
Parallel Balanced Allocations:
The Heavily Loaded Case

Christoph Lenzen
clenzen@mpi-inf.mpg.de

MPI for Informatics

Merav Parter
merav.parter@weizmann.ac.il

Weizmann Institute

Eylon Yogev
eylony@gmail.com

Technion

Abstract
We study parallel algorithms for the classical balls-into-bins
problem, in which m balls acting in parallel as separate agents
are placed into n bins. Algorithms operate in synchronous
rounds, in each of which balls and bins exchange messages
once. The goal is to minimize the maximal load over all bins
using a small number of rounds and few messages.

While the case of m = n balls has been extensively studied,
little is known about the heavily loaded case. In this work,
we consider parallel algorithms for this somewhat neglected
regime of m ≫ n. The naïve solution of allocating each ball to
a bin chosen uniformly and independently at random results
in maximal load m/n + Θ(

√
m/n · log n) (for m ≥ n log n)

with high probability (w.h.p.). In contrast, for the sequential
setting Berenbrink et al. [5] showed that letting each ball join
the least loaded bin of two randomly selected bins reduces
the maximal load to m/n + O(log log m) w.h.p. To date, no
parallel variant of such a result is known.

We present a simple parallel threshold algorithm that
obtains a maximal load of m/n + O(1) w.h.p. within
O(log log(m/n) + log∗ n) rounds. The algorithm is symmet-
ric (balls and bins all “look the same”), and balls send O(1)
messages in expectation. The additive term of O(log∗ n) in
the complexity is known to be tight for such algorithms [10].
We also prove that our analysis is tight, i.e., algorithms of
the type we provide must run for Ω(min{log log(m/n), n})
rounds w.h.p.

Finally, we give a simple asymmetric algorithm (i.e., balls
are aware of a common labeling of the bins) that achieves a
maximal load of m/n + O(1) in a constant number of rounds
w.h.p. Again, balls send only a single message per round, and
bins receive (1 + o(1))m/n + O(log n) messages w.h.p. This
goes to show that, similar to the case of m = n, asymmetry
allows for highly efficient solutions.

ACM Reference Format:
Christoph Lenzen, Merav Parter, and Eylon Yogev. 2019. Parallel
Balanced Allocations: The Heavily Loaded Case. In 31st ACM Sym-
posium on Parallelism in Algorithms and Architectures (SPAA ’19), June

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies bear this
notice and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6184-2/19/06. . . $15.00
https://doi.org/10.1145/3323165.3323203

22–24, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3323165.3323203

1 Introduction
We consider simple parallel algorithms for the heavily loaded
regime of the well-known balls into bins problem. When m
balls are thrown randomly into n bins, the maximal load can
be bounded by m/n + Θ(

√
log n · m/n) with high probability

(w.h.p.)1 for any m = Ω(n log n) (e.g., by Chernoff’s bound).
In the balanced case, i.e., for m = n, it was demonstrated that
parallel communication between balls and bins can consid-
erably improve this load using a small number of messages
and rounds. In contrast, for the m ≫ n regime, to this point,
there was no (communication efficient) parallel algorithm
that outperforms the naïve random allocation.

In this paper, we ask how to leverage communication to
improve the maximal load for this heavily loaded case. We
are in particular intrigued by the number of communication
rounds required to achieve the almost perfect maximal load
of m/n + O(1). We focus primarily on algorithms which are
symmetric (bins are anonymous) and use few messages.

The Classical Setting of Balls into Bins. Balls into bins and
related problems have been studied thoroughly in a wide
range of models. The high-level goal of any balls-into-bins
algorithm is to allocate “efficiently” a set of items (e.g., jobs,
balls) to a set of resources (machines, bins). The naïve single-
choice algorithm places each ball into a bin chosen indepen-
dently and uniformly at random. It is well-known that for
m = n this achieves a maximal load of O(log n/ log log n)
with high probability. In a seminal work, Azar et al. intro-
duced the multiple-choice paradigm, in which the balls are
placed into bins sequentially one by one, and each ball is allo-
cated to the least loaded among d ≥ 2 randomly selected bins.
They showed that this algorithm achieves, w.h.p., a maximal
load of O(1 + log log n/ log d), an exponential improvement
over the single choice algorithm.

Adler et al. [1] introduced the parallel framework for the
balls-into-bins problem, with the objective of parallelizing
this sequential multiple choice process. They restricted atten-
tion to simple and natural parallel algorithms that are both
(i) symmetric: all balls and bins run the same algorithms, and
bins are anonymous; and (ii) non-adaptive: each ball picks
a set of d bins uniformly and independently at random and
communicate only with these bins throughout the protocol.

1Throughout this work, we say that an event happens with high probability if
it succeeds with probability of at least 1 − 1/nc for any constant c ≥ 1.

https://doi.org/10.1145/3323165.3323203
https://doi.org/10.1145/3323165.3323203

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA Christoph Lenzen, Merav Parter, and Eylon Yogev

They showed that such symmetric and non-adaptive algo-
rithms can achieve a total load of Θ(log log n/ log log log n)
with the same number of rounds.

Lenzen and Wattenhofer [10] relaxed the non-adaptivity
constraint, and presented an adaptive and symmetric algo-
rithm that obtains a bin load of 2, w.h.p., within O(log∗ n)
rounds and using a total of O(n) messages. Again, this is
tight for this class of algorithms, and dropping any of the
constraints the lower bound imposes leads to constant-round
solutions.

The Heavily Loaded Case of Balls into Bins. It has been
noted in the literature that the m ≫ n regime of the balls
into bins problem is fundamentally different than the case
where m = n; this explains why attempts to extend the
analysis of existing m = n algorithms to the heavily loaded
case mostly fail [5, 15]. In a breakthrough result, Berenbrink
et al. [5] provided an ingenious analysis for the multiple
choice process in the heavily loaded regime. They showed
that when balls are allowed to pick the best among 2 random
choices, the bin load becomes m/n + O(log log n) with high
probability. Thus the 2-choice process super-exponentially
improves the excess bin load compared to the single choice
random allocation and makes it independent of m.

To the best of our knowledge, there has been no work that
parallelizes this sequential process in a similar manner as has
been done by Adler et al. and others for the m = n case.2 As
a result, no better parallel algorithm has been known for this
regime other than placing balls randomly into bins.

Our Results. We propose a very simple threshold algorithm
(cf. [1]) that appears to be suitable for the heavily loaded
regime. In every synchronous round r of our algorithm, each
unallocated ball sends a join-request to a bin chosen uni-
formly at random. Bins will accept balls up to a load of Tr
(a threshold that increases with r). Thus, a bin with load ℓ at
the beginning of round r acknowledges up to Tr − ℓ requests
(chosen arbitrarily among all received requests) and declines
the rest. We show that such a simple algorithm achieves a
maximal load of m/n+O(1) within O(log log(m/n)) rounds
with high probability.

Theorem 1. There exists a parallel symmetric and adaptive
algorithm of O(log log(m/n) + log∗ n) rounds that achieves max-
imal load of m/n +O(1) with high probability. The algorithm uses
a total of O(m) messages, w.h.p.

Note that, trivially, one can place all balls within n rounds,
by each ball approaching each bin once (and bins using thresh-
olds of Lr = ⌈m/n⌉ in all rounds). Thus the above time bound
is of interest whenever log log(m/n) ≫ n.

The technically most challenging part is our lower bound
argument. We consider a special class of threshold algorithms
to which our algorithm belongs. This class consists of all

2We note that Stemann [14] considers the possibility that m > n, but provides
algorithms for load O(m/n) only; for almost the entire range of parameters,
the naïve algorithm or using multiple instances of algorithms for m ≤ n yields
better results.

threshold algorithms in which in every round, every (un-
allocated) ball contacts O(1) bins sampled uniformly and
independently at random. This class generalizes our algo-
rithm in two ways. First, it allows a ball to contact O(1) bins
per round instead of only 1 (as in the main phase of our
algorithm). Second, it allows bins to have distinct threshold
values, which can depend on the state of the entire system in
an arbitrary way.

Theorem 2. Any threshold algorithm in which in each round
balls choose O(1) bins to contact uniformly and independently at
random w.h.p. runs for Ω(min{log log(m/n), 2nΩ(1)}) rounds or
has a maximal load of m/n + ω(1).

This theorem applies to the algorithm of Theorem 1,
but not to the trivial n-round algorithm mentioned above.
We conjecture that any threshold algorithm runs for
Ω(min{log log(m/n), n}) rounds or incurs larger loads, but
a proof seems challenging due to the obstacles imposed by
balls using differing probability distributions for deciding
which bins to contact.

Asymmetric Algorithms. In the asymmetric setting, all bins
are distinguished based on globally known IDs, which can
be rephrased as all balls’ port numberings of bins being con-
sistent. A perfect allocation can be obtained trivially in this
setting, simply by letting all balls contact the first bin, which
then can send to each ball the bin ID to which it should
be assigned. To rule out such trivial solutions, one should
restrict attention to algorithms in which no bin receives (sig-
nificantly) more messages than necessary. Concretely, bins
should receive no more than (1 + o(1))m/n + O(log n) mes-
sages; as with constant probability some bin will receive
m/n +

√
m/n + log n messages even if each ball sends a sin-

gle message, this is the best we can hope for.

Theorem 3. There exists a parallel asymmetric algorithm that
achieves a maximal load of m/n+O(1) within O(1) rounds w.h.p.,
where each bin receives a total of (1 + o(1))m/n + O(log n) mes-
sages w.h.p.

This goes to show that, similar to the case of m = n, asym-
metry allows for highly efficient solutions. In what follows,
we give a high-level overview of the proofs of Theorems 1
and 2. The full proof of Theorem 3 is given in Appendix A.

Additional Related Work. Following [3], multiple-choice al-
gorithms have been studied extensively in the sequential
setting. For instance, [16] considered a variant of this setting
where the selections made by balls are allowed to be nonuni-
form and dependent. The works [11, 13] have studied the
effect of memory when combined with the multiple choice
paradigm and showed that a choice from memory is asymp-
totically better than a random choice. The analysis of the
multiple choice process for the heavily loaded case was first
provided by [5] and considerably simplified by [15]. See [17]
for a survey on sequential multiple-choice algorithms.

Turning to the distributed/parallel setting, [12] studied
distributed load balancing protocols on general graph topolo-
gies. [4] considers a semi-parallel framework for balls into

Parallel Balanced Allocations:
The Heavily Loaded Case SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

bins, in which the balls arrive in batches rather than one
by one as in the sequential setting. [2] consider a variant of
the balls-into-bins problem, namely, the renaming problem
and the setting of synchronous message passing with failure-
prone servers. Finally, [7] introduced a general framework for
parallel balls-into-bins algorithms and generalizes some of
the algorithms analyzed in [10].

1.1 Our Approach in a Nutshell.

The Symmetric Algorithm. To get some intuition on thresh-
old algorithms, we start by considering the most naïve al-
gorithm, in which each bin agrees to accept at most T =
m/n + O(1) balls in total, without modifying its threshold
over the course of the algorithm. That is, in every round each
unallocated ball picks a bin uniformly and independently at
random, each bin agrees to accept at most T balls in total, and
rejects the rest. Clearly, the final load of each bin is bounded
by T and hence it remains to consider the running time of
such an algorithm. One can show that, w.h.p., after a single
round a constant fraction of the bins are going to be full (i.e.,
contain T balls). Hence, the probability of an unallocated ball
to contact a full bin in the following rounds is constant. This
immediately entails a running time lower bound of Ω(log n),
even if the balls may contact a constant number of bins per
round.

The crux idea of our symmetric algorithm is to set the
threshold lower than the allowed bin load (e.g., in the first
round we set T = m/n − (m/n)2/3). At first glance, this
seems unintuitive as a bin might reject balls despite the fact
that it still has room. The key observation here is that setting
the threshold a bit smaller than the allowed load keeps all bins
equally loaded throughout the algorithm, yet permits placing
all but a few of the remaining balls in each step. This prevents
the situation where an unallocated ball blindly searches for
a free bin in between many occupied bins. Crunching the
numbers shows that this approach reduces the number of
remaining balls to O(n) in O(log log(m/n)) rounds, after
which the established techniques for the case of m = n can
be applied.

The Lower Bound. Our lower bound approach considers a
natural family of threshold algorithms, which in particular
captures the above algorithm. Every algorithm is this family
has the following structure. In each round i, every unallocated
ball picks O(1) bins independently and uniformly at random.
Every bin j accepts up to Ti,j requests and rejects the rest. The
value Ti,j can be chosen non-deterministically by the bins.

This class is more general than our algorithm, in several
ways. Most significantly, it allows bins to have different thresh-
olds. The decision of these can depend on the system state
at the beginning of each round (excluding future random
choices of balls). Moreover, we allow for algorithms that “col-
lect” allocation requests from balls for several rounds before
allocating them according to the chosen threshold. While
this is not a good strategy for algorithms, is it useful in the
simulation part of the proof, which is explained next.

The proof follows in two steps. First, we prove the lower
bound for degree one algorithms (where balls contact a single
bin in each iteration) in the family described above. The
argument for this step is somewhat technical, and it is based
on focusing on one class of bins that have roughly the same
number of rejected balls in expectation. We show that one
can find such a class of bins which captures a large fraction
of the expected number of rejected balls. We then exploit the
fact that all bins in this class are roughly the same, which
allows us to provide concentration results for that class.

The second step is a simulation technique in which we
show how to simulate an algorithm with higher degree by
an algorithm from the above family. Roughly speaking, we
simulate a degree d algorithm by contacting a single bin over
d different rounds. Only after these d rounds the bins decide
which balls to accept. Here we crucially rely on the fact that
our lower bound for single degree algorithms includes such
algorithms.

2 Preliminaries
Definition 1 (With high probability (w.h.p.)). We say

that the random variable X attains values from the set S with high
probability, if Pr[X ∈ S] ≥ 1 − 1/nc for an arbitrary, but fixed
constant c > 0. More simply, we say S occurs w.h.p.

We use some theory on negatively associated random vari-
ables, which is given in [8].

Definition 2 (Negative Association). A set of random
variables X1, . . . , Xn is said to be negatively associated if for any
two disjoint index sets I, J ⊆ [n] and two functions f , g that are
both monotone increasing or both monotone decreasing, it holds
that

E
[

f (Xi : i ∈ I) · g(Xj : j ∈ J)
]
≤

E[f (Xi : i ∈ I)] · E
[

g(Xj : j ∈ J)
]

.

Lemma 1 (Chernoff Bound). Let X1, . . . , Xm be independent
or negatively associated random variables that take the value 1 with
probability pi and 0 otherwise, X = Σm

i=1Xi, and µ = E[X]. Then
for any 0 < δ < 1,

Pr[X < (1 − δ)µ] ≤ e−δ2µ/2

and
Pr[X > (1 + δ)µ] ≤ e−δ2µ/3.

If µ > 2 log m, with δ =
√

2 log m/µ we get that

Pr[X < µ −
√

2µ log m] ≤ 1/m,

and
Pr[X > µ +

√
3µ log m] ≤ 1/m.

Proposition 1 ([8], Proposition 7(2)). Non-decreasing (or
non-increasing) functions of disjoint subsets of negatively associated
variables are also negatively associated.

Our lower bound proof makes use of the following Berry-
Esseen inequality.

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA Christoph Lenzen, Merav Parter, and Eylon Yogev

Theorem 4 (Berry-Esseen Inequality [6, 9]). Let Yj, j ∈
{1, . . . , M}, be i.i.d. random variables with E

[
Yj

]
= 0, σ2 B

E
[
|Yj|2

]
> 0, and ρ B E

[
|Yj|3

]
< ∞, and let Y = ΣM

j=1Yj.

Denote by F the cumulative distribution functions of Y
σ
√

M
and

by φ the cumulative distribution function of the standard normal
distribution. Then

sup
s∈R

{|F(s)− φ(s)|} ≤ cρ

σ3
√

M
, for a constant c.

Symmetric Algorithm for m = n. Our algorithm for the
heavily loaded regime uses the algorithm of [10] for allocat-
ing n balls into n bins. We denote this algorithm by Alight.
Specifically, we use the following theorem.

Theorem 5. [From [10]] There exists a symmetric algorithm
for placing n balls into n bins with the following properties w.h.p.:
The algorithm terminates after log∗ n + O(1) rounds with bin
load at most 2. The total number of messages sent is O(n), where
in each round balls send and receive O(1) messages in expecta-
tion and O(log n) many with high probability. Finally, in each
round, bins send and receive O(1) messages in expectation and
O(log n/ log log n) many with high probability.

3 The Parallel Symmetric Algorithm
In this section, we describe our symmetric algorithm for
allocating m balls into n bins. We begin by describing the
precise model in which the algorithm works.

The Model. The system consists of m bins and n balls, and
operates in the synchronous message passing model, where
each round consists of the following steps.

(1) Balls perform local computations and send messages
to arbitrary bins.

(2) Bins receive these messages, perform local computa-
tions and send messages to any balls they have been
contacted by in this or earlier rounds.

(3) Balls receive these messages and may commit to a bin
(and terminate).

All algorithms may be randomized and have unbounded
computational resources; however, we strive for using only
very simple computations.

High-Level Description. The algorithm consists of two
phases. The first phase consists of O(log log(m/n)) rounds,
at the end of which the number of unallocated balls is O(n).
The second phase consists of O(log∗ n) rounds and completes
the allocation by applying Theorem 5 [10].

For simplicity, we will assume that all values specified in
the following are integers; as we aim for asymptotic bounds,
rounding has no relevant impact on our results. In our algo-
rithm, the threshold values of all bins are the same, but de-
pend on the current round. In the first round, all bins set their
threshold to T = m/n − (m/n)2/3, each ball picks a single
bin uniformly at random, and bins accept at most T balls and
reject the rest. Applying Chernoff’s bound, we see that w.h.p.
each bin is contacted by at least m/n −

√
10 log n · m/n > T

balls. Hence, each bin has exactly T allocated balls after the
first round. Accordingly, the number of unallocated balls after
the first round is m′ = m− T · n = O(m2/3n1/3). We continue
the same way in the second round, handling an instance with
m′ balls and n bins. It follows that the number of remain-
ing balls after i rounds is bounded by O(m(2/3)i

n1−(2/3)i
).

When m′ gets very close to n, i.e., m′ ∈ npolylog(n), concen-
tration is not sufficiently strong any more to guarantee that
all bins receive the desired number of balls. However, one can
show that w.h.p. this holds true for the vast majority of bins.
Overall, we show that after O(log log(m/n)) rounds, O(n)
unallocated balls remain.

At this point, we employ the parallel algorithm of Lenzen
and Wattenhofer [10], which takes additional O(log∗ n)
rounds. To this end, we let each bin act as O(1) virtual bins.
This way, at most O(1) additional balls will be allocated to
each bin, as the algorithm guarantees a maximum bin load of
2. We next describe the algorithm and its analysis in detail.

The Algorithm Aheavy:

(1) Set m̃0 = m.
(2) For i = 0, . . . , O(log log(m/n)) do:

(a) Each ball sends an allocation request to a uniformly
sampled bin.

(b) Set Ti =
m
n − (m̃i

n)
2
3 . Each bin accepts up to Ti − ℓi

balls, where ℓi is the load of the bin at the beginning
of the round.

(c) Set m̃i+1 = m̃2/3
i n1/3.

(3) At this point at most O(n) balls are unallocated (w.h.p.).
Run Alight for the remaining balls with each bin simu-
lating O(1) virtual bins.

Theorem 6. Algorithm Aheavy finishes after
O(log log(m/n) + log∗ n) rounds with maximal load of
m/n + O(1), w.h.p., using in total O(m) messages (over all
rounds). Each ball sends and receives O(1) messages in expec-
tation and O(log n) many w.h.p. Each bin sends and receives
(1 + o(1))m/n + O(log n) messages w.h.p.

Proof. For any round i of step (2), let mi be the number
of unallocated balls at the beginning of the round, and notice
that m̃i is the bin’s estimate of mi. Fix a round i. Let Xb be a
random variable indicating the number of balls that choose
bin b in round i (we suppress the round index for ease of
notation) and set T−1 B 0.

Observe that (m̃i/n)2/3 = m̃i+1/n. Moreover, mi ≥ m̃i, as
nTi−1 = m − n(m̃i−1/n)2/3 = m − m̃i balls can be allocated
by the end of round i − 1. We make frequent use of these
observations in the following. We start by bounding the prob-
ability that a bin gets “underloaded” in a given round, i.e.,
despite the conservatively small chosen threshold, it does not
receive sufficiently many requests to allocate Ti − Ti−1 balls
in round i.

Claim 1. P[Xb < Ti − Ti−1] < e−(
m̃i
n)1/3/2.

Parallel Balanced Allocations:
The Heavily Loaded Case SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

Proof. For all i, it holds that

Ti − Ti−1 =
m̃i
n

− m̃i+1
n

=
m̃i
n

−
(

m̃i
n

) 2
3

.

As mi ≥ m̃i, E[Xb] =
mi
n ≥ m̃i

n . Using a Chernoff bound with
δ = (mi

n)−1/3, we get that

Pr [Xb < Ti] ≤ Pr
[

Xb <
mi
n

−
(mi

n

) 2
3
]

= Pr [Xb < (1 − δ)E[Xb]] ≤ e−δ2E[Xb]/2

= e−(
m̃i
n)1/3/2 . �

Using this bound, we next show that each bin is allocated
balls to match its threshold in each round, at least until only
npolylog(n) balls remain.

Claim 2. Let i0 ∈ O(log log(m/n)) be minimal with the
property that m̃i0 ≤ nc3 log3 n for a sufficiently large constant c.
Then mi0 = m̃i0 w.h.p.

Proof. We apply Claim 1 to all bins and all i < i0. Using a
union bound over all such events, the probability that Xb <
Ti − Ti−1 in any such round for any bin is bounded by

Σi0−1
i=0 ne−(

m̃i
n)1/3/2 ∈ O

nΣi0−1
i=0 2−ie

−
(

m̃i0−1
n

)1/3

/2

⊆ ne−Ω(c log n) ⊆ n−Ω(c) .

Thus, w.h.p. each bin has exactly Σi0−1
i=0 Ti = m/n − m̃i0 /n

balls allocated to it at the end of round i0 − 1. Therefore,
mi0 = m̃i0 w.h.p. �

It remains to consider the final O(log log log n) iterations
required to reduce m̃i to O(n). As the number of balls is not
large enough anymore to ensure sufficient concentration for
individual bins, we consider the random variable Yi counting
the number of balls allocated to all bins together in round i.

Claim 3. Let i1 be minimal with the property that m̃i1 ≤ 2n.
For each round i0 ≤ i < i1 and any c > 0, it holds that Yi ≥
n
(

Ti − Ti−1 − f (c)2−(i1−i)
)

with probability at least 1 − n−c,

where f : R+ → R+.

Proof. Denote by Zb, b ∈ {1, . . . , n}, the indicator vari-
ables which are 1 if bin b receives fewer than Ti − Ti−1 alloca-
tion requests in round i and 0 else. By Claim 1 and linearity
of expectation, we have for Z = Σn

b=1Zi that

E[Z] ≤ e−(
m̃i
n)1/3/2n .

The random variables Zb are negatively associated (according
to Definition 2). To see this, observe that by [8, Theorem 13]
we know that X1, . . . , Xn are negatively associated: the Zb are
monotone nonincreasing functions of disjoint subsets of the
negatively associated variables X1, . . . , Xn (namely, Zb is a

function of the set {Xb}), so Proposition 1 applies. Therefore,
we can apply a Chernoff bound (with δ = 1) to Z:

Pr [Z > 2E[Z]] ≤ e−E[Z]/3 .

If E[Z] ≥ 3c log n for a sufficiently large constant c, this
entails that Z ≤ 2E[Z] w.h.p. Otherwise, we use a simple
domination argument: each Zb is replaced by an independent
0-1 variable Z′

b that is 1 with probability 3c log n/n, so that
for Z′ B Σn

b=1Z′
b we have that

Pr
[
Z > 2E

[
Z′]] ≤ Pr

[
Z′ > 2E

[
Z′]] ≤ e−c < n−c .

Together, this entails that Z ≤ 6c log n + 2e−(
m̃i
n)1/3/2n w.h.p.

As i ≥ i0 (where m̃i0 ∈ npolylog(n)), we have that 2i1−i ∈
2O(log log log n) and Ti − Ti−1 ≤ Ti ∈ polylog(n). Hence
6c log n(Ti − Ti−1) < f (c)2−(i1−i+1)n for a suitable choice

of f . As 2e−(
m̃i
n)1/3/2 decreases exponentially in m̃i/n, which

itself decreases exponentially in i, we also have that

2e−(
m̃i
n)1/3/2(Ti − Ti−1)n < 2e−(

m̃i
n)1/3/2 m̃i

n
< f (c)2−(i1−i+1)n

if f (c) is sufficiently large. Noting that Yi ≥ (Ti − Ti−1)(n −
Z), the claim follows. �

Claim 4. For any c > 0, mi1 ≤ g(c)n with probability at least
1 − n−c, where g : R+ → R+.

Proof. The number of unallocated balls at the begin-
ning of round i1 is mi1 = m − Σi1−1

i=0 Yi. By Claim 2, we
have that mi0 = m̃i0 w.h.p., i.e., Yi = (Ti − Ti−1)n for all
i < i0 w.h.p. For i0 ≤ i < i1, by Claim 3 we have that

Yi ≥ n
(

Ti − Ti−1 − f (c)2−(i1−i)
)

w.h.p., where c is the con-
stant in the w.h.p. bound. Accordingly, by a union bound it
holds that

mi1 ≤ m − n
(

Σi1−1
i=0 (Ti − Ti−1) + Σi1−1

i=i0
f (c)2−(i1−i)

)
< m − (m̃0 − m̃i1) + f (c)n ≤ (2 + f (c))n

with probability 1 − (i1 − i0 + 1)n−c. As i1 − i0 ∈
O(log log log n), mi1 ≤ g(c)n w.h.p. for a suitable choice of
g. �

Thus, after i1 ∈ O(log log(m/n)) iterations, at most g(c)n
balls remain unallocated w.h.p. We apply Alight, where each
of the n bins simulates g(c) virtual bins. That is, any ball
allocated in one of the g(c) virtual bins will be allocated in
the real bin. Finally, by the properties of Alight we have that
each virtual bin will have at most 2 balls and thus each real
bin will add at most 2g(c) balls. Overall, the total load of any
bin is m/n + O(1).

Number of Messages. We bound the number of messages
sent by balls and bins. The number of messages sent in step
3 is specified in Theorem 5. Thus, we analyze the messages
in step 2.

Each ball sends at most 1 message per round, thus a total
of mi in round i. Each round reduces the number of balls by

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA Christoph Lenzen, Merav Parter, and Eylon Yogev

at least a constant factor, cf. Claim 2 and Claim 3. Thus, the
total number of messages sent is bounded by a geometric
series, i.e., at most 2m messages are sent w.h.p. Moreover,
since all balls are identical we have that the expected number
of message sent by a ball is O(1). The probability that a single
ball sends more than ℓ message is at most 2ℓ. Thus, with high
probability, a ball sends at most O(log n) messages. As all
messages are sent to uniformly and independently random
bins, a standard Chernoff bound yields that each bin receives
(1 + o(1))m/n + O(log n) messages w.h.p. �

A Note on Success Probability. As described, Algorithm
Aheavy succeeds with high probability in n. As n may be a
constant, this probability bound could be a constant as well.
However, the case of n < log log(m/n) can be covered by a
trivial algorithm that deterministically guarantees a perfectly
balanced allocation in n rounds: balls try all bins one by one,
in arbitrary order (which may be different for each ball). Bins
use threshold m/n in each round. If n < log log(m/n), we
can apply this trivial algorithm within our round budget.
Combining both algorithms, we achieve a success probability
of 1 − o(1) for the entire parameter range.

4 Lower Bound for Threshold Algorithms
In this section, we present a lower bound for a special class of
threshold algorithms. Roughly speaking, the only limitation
that we pose here is that in each round unallocated balls pick
the bins they contact independently and uniformly at random
(as in our upper bound), and bins do not take decisions based
on random choices of balls in future rounds.

This class is more general than our algorithm, as it allows
bins to have different thresholds. The decision on these thresh-
olds can be an arbitrary function of the system state at the
beginning of the round (excluding future random choices of
balls); this does not affect the lower bound result. Moreover,
we allow for algorithms that “collect” allocation requests
from balls for k ∈ N rounds before allocating them according
to the chosen threshold. While this is not a good strategy for
algorithms, it is useful for generalizing our lower bound to
algorithms in which balls contact multiple bins in each round,
as it allows for a straightforward simulation argument.

The Family of Uniform Threshold Algorithms. The degree
of an algorithm is the maximal number of bins that a ball
contacts in a single phase. Formally, in this special threshold
model a degree d algorithm collecting for k rounds works in
phase i as follows. Bins and balls have each an internal state
σ. Decisions are a function of σ, which is updated after each
operation, and (private) randomness. We remark, however,
that the structure imposed by the algorithm actually entails
that the state of a non-allocated ball is simply a function of its
own randomness only, as it received no information beyond
all its requests being rejected.

In contrast, bins may perform more complex internal op-
erations. Denote by ℓb the load of bin b at the beginning of
phase i, i.e., the number of balls it has sent accept messages

to and which have not yet informed the bin that they are
allocated to another bin.

(1) Each bin b determines its threshold Tb for the current
phase. The decision on these thresholds is oblivious
to (i.e., stochastically independent from) the random
choices of balls in this and future phases.

(2) Based on its state, each ball u chooses (at most) dk bins
bu

1 , . . . , bu
dk uniformly and independently at random to

send allocation requests to. These requests are sent over
k rounds, i.e., at most d per round.

(3) Denote by Rb the set of balls sending a request to bin
b in this phase. In the last round of the phase, bin b
responds with accept messages to a subset of Rb of size
max{Tb − ℓ, |Rb|}. This set is chosen based on the bin’s
port numbers for the requesting balls3 and its internal
randomness, subject to the constraint that each ball is
accepted only once.

(4) Balls receive accept messages. They may decide on an
accepting bin to be allocated to (provided they received
at least one accept message so far) at the end of any
phase (i.e., they do not need to commit immediately),
where this phase is a function of the phase number in
which they received the first accept message.4

(5) Balls that selected a bin inform all bins that sent accept
messages to it about its decision at the end of the phase.

For technical reasons, we assume that bins port numbers are
chosen adversarially, i.e., first the randomness of balls and
bins is determined and then the port numbering is chosen.
Algorithms must achieve their load guarantees despite this;
note that our algorithms are capable of this.

The structure of this section is as follows. We first establish
in Section 4.1 the lower bound for degree 1 algorithms, i.e.,
threshold algorithms in which each unallocated ball contacts
one bin chosen independently and uniformly and random
(our algorithm falls within this class). Then, we extend the ar-
gument to any degree d algorithms for d = O(1) by providing
a simulation result.

4.1 Lower Bound for Degree 1 Algorithms
Our lower bound shows that any algorithm in the threshold
model, granted that balls choose bins uniformly at random,
must use a large number of rounds.

Theorem 7. Suppose M ∈ N balls each contact one of
2 ≤ n ∈ N bins independently and uniformly at random, where
M ≥ Cn for a sufficiently large constant C. If bin i ∈ {1, . . . , n}
accepts up to Li balls contacting it, where Σn

i=1Li ∈ M + O(n)
and Li does not depend on the balls’ randomness, with probability
at least 1 − e−Ω((n/t)2/3) the number of balls that is not accepted is
Ω(

√
Mn/t) for t = Θ(min{log n, log(M/n)}).

3For each bin, there is a bijection from {1, . . . , m} to the balls. Requests from
a ball are received on the respective port and responses are sent to the same
port. Balls have a port numbering of the bins for the same purpose.
4This is not a good idea for algorithms, but we use it in our lower bound for a
simulation argument.

Parallel Balanced Allocations:
The Heavily Loaded Case SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

Proof. Denote by µ = M/n the expected number of mes-
sages received by bin i. Fix a bin and denote by X(i) the
random variable counting the number of messages it receives.
Because each ball picks a bin uniformly and independently
at random, we have that

X(i) = ΣM
j=1Xj ,

where the Xj are independent 0-1 variables attaining 1 with
probability p = 1/n ≤ 1/2 (we omit i for ease of notation).
Our first goal is to provide a lower bound on the expected
number of rejected balls. To do that, we first analyze a single
bin and show the following:

Claim 5. Any bin has load at least µ + 2
√

µ with probability
p0 = Ω(1).

Proof. We apply the Berry-Esseen Inequality (see Theo-
rem 4) to the random variables Yj B Xj − p, j ∈ {1, . . . , M}.
Thus, σ =

√
p(1 − p) and ρ = p(1− p)(1− 2p(1− p)), yield-

ing that

sup
x∈R

{|F(x)− φ(x)|} ≤ c(1 − 2p(1 − p))√
p(1 − p)M

p≤1/2
≤ c(1 − p)√

p(1 − p)M
<

c√
pM

≤ c√
C

in the terminology of the theorem, where Y = ΣM
j=1Xj −µ, i.e.,

Y equals the deviation of the load of bin i from its expectation.
Thus, the theorem implies that for all x ≥ 0, we have that

Pr
[

Y ≥ x
√

µ

2

] p≤1/2
≥ Pr

[
Y ≥ x

√
(1 − p)µ

]
= Pr

[
Y ≥ xσ

√
M
]
≥ 1 − F(x)− c√

C
.

Choosing x = 2 ·
√

2 and using that C is sufficiently large, it
follows that

P
[

X(i) ≥ µ + 2
√

µ
]
∈ Ω(1) . �

Thus, we have shown that any bin has load at least µ +
2
√

µ with probability p0 ∈ Ω(1), causing it to reject at least
µ + 2

√
µ − Li balls (provided that µ + 2

√
µ ≥ Li).

Corollary 1. At least p0 ·
√

Mn balls are rejected in expecta-
tion for p0 ∈ Ω(1).

Proof. By Claim 5, the expected number of rejected balls
for bin i is at least p0 · max{µ + 2

√
µ − Li, 0}. Thus, by linear-

ity of expectation the expected number of rejected balls is at
least

p0Σn
i=1 max{µ + 2

√
µ − Li, 0}

≥ p0

(
M + 2

√
Mn − Σn

i=1Li

)
≥ p0

√
Mn ,

where the final step exploits that
√

Mn ≥
√

Cn with C being
sufficiently large. �

So far, we have shown that the expected number of rejected
balls is sufficiently large. One of the major obstacles for pro-
viding a concentration result comes from the fact that the
number of rejected balls might vary considerably between
bins (e.g., due to different threshold values). To overcome this,
our proof strategy is based on finding a sufficiently “heavy"
subset of bins that have roughly the same number of rejected
balls in expectation.

Towards that goal, for every bin i, we look at the value
Si B µ + 2

√
µ − Li and restrict attention to all bins satisfying

that Si > 0. These bins are now divided into classes where,
for k ∈ Z≥0, bin i ∈ Ik ⊆ {1, . . . , n} iff Si ∈ [2k, 2k+1). Let I∗

be the class of all bins with Si ∈ (0, 1).
The selection of the class of bins for which we will show

concentration is done in two steps. First, we find at most
t B min{⌈log n⌉, ⌈log(M/n)⌉+ 1} (plus 1) particular classes
that together capture at least half of the expected value of
rejected balls. Once we do that, we focus on the heaviest class
among these t classes, hence loosing only a factor of t in our
bounds. Concretely, denoting by kmax the largest value of k
such that Ikmax , ∅, the following holds.

Claim 6. Let kmin B max{kmax − ⌈log n⌉+ 1, 0}. Then the
expected number of rejected balls by bins i ∈ [kmin, kmax] is at least
p0
√

Mn/2. In addition, kmax − kmin ≤ t.

Proof. First, suppose that kmax ≤ t. Observe that the
total contribution of all bins i ∈ I∗ is at most n, since
Σi∈I∗Si ≤ n. By the prerequisite that M ≥ Cn for a suffi-
ciently large constant C, we may assume that C ≥ 4/p2

0 and
get that n ≤

√
Mn/C ≤ p0

√
Mn/2. As by Corollary 1 at

least p0
√

Mn balls are rejected in expectation, the classes
1, . . . , kmax capture at least half of this expectation.

Second, consider the case that kmax > t. We claim that this
entails that t = ⌈log n⌉, as t = ⌈log(m/n)⌉+ 1 would yield
for all i that

µ + 2
√

µ − Li ≤ µ + 2
√

µ =
M
n

+ 2

√
M
n

≤ 2M
n

≤ 2t ,

implying that kmax ≤ t. Therefore, indeed t = ⌈log n⌉ and
hence kmin = kmax − t. It follows that

Σi∈I∗Si + Σk<kmin Σi∈Ik
Si ≤ n · 2kmax

n
≤ Σi∈Ikmax

Si .

Using the same expression for the expected number of re-
jected balls as in the proof of Corollary 1, we get that

p0Σkmax
k=kmin

Σi∈Ik
Si ≥

p0
2
(
Σi∈I∗Si + Σk∈Z0 Σi∈Ik

Si
)

=
p0
2

Σn
i=1 max{µ + 2

√
µ − Li, 0} ≥ p0

√
M/n
2

balls are rejected in expectation by bins in classes kmin, kmin +
1, . . . , kmax. As in the first case kmax − kmin ≤ t − 0 = t and in
the second case kmax − kmin = t, this completes the proof. �

By the pigeonhole principle and Claim 6, there must be a
class k ∈ [kmin, kmax] satisfying that

p0Σi∈Ik
Si ≥

p0
√

Mn
2(t + 1)

.

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA Christoph Lenzen, Merav Parter, and Eylon Yogev

Denote by zi, i ∈ Ik, the indicator variables that are 1 iff X(i) ≥
µ + 2

√
µ − Li. By [8, Theorem 13] and Proposition 1 these

variables are negatively associated. Setting Z B Σi∈Ik
zi, we

have that E[Z] ≥ p0|Ik|, and by Chernoff’s bound (Lemma 1),
it follows that

Pr
[

Z <
p0|Ik|

2

]
≤ e−Ω(|Ik |) .

If |Ik| ≥ (n/t)2/3, then we have that with probability 1 −
e−Ω((n/t)2/3), the number of rejected balls is at least

2k−1 p0|Ik| ≥
p0
4

Σi∈Ik
Si ∈ Ω

(√
Mn
t

)
.

It remains to consider the case that |Ik| < (n/t)2/3. Because
up to factor 2 all bins in Ik have the same Si value, it holds
for each i ∈ Ik that

Si = µ + 2
√

µ − Li ∈ Ω

(√
Mn

t · |Ik|

)
. (1)

Let α B
√

µ · n/(t · |Ik|) >
√

µ · (n/t)1/3 >
√

µ =
√

M/n. By
Inequality (1) and because M ≥ Cn for sufficiently large C,

Li ≤ µ + 2
√

µ − 3α ≤ µ − α .

As Li ≥ 0, this bound also implies that δ B α/(2µ) ∈ (0, 1).
As X(i) is the sum of independent 0-1 variables, we can thus
apply Chernoff’s bound to X(i) to see that for sufficiently
large n,

Pr
[

X(i) − Li < α/2
]
≤ Pr

[
X(i) ≤ µ − α/2

]
≤ Pr

[
X(i) ≤ µ(1 − α/(2µ))

]
∈ e−Ω(n2/(t2·|Ik |2)) ∈ e−Ω((n/t)2/3) ,

where in the final step we use that Ik < (n/t)2/3. By a union
bound over all bins in Ik, we get that with probability 1 −
e−Ω((n/t)2/3), the number of rejected balls from this class is at
least Ω(|Ik| · α) ⊆ Ω(

√
Mn/t). �

Next, we complete the proof by we showing that any algo-
rithm with a higher degree (i.e., balls can contact more than
one bin in a single round) can be simulated by an algorithm
with degree 1 at the expense of more rounds.

4.2 Simulation for Higher Degree
In this subsection, we show that any algorithm with a higher
degree (i.e., balls can contact more than one bin in a single
round) can be simulated by an algorithm with degree 1 at
the expense of more rounds. To this end, we simply increase
the length of phases by factor d. We then proceed to show
that a degree 1 algorithm with phase length k > 1 can be
improved on by reducing the phase length. We then can apply
Theorem 7 to the resulting degree 1 algorithm of phase length
1 to prove Theorem 2.

Lemma 2. Let A be a uniform threshold algorithm of degree d
that runs in r rounds. Then there is a uniform threshold algorithm

A′ with degree 1 that achieves the same maximal load within d · r
rounds.

Proof. A′ simulates A. It simply increases phase length
by a factor of d and lets the balls send their messages spread
out over more rounds. This reduces the degree to 1. At the
end of each phase, the bins can compute the internal state
they would have in A and act accordingly. Thus, bin loads
will be identical to those in A. �

Lemma 3. There is a uniform threshold algorithm of degree 1
and phase length 1 achieving the same guarantees on bin loads in
the same number of rounds.

Proof. Assume that A has phase length k. We simulate
A by algorithm A′ of phase length 1. Balls and bins keep
maintaining a state according to A, following these rules:

• If a ball receives its first accept message in round r of
A′, it determines the phase i = ⌈r/k⌉ of A this round
belongs to. Then it determines the phase i′ of A in
which it would inform bins about its decision. It will
do so in A′ in round i′k (i.e., the same round this would
happen in A).

• For each i ∈ N, at the beginning of round (i − 1)k + 1
each bin computes the threshold it would use in A
in phase i based on the state for A it maintains. This
threshold is used in phases (i − 1)k + 1, . . . , ik of A′.
The subset of balls it accepts in a given phase of A′ is
chosen arbitrarily.

• To update the internal state a bin maintains for A from
phase i to phase i+ 1, at the end of round ik it performs
the following operation. Let P ⊆ {1, . . . , m} be the set
of ports it received requests on. It determines the subset
Q ⊆ P of ports it would have responded to with accept
messages in A when receiving the requests it got in
rounds (i − 1)k + 1, . . . , ik. Let Q′ be the set of ports it
sent accept messages to in rounds (i − 1)k + 1, . . . , ik
of A′. The bin now “rearranges” its port numbering
by permuting P such that Q′ is mapped to Q. Finally,
it updates its state for A in accordance with the modi-
fied port numbering and the requests received during
rounds 1, . . . , ik.

We claim that the third step maintains the invariant that the
simulation is consistent with an execution of A at the bin for
the port numbering it computes. This holds true, because no
bin ever sends two accept messages to the same ball, implying
that the modification to the port numbering never conflicts
with earlier such changes made. Thanks to this observation, a
straightforward induction now establishes that A′ simulates
an execution of A for the port numberings the bins have
determined by the end of the simulation. Accordingly, A′

achieves the same load distribution as A with the modified
port numbers.

Note that the choice of port numbers does not affect the
guarantees on the load distribution A makes, as we assumed
an adversarial choice of bins’ port numbers. Thus, the claim
follows. �

Parallel Balanced Allocations:
The Heavily Loaded Case SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

We are now ready to complete the lower bound proof.

Proof of Theorem 2. First, we show that the claim holds
for degree 1 algorithms with phase length 1 by repeatedly
applying Theorem 7. The induction hypothesis is that after
round i, at least Mi B (m/n)3−i

n1−3−i ∈ ω(n) balls remain
with probability 1 − ie−Ω(n1/2). By the induction hypothesis,
we have that

min{log n, log(Mi/n)} ≤ log(Mi/n)

≤ log
(
(m/n2)3−i

)
∈ O

(
(m/n)3−(i+1)/2

)
.

As the total capacity of all bins is n · (m/n + O(1)) =
m + O(n) by assumption, the theorem5 and the induction
hypothesis imply that, with probability(

1 − ie−Ω(n1/2)
) (

1 − e−Ω((n/ log n)2/3)
)

≥ 1 − (i + 1)e−Ω(n1/2) ,

we have that

Mi+1 ∈ Ω
(√

Min
min{log n, log(Mi/n)}

)

⊆ Ω

((m/n)3−i
n2−3−i

(m/n)3−(i+1)

)1/2

⊆ (m/n)3−(i+1)
n1−3−(i+1)

,

as claimed.
Note that in the induction step we applied Theorem 7,

which necessitates that Mi ≫ n, which holds for sufficiently
small i ∈ Ω(log log(m/n)). To ensure that the probability
bound is sufficiently strong for a w.h.p. result, we need, e.g.,
that i ≤ 2−n1/4 ∈ 2nΩ(1)

. Both are ensured by the assumptions
of the theorem. Finally, by applying Lemma 2 and Lemma 3,
we can extend the result to degree d algorithms for any
d = O(1) and arbitrary phase length k. �

Acknowledgments
Merav Parter is supported in part by grants from BSF-NSF No.
2017758 and Minera No. 713238. Eylon Yogev is supported by
the European Union’s Horizon 2020 research and innovation
program under grant agreement No. 742754.

References
[1] Micah Adler, Soumen Chakrabarti, Michael Mitzenmacher, and Lars Eil-

strup Rasmussen. 1998. Parallel randomized load balancing. Random
Struct. Algorithms 13, 2 (1998), 159–188.

[2] Dan Alistarh, Oksana Denysyuk, Luís E. T. Rodrigues, and Nir Shavit.
2014. Balls-into-leaves: sub-logarithmic renaming in synchronous message-
passing systems. In ACM Symposium on Principles of Distributed Computing,
PODC ’14, Paris, France, July 15-18, 2014. 232–241.

[3] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. 1999. Bal-
anced Allocations. SIAM J. Comput. 29, 1 (1999), 180–200.

[4] Petra Berenbrink, Artur Czumaj, Matthias Englert, Tom Friedetzky, and
Lars Nagel. 2012. Multiple-choice balanced allocation in (almost) parallel.
In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques. Springer, 411–422.

5Note that we can apply Theorem 7 due to the constraint that bins thresholds
are independent from balls random choices regarding which bins to contact.

[5] Petra Berenbrink, Artur Czumaj, Angelika Steger, and Berthold Vöcking.
2006. Balanced Allocations: The Heavily Loaded Case. SIAM J. Comput.
35, 6 (2006), 1350–1385.

[6] Andrew C Berry. 1941. The accuracy of the Gaussian approximation to
the sum of independent variates. Transactions of the american mathematical
society 49, 1 (1941), 122–136.

[7] Pierre Bertrand and Christoph Lenzen. 2014. The 1-2-3-toolkit for building
your own balls-into-bins algorithm. In 2015 Proceedings of the Seventeenth
Workshop on Algorithm Engineering and Experiments (ALENEX). SIAM, 44–
54.

[8] Devdatt P. Dubhashi and Desh Ranjan. 1998. Balls and bins: A study in
negative dependence. Random Struct. Algorithms 13, 2 (1998), 99–124.

[9] C.G. Esseen. 1942. On the Liapunoff limit of error in the theory of
probability. Ark. Mat. Astron. Fys. A28, 9 (1942), 1–19.

[10] Christoph Lenzen and Roger Wattenhofer. 2016. Tight bounds for parallel
randomized load balancing. Distributed Computing 29, 2 (2016), 127–142.

[11] Michael Mitzenmacher, Balaji Prabhakar, and Devavrat Shah. 2002. Load
Balancing with Memory. In 43rd Symposium on Foundations of Computer Sci-
ence (FOCS 2002), 16-19 November 2002, Vancouver, BC, Canada, Proceedings.
799–808.

[12] Thomas Sauerwald and He Sun. 2012. Tight bounds for randomized load
balancing on arbitrary network topologies. In Foundations of Computer
Science (FOCS), 2012 IEEE 53rd Annual Symposium on. IEEE, 341–350.

[13] Devavrat Shah and Balaji Prabhakar. 2002. The use of memory in random-
ized load balancing. In IEEE International Symposium on Information Theory,
2002. IEEE, 125.

[14] Volker Stemann. 1996. Parallel Balanced Allocations. In Proceedings of
the Eighth Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA ’96). 261–269.

[15] Kunal Talwar and Udi Wieder. 2014. Balanced Allocations: A Simple Proof
for the Heavily Loaded Case. In Automata, Languages, and Programming -
41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11,
2014, Proceedings, Part I. 979–990.

[16] Berthold Vöcking. 2003. How asymmetry helps load balancing. J. ACM
50, 4 (2003), 568–589.

[17] Udi Wieder. 2017. Hashing, Load Balancing and Multiple Choice. Founda-
tions and Trends in Theoretical Computer Science 12, 3-4 (2017), 275–379.

A An Asymmetric Algorithm
In this section, we prove Theorem 3 by providing an asymmet-
ric algorithm that achieves a maximal load of m/n + O(1),
w.h.p., within a constant number of rounds. In this algo-
rithm, each bin receives O(m/n + log n) messages in total. If
m > n log n, we apply a single round of the symmetric algo-
rithm from Section 3 first to reduce the number of remaining
balls to o(m), so that each bin receives m/n + O(log n) mes-
sages in the first round and o(m) + O(log n) messages in the
subsequent application of the asymmetric algorithm.

Similarly to before, each active ball sends a single request
in each round. The key idea of the algorithm is to operate
on simulated “superbins.” Each superbin is controlled by a
leader, where we make sure that the expected number µ of
messages received by each superbin leader is roughly m/n
in each round (unless m/n is very small). Denote by δ a
value that is large enough so that the deviation from the
expected number of messages a superbin receives is at most
δ w.h.p. Then we can be sure that superbins receive µ − δ
messages w.h.p., and it allocates the respective balls to its
bins round-robin.

As a result, the algorithm w.h.p. allocates exactly the same
number of balls to each bin, and it is straightforward to show
that this process allocates all but O(n) balls in a constant
number of rounds. It then completes by invoking an asym-
metric algorithm for allocating n balls with constant load in
constant time, where each bin simulates O(1) virtual bins.

Concretely, the algorithm operates as follows.

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA Christoph Lenzen, Merav Parter, and Eylon Yogev

(1) Set
• m1 B m
• r B 1.

(2) Set
• nr B mr min{n/m, 1/ log n}
• δr B c

√
mr/nr · log n for a sufficiently large constant

c
•

Lr B

{
⌈mr/nr − δr⌉ if ⌈mr/nr − δr⌉ > 2c2 log n
4c2 log n else.

(3) Each active ball chooses i ∈ {1, . . . , nr} uniformly at
random and contacts bin i · n/nr.

(4) Each bin selects up to Lr requests and responds to
them in a round-robin fashion with messages “j” for
j ∈ {0, . . . , n/nr − 1}.

(5) If a ball received response j from bin i, it informs bin
i − j that it is allocated to this bin.

(6) If Lr , ⌈mr/nr − δr⌉, then terminate. Otherwise set6

• mr+1 B mr − Lrnr
• r B r + 1
and go to Step 2.

We establish the properties of the algorithm by a series of
claims that are straightforward to show. First, we show that
each superbin leader receives the “right” number of messages
w.h.p.

Claim 7. W.h.p., in round r bins i · n/nr, i ∈ {1, . . . , nr},
receive between mr/nr − δ and mr/nr + δ messages (provided that
mr is the number of unallocated balls at the beginning of the round).

Proof. If m ≥ n log n, the expected number of messages
per bin is mr/nr = m/n ≥ log n and the claim is immediate
from applying Chernoff’s bound. Otherwise, this follows
from a standard tail bound on the binomial distribution. �

Claim 8. The algorithm terminates in round r iff mr/nr ≤
2c2 log n.

Proof. ⌈mr/nr − δr⌉ = mr/nr − c
√

mr/nr · log n ≤
2c2 log n iff mr/nr ≤ 2c2 log n. Hence Lr , ⌈mr/nr − δr⌉ and
the termination condition is satisfied iff this holds true. �

Claim 9. The algorithm terminates within 3 rounds.

Proof. Consider a round r in which the algorithm does not
terminate. By Claim 8, thus mr/nr > 2c2 log n. Accordingly,
nr = mrn/m and δr = c

√
m/n · log n. It follows that mr+1 =

mr − Lrnr ≤ δrnr = mr
√

n/m · log n. If the algorithm does
not terminate in the first two rounds, it follows that m3 = m1 ·
n/m · log n = n log n. Therefore, m3/n3 = log n < 2c2 log n
and the algorithm terminates in round 3. �

Claim 10. When the algorithm terminates, all balls are allocated
w.h.p. The maximum bin load is m/n + O(1) w.h.p.

6W.l.o.g., we assume that nr+1 divides n; otherwise, one of the superbins is
made at most factor 2 larger, which does not affect the asymptotic bounds.

Proof. Consider a round r in which the algorithm does
not terminate. By Claim 7, superbin leaders receive at least
Lr = ⌈mr/n − δ⌉ messages w.h.p., implying that nr Lr balls
are allocated in round r. By Claim 9, the algorithm terminates
within 3 rounds. As mr+1 = mr − Lrnr and m1 = m, a union
bound thus shows that at the beginning of the final round
r ≤ 3, exactly mr unallocated balls remain w.h.p. Applying
Claim 7 to the final round, w.h.p. no bin receives more than
mr/nr + δ messages. By Claim 8, we have that mr/nr ≤
2c2 log n and thus mr/nr + δ ≤ 4c2 log n = Lr. Hence, all
balls are allocated w.h.p.

Concerning the bin load, observe that with the excep-
tion of the final round, loads cannot deviate by more than
1 per round w.h.p., as each superbin receives exactly Lr
balls per round. However, in the final round we have that
Lr = 4c2 log n. As nr ≤ mr/ log n, each superbin consists of
at least log n bins, so no bin receives more than 4c2 ∈ O(1)
additional balls in this round. �

Corollary 2. If m ≤ n log n, w.h.p. no bin receives more than
O(log n) messsages. If m > n log n, no bin receives more than
O(m/n) messages w.h.p.

Proof. By choice of nr, we have that mr/nr ≤
max{m/n, log n} for each r. The corollary thus follows from
Claim 7 if m ≤ n log n. If m > n log n, we apply Claim 7
together with Claim 9 and a union bound. �

Proof of theorem 3. Claim 9, Claim 10, and Corollary 2
establish all the required claims except that bins receive
O(m/n + log n) messages w.h.p. instead of (1 + o(1))m/n +
O(log n) w.h.p. in case m > n log n. This is resolved by first
executing a single round of the symmetric algorithm from
section 3. The analysis shows that this allocates all but o(m)
balls such that most bin loads are the same; only o(n) balls
may be “missing” for a balanced allocation. Thus, using the
asymmetric algorithm from this section to place the remain-
ing o(m) balls still guarantees a load of m/n + O(1) w.h.p.
and reduces the number of messages received by bins to
(1 + o(1))m/n + O(log n) w.h.p. �

	Abstract
	1 Introduction
	1.1 Our Approach in a Nutshell.

	2 Preliminaries
	3 The Parallel Symmetric Algorithm
	4 Lower Bound for Threshold Algorithms
	4.1 Lower Bound for Degree 1 Algorithms
	4.2 Simulation for Higher Degree

	References
	A An Asymmetric Algorithm

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 35.63, 715.50 Width 540.74 Height 26.20 points
 Origin: bottom left

 1
 0
 BL

 7
 AllDoc
 7

 CurrentAVDoc

 35.6299 715.5005 540.7365 26.1985

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 1
 10
 9
 10

 1

 HistoryList_V1
 qi2base

