to the point where multiple bits can
become metastable does not improve (worst-case) single-shot performance,
as metastable registers may arbitrarily stabilize to either 0 or 1.



entire logic of the Lynch-Welch algorithm can be implemented
such that metastability of the digital parts of the circuit
has no negative impact on the algorithm’s performance: the
implementation is metastability-containing.

While this is exciting from a theoretical perspective, using
delay line TDCs and unary encodings in this way does not
result in compact circuits. The clock synchronization algorithm
requires high-resolution TDCs to be accurate, which can easily
result in above 1000 stages for a delay line TDC and the same
number of bits in unary encodings of measurement results
in this application scenario. The transistor count of a single
sorting network would exceed 105, so a more efficient design
is highly desirable.

However, there is no need to operate on unary encoded val-
ues. In concurrent work, we designed a TDC that outputs Gray
code instead of unary encoded values. Recall that the defining
property of a Gray code is that when counting, each up-count
changes exactly one bit. Accordingly, the TDC design ensures
that exactly one bit may become metastable, namely the one
associated with the incomplete up-count corresponding to a
metastable TDC stage. This marks the starting point and main
motivation for the present paper, which explores whether one
can efficiently perform the sorting operations on Gray code
inputs with up to one metastable bit.

Our Contribution

We devise two combinational circuits for computing the
maximum and minimum of two Gray code encoded inputs
with one metastable bit (making the difference between en-
coded value x or x + 1, respectively). The first follows a
brute-force approach based on unary encodings and achieves
the smaller delay. In accordance with the above discussion, the
resulting sorting networks have very high transistor counts; for
B-bit inputs, they use Θ(2B) gates.

Our second circuit tackles this issue, reducing the number
of gates to Θ(B2). Its delay is larger, but only by a factor
smaller than 3. We consider it highly surprising that this
is possible, since any recursive approach must suffer from
potential metastability of the logic controlling the recursion
(this follows directly from Marino’s result [1]).

We are able to overcome this obstacle by utilizing a
metastability-containing multiplexer with 2 control bits, which
also in case of a metastable control bit selecting between
identical input yields stable output. By always executing both
possible recursive calls and making sure that they return
the same result if the control logic becomes metastable, the
multiplexer can handle the case of metastable control inputs.

Concerning our practical goal of decreasing the size of
the circuit in comparison to the brute-force approach, for 8-
bit inputs and n = 4 we reduce the transistor count of the
sorting network by almost a factor of 3 (to roughly 20, 000
transistors); for B = 16, this gap grows beyond factor 150.

A. Structure of this Article

In Section II, we introduce the used encodings and valid
inputs, alongside a crucial characterization of valid Gray

code inputs. Section III introduces our circuit model, which
is a straightforward generalization of standard binary circuit
models to worst-case propagation of metastability. This is
followed by formalizing the problem in Section IV, i.e.,
extending the definition of max and min to metastable inputs
in a meaningful and precision-preserving manner. Sections V
and VI present and analyze the exponential- and polynomial-
size solutions, respectively. In Section VII-A, we compare the
scaling behavior of the two solutions with respect to B, the
number of bits per input. We proceed to compare the scaling
behavior when the solutions are employed to construct (opti-
mal) sorting networks for n ∈ {4, 7, 10}. Finally, Section VIII
concludes the paper.

II. ENCODINGS AND VALID INPUTS

Due to the potential presence of metastability at the input,
we need to carefully choose and make use of suitable encod-
ings. In this section, we formalize the respective notation and
summarize basic properties of the encodings.

Reflected Binary Gray Code & Unary Encoding

For N ∈ N, we abbreviate [N ] := {0, . . . , N − 1}. For
convenience, bit indices are one-based, e.g, the leftmost bit of
a binary string g is g[1], the second is g[2], etc. For 1 ≤ i ≤
j ≤ B (where g has B bits), let g[i : j] := g[i]g[i+1] . . . g[j];
in case i > j, g[i : j] is the empty string.

Definition II.1 (Unary Encoding). For x ∈ [N ], define its
unary encoding

unN−1(x) := 1x0N−1−x .

Fact II.2. unN−1(·) : [N ]→ {0, 1}N−1 is injective.

We denote by 〈·〉un the decoding function of a unary string,
i.e., for x ∈ [N ], 〈unN−1(x)〉un = x.

Fact II.3. For all x ∈ [N − 1], unN−1(x) and unN−1(x+ 1)
differ in a single bit only.

Definition II.4 (B-bit Reflected Binary Gray Code). Suppose
N = 2B for a given B ∈ N. For x ∈ [N ], we define the
reflected binary Gray code of x recursively by

rgB(x)[i] :=


0 if i = 1 and x < N/2

1 if i = 1 and x ≥ N/2

rgB−1(x)[i− 1] if i > 1 and x < N/2

rgB−1(2
B − x− 1)[i− 1] if i > 1 and x ≥ N/2

for i ∈ {1, . . . , B}.
Fact II.5. rgB(·) : [N ]→ {0, 1}B is a bijection.

We denote by 〈·〉rg the decoding function of a Gray code
string, i.e., for x ∈ [N ], 〈rgB(x)〉rg = x.

Fact II.6. For all x ∈ [2B ], rgB(x) and rgB(x + 1) differ in
a single bit only.



Metastability Characterization of Valid Strings

In this section we define the set of valid strings that serve
as inputs to our combinational circuits. We begin by defining
an operator that helps characterize this set of inputs.

Definition II.7 (The ∗ operator). Given B ∈ N, define the
operator ∗ : {0, 1,M}B × {0, 1,M}B → {0, 1,M}B by

∀i ∈ {1, . . . , B} : (x ∗ y)[i] :=

{
x[i] if x[i] = y[i]

M else.

We are now ready to define the set of valid strings in our
context. Valid strings arise from the use of a time-to-digital
converter (TDC); while it is impossible to avoid metastability
completely [1], we assume that at most one bit of each input
string is metastable.

Definition II.8 (Valid Strings). Let B ∈ N and N = 2B .
Then, the set of valid unary strings of length N − 1 is

SN−1un := unN−1([N ])∪
⋃

x∈[N−1]

{unN−1(x)∗unN−1(x+1)} .

Similarly, the set of valid Gray code strings of length B is

SBrg := rgB([N ]) ∪
⋃

x∈[N−1]

{rgB(x) ∗ rgB(x + 1)} .

By Facts II.3 and II.6, valid strings contain at most one
metastable bit, implying that once metastability resolves to
either 0 or 1, the resulting string encodes either x or x+1. For
unary encoding, unN−1(x) ∗ unN−1(x + 1) = 1xM0N−x−2;
for Gray code, things are more involved, cf. Lemma II.11.

For notational convenience, we extend 〈·〉rg and 〈·〉un so that
they decode valid strings, as follows.

Definition II.9 (Extensions of the Decoding Functions). Let
N = 2B for some B ∈ N. Denote

[N ]M :=

{
z

2

∣∣∣∣ z ∈ [2N − 1]

}
,

i.e., the half-integers from the range [0, N−1]. For x ∈ [N−1],
we extend 〈·〉un to SN−1un and 〈·〉rg to SBrg by

〈unN−1(x) ∗ unN−1(x + 1)〉un := x +
1

2
and

〈rgB(x) ∗ rgB(x + 1)〉rg := x +
1

2
.

Accordingly, we extend unN−1 and rgB to [N ]M by

unN−1

(
x +

1

2

)
:= unN−1(x) ∗ unN−1(x + 1) and

rgB

(
x +

1

2

)
:= rgB(x) ∗ rgB(x + 1) .

We stress that these definitions are not meant to indicate
that actually half-integers are encoded. Rather, they express
that, since resolving metastability may result in either of the
two bit strings encoding the adjacent integer values, the string
with metastable bit “is in between” its stabilized counterparts.

We make the following observation.

Fact II.10. unN−1 : [N ]M → SN−1un is bijective with inverse
〈·〉un and rgB : [N ]M → SBrg is bijective with inverse 〈·〉rg.

We already discussed how metastability manifests in unary
encodings. For Gray code strings, Definition II.4 generalizes
to [N ]M as follows.

Lemma II.11. Let x ∈ [N ]M . Then

rgB(x)[i] =

0 if i = 1 and x < (N − 1)/2

M if i = 1 and x = (N − 1)/2

1 if i = 1 and x > (N − 1)/2

rgB−1(x)[i− 1] if i > 1 and x < (N − 1)/2

rgB−1(2
B − x− 1)[i− 1] if i > 1 and x ≥ (N − 1)/2.

Proof. We prove the statement by induction on B. Both for
the base case B = 1 and the induction step, for index i = 1
the claim follows directly from the definitions. For i > 1,
the base case is trivial, so consider the step from B− 1 to B.
Observe that if rgB(x)[1] 6= M , the claim readily follows from
the recursive definition of the Gray code and the induction
hypothesis.

Hence, suppose rgB(x)[1] = M . It follows that

rgB(x)[1] = M
II.7,II.8⇔ rgB(bxc)[1] 6= rgB(dxe)[1]

II.4⇔ x =
N − 1

2
.

We conclude that

rgB(x)[2 : B]
II.8
= rgB(bxc)[2 : B] ∗ rgB(dxe)[2 : B]

II.4,II.7
= rgB−1

(
N

2
− 1

)
.

III. MODEL

In this paper, we seek to design combinational circuits
that accept valid strings as inputs, i.e., we need to specify
circuit behavior in face of metastability. In our model, gates
propagate metastability to their outputs in a worst-case manner,
but taking into account logical masking: an AND gates always
outputs 0 if one of its inputs is stable 0, and an OR gate always
outputs 1 if one of its inputs is stable 1.

TABLE I
LOGICAL EXTENSIONS TO METASTABLE INPUTS OF AN AND GATE

(LEFT), AN OR GATE (CENTER), AND AN INVERTER (RIGHT).

b
a

0 1 M

0 0 0 0
1 0 1 M
M 0 M M

b
a

0 1 M

0 0 1 M
1 1 1 1
M M 1 M

a ā
0 1
1 0
M M

A. Complexity Measures: Cost and Delay

We use standard cost and delay complexity measures.
Concretely, the cost of a combinational circuit is the sum of
the costs of its basic gates, and the delay of a combinational
circuit is the heaviest path from an input to an output, where
the weight of a path is the sum of the weights of its gates. We



TABLE II
COST AND DELAY OF BASIC GATES.

Gate cost # Trans. Unit delay Norm. Delay
NOT 1 2 1 1
OR 1 6 1 3

AND 1 6 1 3
XOR 1 8 1 2

OR(3) 1 8 1 4

assume the values given in Table II for cost and delay of basic
gates, but remark that the results will not change substantially
for different libraries.

IV. PROBLEM DEFINITION

Our goal is to compute the maximum or minimum of two
valid strings, where we extend the definition of max and min
to valid strings in the following natural way.

Definition IV.1. Let N = 2B for some B ∈ N. For u, v ∈
SN−1un , define

maxun{u, v} := unN−1(max{〈u〉un, 〈v〉un})
minun{u, v} := unN−1(min{〈u〉un, 〈v〉un}) .

For g, h ∈ SBrg, define

maxrg{g, h} := rgB(max{〈g〉rg, 〈h〉rg})
minrg{g, h} := rgB(min{〈g〉rg, 〈h〉rg}) .

Note that this definition means that the results are valid
strings as well. Moreover, the input has precision 1, in the
following sense. Suppose a valid string “encodes” x+1/2 for
some x ∈ [N ], i.e., the string contains a metastable bit that
makes it uncertain whether the represented value is x or x+1.
In this case the TDC generating this string has measured a time
period corresponding to at least x and at most x+1 stages. The
string will stabilize to either x or x + 1. The stabilized string
is thus off by at most 1 w.r.t. the time period it represents.
Observe that we impose the same constraint on the extensions
of max and min to valid inputs. Therefore, these definitions
require to fully “contain” metastability, i.e., to not lose any
precision due to metastable upsets.

Observe that computing maxun and minun is trivial, be-
cause of the masking properties provided by the basic gates
readily match our requirements, formalized in the following
fact.

Fact IV.2. For u, v ∈ SN−1un , maxun{u, v} = u+ v and
minun{u, v} = u · v, where + and · denote the bitwise OR
and AND, respectively.

Our goal is to find circuits computing maxrg and minrg.

Definition IV.3. For B ∈ N, a metastability-containing Gray
code 2-sort(B) combinational circuit is defined as follows.
• Input: g, h ∈ SBrg ,
• Output: g′, h′ ∈ SBrg ,
• Functionality: g′ = maxrg{g, h} and h′ = minrg{g, h}.

V. EXPONENTIAL COST, LINEAR DELAY CIRCUIT

Our first solution follows a brute-force approach:
(1) Determine the unary encodings of each input.
(2) Take the bitwise OR or AND, respectively (cf. Fact IV.2).
(3) Determine the Gray code of the results.

The third step is straightforward, exploiting that each bit of
the unary encoding affects only a single bit of the Gray code.
Hence, we do not need to worry about containing metastability
and may simply use XOR trees (one for each output bit) for
the conversion, resulting in fewer than N additional gates for
maxrg and minrg each; the depth is smaller than logN .

Hence, it remains to design a circuit that determines the
unary encoding of a given valid B-bit Gray code string.
Our goal in this section is to implement such a circuit with
O(N) = O(2B) gates and combinational logic of depth O(B)
in a metastable-containing fashion. The formal specification of
the required circuit is as follows:

Definition V.1. Let N = 2B , where B ∈ N. A metastability-
containing rg2un(B) circuit meets the following specification.
• Input: g ∈ SBrg ,
• Output: u ∈ SN−1un ,
• Functionality: u = unN−1(〈g〉rg)

The following structural lemma will give rise to an efficient
rg2un(B) circuit.

Lemma V.2. For g ∈ SBrg and i ∈ {1, . . . , N − 1},

unN−1(〈g〉rg)[i] =
g[1] + unN/2−1(〈g[2 : B]〉rg)[i] if i < N

2

g[1] if i = N
2

g[1] ·
(
¬ rev(unN/2−1(〈g[2 : B]〉rg))

[
i− N

2

])
if i > N

2 ,

where

rev(x) := x[N − 1]x[N − 2] . . . x[1] and

¬x := (1− x[1])(1− x[2]) . . . (1− x[N − 1]) .

Proof. Let x := 〈g〉rg. We make a case distinction by g[1].
Case g[1] = 0: By Lemma II.11, x ≤ N/2 − 1 and
g[2 : B] = rgB−1(x). The claim follows, as unN−1(x) =
unN/2−1(x)0N/2 for x ≤ N/2− 1.
Case g[1] = 1: By Lemma II.11, x ≥ N/2 and g[2 : B] =
rgB−1(N − x− 1). Thus,

¬ rev(unN/2−1(〈g[2 : B]〉rg))
II.4
= ¬ rev

(
unN/2−1(〈rgB−1(N − x− 1)〉rg)

)
= ¬ rev

(
unN/2−1(N − x− 1)

)
= unN/2−1(x−N/2) .

The claim follows, as unN−1(x) = 1N/2 unN/2−1(x −N/2)
for x ≥ N/2.
Case g[1] = M : x = (N−1)/2 and g[2 : B] = rgB−1(N/2−
1) by Lemma II.11. Thus, unN/2−1(〈g[2 : B]〉rg) = 1N/2−1.
The claim follows, as unN−1(x) = 1N/2−1M0N/2−1.



N − 1

u[1 : N − 1]

g[1 : B]

B

B − 1

g[2 : B]

ũ[1 : N/2− 1]

g[1] g[1] g[1] g[1]g[1]g[1]g[1]

u[2]

N/2− 1

ũ[1] ũ[2] ũ[N/2− 1]

u[N/2− 1] u[N/2 + 2]u[N/2 + 1]

u[N/2]

ũ[N/2− 1] ũ[1]ũ[N/2− 2]

u[N − 1]u[1]

rg2un(B − 1)

Fig. 2. Recursive implementation of rg2un(B) derived from Lemma V.2.

Lemma V.2 yields a straightforward recursive circuit of size
O(N) that constructs unN−1(〈g〉rg) from B-bit Gray code
inputs g, depicted in Figure 2.

Corollary V.3. The combinational circuit depicted in Figure 2
implements the specification of rg2un(B) from Definition V.1.
The delay and cost of this circuit are:

delay(rg2un(B)) = B · (delay(AND) + delay(NOT)) (1)
cost(rg2un(B)) =(

2B −B − 1
)

(2 cost(AND) + cost(NOT)) (2)

Proof. Correctness follows from Lemma V.2. As delay and
cost of AND and OR gates are identical, delay and cost admit
the following recurrences:

delay(rg2un(0)) = 0

delay(rg2un(B)) = delay(rg2un(B − 1))+

delay(AND) + delay(NOT)

cost(rg2un(0)) = 0 ,

cost(rg2un(B)) = cost(rg2un(B − 1))+(
2B−1 − 1

)
(2 cost(AND) + cost(NOT))

Remark V.4. The fan-out of the input bit g[i] is N/2i−1− 1,
where 1 ≤ i ≤ logN = B. This can be reduced to a constant
fan-out by standard techniques, e.g., buffer/inverter trees. This
increases the cost of the circuit by less than a factor of 2,
without affecting the depth.

Overall, we arrive at an implementation of 2-sort(B) with
the following properties.

Theorem V.5 (Brute-force Approach). There is a combi-
national circuit implementing the specification of 2-sort(B)
given in Definition IV.3. Its delay and cost are:

delay(2-sort(B)) = delay(rg2un(B)) + delay(AND)+

delay(XOR) · (B − 1) (3)
cost(2-sort(B)) = 2 · (cost(rg2un(B))+

(2B − 1) · cost(AND) + (2B −B − 1) · cost(XOR)) (4)

VI. POLYNOMIAL COST, LINEAR DELAY CIRCUIT

In the previous section, we saw that a metastability-
containing comparator circuit of size O(2B) exists for B-bit
reflected binary Gray code inputs. However, exponential-size
circuits are not practical for more than a few input bits. Also,
this solution seems fairly pointless: What good does it do for
the TDC to produce an efficient representation like a Gray
code, if we return to unary encoding for meaningful compu-
tation? It would be preferable to stick to unary encodings,
for which computing maxun and minun is trivial, even when
facing metastability.

In this section, we improve on the brute-force approach and
obtain a circuit of size O(B2) and depth O(B).

High-Level Description

We devise a recursive scheme that can directly operate on
the Gray code representation. To avoid “amplifying” metasta-
bility by “infecting” bits of the output that can be correctly
computed, it cannot readily branch on the first bit of the code:
if the control logic becomes metastable, the branches may
produce metastable outputs without need, which ultimately
would corrupt the output irreversibly.



We avoid this problem by considering all possible stable
values of the first bits of the two inputs g and h (00, 01,
10, and 00), determining the respective outcomes, and then
selecting from these results in a safe way. Roughly speaking,
if, say, h[1] = M , then Lemma II.11 shows that h[2 : G] =
rgB−1(N/2 − 1), and we can exploit this to show that the
recursive call computes the same results both for the h[1] = 0
and the h[1] = 1 branch. Hence, “all” we need to do is to
feed the results into a multiplexer that uses g[1] and h[1] as
control bits and has the property that if the inputs between
which a metastable control bit selects are identical, the output
is stable.

Standard multiplexer circuits do not have this property,
so the first step is to devise such a metastability-containing
multiplexer (CMUX).

A. Metastability-containing Multiplexers

The logic table and an implementing circuit of a (2 : 1)−
CMUX (i.e., selecting between two inputs using one control
bit) are depicted in Figure 3. The vital difference to a standard
multiplexer is that it outputs a ∗ b in case the control bit s is
metastable; a standard multiplexer may yield metastable output
if s is metastable, even if a and b agree, i.e., the selection does
not actually matter. We use the convention that a CMUX that
selects among inputs of length B each is denoted by CMUX(B)
(as it is simply B copies of a CMUX).

ab

s
0 1 M

00 0 0 0
01 0 1 M
10 1 0 M
11 1 1 1
0M 0 M M
M0 M 0 M
1M 1 M M
M1 M 1 M
MM M M M

b

a

s

o

Fig. 3. Top: Output of a metastability-containing (2 : 1) − CMUX, whose
single control bit s is used to select between two inputs a and b. Bottom:
Implementation of a (2 : 1)− CMUX using AND gates and an OR(3) gate.

We generalize this principle to 2 control bits, i.e., selection
between 4 inputs. This is done in a straightforward way, as
depicted in Figure 4.

Lemma VI.1. The circuit shown in Figure 4 implements the
specification of a metastability-containing (4 : 1) − CMUX
given in the logic table.

Proof. By checking all cases, first for the 1-bit multiplexer
given in Figure 3, and then for the (4 : 1)− CMUX based on
the specification of a 1-bit multiplexer.

B. 2-sort(B) Implementation

We are now ready to implement the high-level idea outlined
earlier. We show that using the first bits of the two Gray code
inputs g and h as control bits, we can feed suitable inputs to
the CMUX to determine the correct output recursively.

s
t 0 1 M

0 a b a ∗ b
1 c d c ∗ d
M a ∗ c b ∗ d a ∗ b ∗ c ∗ d

t

st

d

c

b

a

o

(2 : 1)−cmux

(2 : 1)−cmux

(2 : 1)−cmux

Fig. 4. Top: output of a (4 : 1) − CMUX. The control bits are s and t, the
selectable inputs are a, b, c, d. Bottom: Implementation using (2 : 1)−CMUX.

Lemma VI.2. Let g, h ∈ {0, 1}B . Then, for i ∈ {1, . . . , B},

maxrg{g, h}[i] =

{
g[1] +h[1] if i = 1

fB−1(g, h)[i] otherwise ,

where fB−1(g, h) is the output of a (4 : 1)−CMUX with inputs

a = maxrg{g[2 : B], h[2 : B]}
b = h[2 : B]

c = g[2 : B]

d = minrg{g[2 : B], h[2 : B]}
s = g[1]

t = h[1] .

Proof. From Lemma II.11 and Definition IV.1, we see that
maxrg{g, h}[1] = g[1] +h[1]. Hence, we need to show that
fB−1(g, h) = maxrg{g, h}[2 : B], which we show by
induction on B. The base case B = 1 being trivial, consider
the step from B − 1 to B > 1. If g[1], h[1] ∈ {0, 1},
checking the cases using Lemma II.11, Definition IV.1, and
the induction hypothesis, the claim readily follows.

Hence, assume w.l.o.g. that h[1] = M . By Lemma II.11 it
follows that h[2 : B] = rgB−1(N/2−1), i.e., h[2 : B] encodes
the maximum value that can be represented by a (B − 1)-bit
Gray code. Therefore,

maxrg{g[2 : B], h[2 : B]} = h[2 : B] and (5)
minrg{g[2 : B], h[2 : B]} = g[2 : B] . (6)

We distinguish three cases, based on g[1].
Case g[1] = 0: By Lemma II.11, 〈g〉rg ≤ N/2−1 < 〈h〉rg, i.e.,
maxrg{g, h} = h. By the specification of the (4 : 1)− CMUX,
fB−1(g, h) = a ∗ b = h[2 : B], as a = b = h[2 : B] by (5).
Case g[1] = 1: By Lemma II.11, 〈g〉rg ≥ N/2 > 〈h〉rg, i.e.,
maxrg{g, h} = g. By the specification of the (4 : 1)− CMUX,
fB−1(g, h) = c ∗ d = g[2 : B], as c = d = g[2 : B] by (6).



2-sort(B−1)

(4 :1)−cmux(B−1)

2-sort(B)

h[1 : B]

g[1 : B]

(4 :1)−cmux(B−1)

g′[1 : B]

h′[1 : B]

22

B

B

B

B

g′[1]

h′[1]

h[1]

g[1]

h[1]

g[1]

B − 1

B − 1
h′′

g′′

h[2 : B]

g[2 : B]

h′[2 :B]g′[2 :B]

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

g[2 :B]

h[2 :B]

h[2 :B]

g[2 :B]

B

B

B − 1
h′′

g′′

B − 1

(g[1], h[1]) (g[1], h[1])

g′′

h′′

Fig. 5. Recursive implementation of 2-sort(B) derived from Lemmas VI.2 and VI.3.

Case g[1] = M : By Lemma II.11, 〈g〉rg = (N − 1)/2 =
〈h〉rg, i.e., g = h. In particular, maxrg{g[2 : B], h[2 : B]} =
minrg{g[2 : B], h[2 : B]} = g[2 : B] = h[2 : B], i.e., we have
that a = b = c = d. By the specification of the (4 : 1)−CMUX,
fB−1(g, h) = a ∗ b ∗ c ∗ d = maxrg{g, h}[2 : B].

An analogous statement applies to minrg.

Lemma VI.3. Let g, h ∈ {0, 1}B . Then, for i ∈ {1, . . . , B},

minrg{g, h}[i] =

{
g[1] ·h[1] if i = 1

f ′B−1(g, h)[i] otherwise ,

where f ′B−1(g, h) is the output of a (4 : 1)−CMUX with inputs

a = minrg{g[2 : B], h[2 : B]}
b = g[2 : B]

c = h[2 : B]

d = maxrg{g[2 : B], h[2 : B]}
s = g[1]

t = h[1] .

Leveraging this recursive structure, we obtain a different
2-sort(B) implementation (see Figure 5), whose properties
are summarized in the following theorem.

Theorem VI.4. The circuit depicted in Figure 5 implements
the specification of 2-sort(B) given in Definition IV.3. The
delay and cost of this circuit are:

delay(2-sort(B)) = (B − 1) · (delay(AND)+

2 · delay(CMUX)) + delay(AND) , (7)

cost(2-sort(B)) = 3 · (B − 1)2 · cost(CMUX)+

B · (cost(AND) + cost(OR)) . (8)

TABLE III
SUMMARY OF COST AND DELAY OF THE IMPLEMENTATIONS OF 2-sort(B)

GIVEN IN THEOREM V.5 (EXP.) AND THM. VI.4 (POLY.).

B Circuit # Gates # Trans. Delay

B = 2
Exp. 14 80 13
Poly. 19 108 22

B = 4
Exp. 118 664 25
Poly. 143 804 60

B = 8
Exp. 2486 13928 49
Poly. 751 4212 136

B = 16
Exp. 655222 3669256 87
Poly. 3407 19092 288

Proof. Correctness follows from Lemmas VI.2 and VI.3. Cost
and delay admit the following recurrences:

delay(1) = delay(AND) ,

delay(B) = delay(B − 1)+

2 · delay(CMUX) + delay(AND)

cost(1) = 2 · cost(AND) ,

cost(B) = cost(B − 1) + 2 · 3 · (B − 1) · cost(CMUX)+

2 · cost(AND) .

VII. COMPARISON BETWEEN OUR TWO
IMPLEMENTATIONS

Table III shows the delay and cost for the two implemen-
tations for the 2-sort(B) presented in this paper, neglecting
the issue of large fanout for the exponentially sized solution.
Note that the effect of reducing the fanout is small for the
polynomially sized solution: each bit has fanout O(B), and
no large fanouts appear on the critical paths determining the
delay. Hence, the comparison is in favor of the exponentially
sized circuit w.r.t. gate and transistor counts, while it slightly
favors the polynomially sized solution w.r.t. delay. This makes
the results simple to interpret: the exponentially sized solution



TABLE IV
GATE AND TRANSISTOR COUNTS FOR METASTABILITY-CONTAINING SORTING NETWORKS WITH n ∈ {4, 7, 10} B-BIT INPUTS DERIVED FROM OUR

IMPLEMENTATIONS OF 2-sort(B).

B Circuit 4-sort 7-sort 10-sort
#Gates #Trans. #Gates #Trans. #Gates #Trans.

B = 2
Exp. 65 370 179 1010 311 1750
Poly. 95 540 304 1728 551 3132

B = 4
Exp. 535 2990 1393 7654 2377 12986
Poly. 715 4020 2288 12864 4147 23316

B = 8
Exp. 11195 62230 28661 156158 48629 263122
Poly. 3755 21060 12016 67392 21779 122148

B = 16
Exp. 2948515 16380710 7535197 41017966 12777133 69062594
Poly. 17035 95460 54512 305472 98803 553668

has a factor 2 to 3 smaller delay, but the polynomially sized
solution has dramatically smaller transistor counts even for
moderate B = 8.

Note that for, e.g., B = 4, the polynomial-size solution
provides little gain over the exponential-size solution (even
after taking into account that fanout needs to be reduced).
Thus, it can be beneficial to use hybrid solutions, where a few
bits are handled by the brute-force solution. This will reduce
the depth of the circuit without increasing transistor counts
noticeably.

A. Application: Sorting Networks of Valid Gray Code Strings
We now consider the application of these two implementa-

tions in the context of sorting networks. Suppose the sorting
network has n channels, i.e., we sort n strings. The inputs are
valid Gray code strings of length B. The output of the sorting
network are the n input strings, sorted according to the order
induced by g < h⇔ 〈g〉rg < 〈h〉rg.

Codish et. al [6] showed the optimality of previous designs
of sorting networks [7], [8]. Hence, together with the known
optimality of Knuth’s sorting networks for networks with up
to 8 channels [9], the optimality of sorting networks with up
to 10 channels is known.

In our context, we are specifically interested in sorting
networks with n = 3f + 1 channels for some f ∈ N, as
this is the minimum number of nodes required to tolerate
f faulty nodes in the clock synchronization by Lynch and
Welch [4]. In Table IV, we list sorting networks with 4, 7,
and 10 channels, for which the optimal implementation uses
5, 16 and 29 modules of 2-sort(B) circuits, respectively.

Although the brute-force implementation is more costly in
terms of transistors, we note that the translation from Gray
code to unary encoding and vice versa needs to be done
only once for each input. This reduces the transistor count for
the brute-force solution notably, which we took into account
in Table IV. Thus, in particular for larger values of n, the
polynomial size solution is outperformed for small values of
B of roughly up to 4. For B ≥ 8, the asymptotics clearly kick
in and result in a dramatic gap for all considered values of n.

VIII. DISCUSSION

In this paper we considered metastability-containing com-
binational circuits sorting Gray code inputs. Our input speci-

fication aligns with the outputs generated by a TDC, allowing
for computations to take place before metastability is resolved.
In fact, this enables to perform all computations required by
the Lynch-Welch synchronization algorithm [4] without the
need for synchronizers. The resulting circuit deterministically
contains metastability, without any loss of precision.

We devised a rigorous formalism that enabled us to prove
the correctness of our designs in the context of metastability.
We believe that this theoretical basis will prove useful beyond
the applications considered in this paper.

The main open questions this paper raises are:
• What is the optimum cost of the 2-sort(B) primitive?
• What is the minimum delay of the 2-sort(B) primitive?
• Are better trade-offs feasible than achieved in this work?
• Are there other powerful basic primitives that can be

efficiently realized in a metastability-containing way?

ACKNOWLEDGEMENTS

We thank Matthias Függer for proposing the metastability-
containing (2 : 1)− CMUX given in Figure 3.

REFERENCES

[1] L. Marino, “General Theory of Metastable Operation,” IEEE Transactions
on Computers, vol. C-30, no. 2, pp. 107–115, 1981.

[2] C. Dike and E. Burton, “Miller and Noise Effects in a Synchronizing
Flip-Flop,” Solid-State Circuits, vol. 34, no. 6, pp. 849–855, 1999.

[3] S. Beer, R. Ginosar, M. Priel, R. R. Dobkin, and A. Kolodny, “The
Devolution of Synchronizers,” in Proc. Symposium on Asynchronous
Circuits and Systems (ASYNC), 2010, pp. 94–103.

[4] J. L. Welch and N. A. Lynch, “A New Fault-Tolerant Algorithm for Clock
Synchronization,” Information and Computation, vol. 77, no. 1, pp. 1–36,
1988.

[5] R. B. Staszewski, S. Vemulapalli, P. Vallur, J. Wallberg, and P. T. Balsara,
“1.3 V 20 ps Time-to-Digital Converter for Frequency Synthesis in 90-
nm CMOS,” IEEE Trans. on Circuits and Systems, vol. 53, no. 3, pp.
220–224, 2006.

[6] M. Codish, L. Cruz-Filipe, M. Frank, and P. Schneider-Kamp, “Twenty-
five comparators is optimal when sorting nine inputs (and twenty-nine
for ten),” in Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th
International Conference on. IEEE, 2014, pp. 186–193.

[7] K. E. Batcher, “Sorting networks and their applications,” in Proceedings
of the April 30–May 2, 1968, spring joint computer conference. ACM,
1968, pp. 307–314.

[8] D. E. Knuth, “The art of computer programming vol. 3: Sorting and
searching,” 1998.

[9] R. W. Floyd and D. E. Knuth, “The bose-nelson sorting problem,” A
survey of combinatorial theory, pp. 163–172, 1973.


