Lecture 1: Introduction

Daria Stepanova

Max Planck Institute for Informatics
D5: Databases and Information Systems group

WS 2017/18
Overview

Organization

Content

Semantic Web

Knowledge Representation

KRSW
About me

• **Short CV:**
 • **2005-2010** Diploma in applied informatics from St. Petersburg state university
 • **2011-2015** PhD in computational logic from TU Wien
 • **2015-present** Postdoctoral researcher at D5 group of MPI

• **Research interests:**
 • Knowledge representation and reasoning
 • Semantic web
 • Inductive rule learning

• **Appointments:** by email dstepano@mpi-inf.mpg.de
Basic course info

- **Number of credits**: 6 ECTS
- **Lectures**: Thursdays 14:00-16:00 @ 014, E1.3
- **Tutorials**: In January in small groups (every student is expected to attend three 1-hour tutorials)
- **TA**: Mohamed Gad-Elrab
- **Material** will be put on the course web page
- **Assignments**: two theoretical and two practical assignments will have to be completed
- **Final exams**: in a written form

Evaluation

- Final number of points sums up from
 - 2 exercise sheets (max. 10 points)
 - 2 projects (max. 20 points)
 - final exam (max. 70 points)

- The grades are computed as follows:
 - \(\geq 91 \) 1
 - \(\geq 81 \) 2
 - \(\geq 71 \) 3
 - \(\geq 60 \) 4
 - < 60 5
Course agenda

- Motivation
- Description logics (3 lectures)
- Answer set programming (3 lectures)
- Combining DL and ASP and other advanced topics
- Rule learning
Course agenda

- **Motivation (today)**
 - What is Semantic Web?
 - What is Knowledge Representation?
 - How are KR and SW connected?

- Description logics (3 lectures)

- Answer set programming (3 lectures)

- Combining DL and ASP and other advanced topics

- Rule learning
Syntactic Web

Typical web page markup consists of:

- Rendering information (font size and color)
- Hyper-links to related content

Semantic content is accessible to humans but not machines
Current syntactic Web

- Immensely successful
- Huge amounts of data
- Syntax standards for transfer of structured data
- Machine-processable, human-readable documents

BUT:
- Content/knowledge cannot be accessed by machines, i.e. machine-processable but not machine-understandable
- Meaning (semantics) of transferred data is not accessible
What can we see?

- KR for SW course is an advanced course of 6 ECTS
- It takes place on Thursdays at 14:00-16:00
- The location is 014 of E 13
- Offered by D5: Databases and Information systems
- Other courses offered by D5 in winter semester 2017/2018 are...
What can machines see?
WWW: humans only!

How can we answer the queries:

- Which papers has Prof. G. Weikum published in 2017?
- Which advanced lectures does the department headed by Prof. G. Weikum offer in WS 2017/2018?

Just google “Prof. G. Weikum”!

- Web page contains enough info to answer queries, but
 - this info is implicit
 - we understand it because we know the context
 - machines cannot make sense of it
Why Syntactic Web is not enough?

Cannot answer “knowledge queries” such as:

- Which politicians are also scientists?
- What genes are involved in signal transduction and are related to pyramidal neurons?
- What is the price, duration of warrantee, and technical features of phones that cost less than 300 Euro and are not of Apple brand?
- Which papers has Prof. G. Weikum published in 2017?
- Which advanced lectures does the department headed by Prof. G. Weikum offer in WS 2017/2018?
How can we liberate the Web data?

How can we answer the queries:

- Which papers has Prof. G. Weikum published in 2017?
- Which advanced lectures does the department headed by Prof. G. Weikum offer in WS 2017/2018?

- some extra information-metadata must be added to links and data
- this information links data to other data and gives meaning to it
- this information must be machine readable
- everything must be done in a standardized way
Need for semantics!

„The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation”

Semantic Web is ...

- the Web of Data as an upgrade of the Web of documents

- the Web as a huge decentralized database (knowledge base) of machine-processable data

Main challenge: How to represent knowledge and reason about it?
Knowledge representation

General goal:

develop formalisms for providing high level description of the world that can be effectively used to build intelligent applications

- Cognitive approaches, e.g., network-structures
- Logic-based approaches, e.g., fragments of First Order Logic
History of cognitive KR

Plato: “Knowledge is justified true belief”
History of cognitive KR

Plato: "Knowledge is justified true belief"

Personal

External

350 BC
History of cognitive KR

Semantic Networks introduced in [Quillan, 1967]
Modern days: Knowledge graphs
Knowledge graphs
Knowledge graphs

- Basel \(\xleftarrow{\text{bornIn}}\) RogerFederer \(\xrightarrow{\text{isA}}\) TennisPlayer
- locatedIn \(\xrightarrow{}\) Switzerland
- winnerOf \(\xrightarrow{}\) AustralianOpen2017

KGs are huge collections of positive unary and binary facts

- tennisPlayer(rogerFederer)
- bornIn(rogerFederer, basel)
Semantic Web search today

Google

winner of Australian Open 2017

Roger Federer
Tennis player

Roger Federer is a Swiss professional tennis player who is currently ranked world No. 10 by the Association of Tennis Professionals. Many players and analysts have called him the greatest tennis player of all time. [Wikipedia]

Born: August 8, 1981 (age 35 years), Basel, Switzerland
Height: 1.86 m
Weight: 85 kg
Spouse: Mirka Federer (m. 2009)
Children: Lenny Federer, Myla Rose Federer, Charlene Riva Federer, Leo Federer
Semantic Web search today

∃X winnerOf(X, AustralianOpen2017)
Problem: Inconsistency

Web pages

Information Extraction

Noisy

Difficult

Knowledge Graph

Contains mistakes
Problem: Incompleteness

Google KG misses Roger’s living place, but contains his wife’s Mirka’s.
Need for logical reasoning on top of KGs

Google KG misses Roger’s living place, but contains his wife’s Mirka’s.

Roger Federer's glass mansion: Tennis star’s £6.5m Swiss waterfront ...
www.telegraph.co.uk › Sport › Tennis › Roger Federer
Tennis star Roger Federer is to move his family into a £6.5million glass mansion on the shores of Lake Zurich after work was completed on the state-of-the-art ...

Roger Federer's Luxurious Houses | Basel Shows
www.baselshows.com/basel-world/the-houses-of-roger-federer
Roger Federer also owns a lavish apartment in Dubai apart from properties in Switzerland. He has chosen this location as a base of training to get use to heat ...

Bottmingen, Switzerland
Need for logical reasoning on top of KGs

Google KG misses Roger’s living place, but contains his wife’s Mirka’s.

Need for reasoning!

KG: Mirka lives in Bottmingen
KG: Roger is married to Mirka
Axiom: Married people live together

Derivation: Roger lives in Bottmingen
History of Logic-based KR

- **1950’s**: First Order Logic (FOL) for KR (undecidable)
 (e.g. [McCarthy, 1959])

- **1970’s**: Network-shaped structures for KR (no formal semantics)
 (e.g. semantic networks [Quillan, 1967], frames [Minsky, 1985])

- **1979**: Encoding of network-shaped structures into FOL [Hayes, 1979]

- **1980’s**: Description Logics (DL) for KR
 - Decidable fragments of FOL
 - Theories encoded in DLs are called ontologies
 - Many DLs with different expressiveness and computational features
 - Particularly suited for conceptual reasoning
Description Logic Ontologies

Open World Assumption (OWA): what is not derived is unknown

Inclusions: Female ⊑ ¬Male, hasSister ⊑ hasSibling, hasBrother ⊑ hasSibling
Description Logic Ontologies

Open World Assumption (OWA): what is not derived is unknown

Inclusions: \(\text{Female} \sqsubseteq \neg \text{Male}, \text{hasSister} \sqsubseteq \text{hasSibling}, \text{hasBrother} \sqsubseteq \text{hasSibling} \)

Complex axioms: \(\text{Uncle} \equiv \text{Male} \sqcap \exists \text{hasSibling}. \exists \text{hasChild} \)
What can not be said in DLs?

- **Exceptions** from theories (due to monotonicity)
What can not be said in DLs?

- **Exceptions** from theories (due to monotonicity)

\[
\begin{align*}
\text{WithBeard} & \sqsubseteq \text{Male} \\
\text{Female} & \sqsubseteq \neg \text{Male} \\
\text{WithBeard}(c) & \\
\hline
\text{People with beards are male} \\
\text{Female are not male} \\
\text{C has a beard} \\
\hline
\text{C is male} \\
\text{C is not male}
\end{align*}
\]
What can not be said in DLs?

- **Exceptions** from theories (due to monotonicity)

\[
egin{align*}
\text{WithBeard} & \sqsubseteq \text{Male} \\
\text{Female} & \sqsubseteq \neg \text{Male} \\
\text{WithBeard}(c) & \\
\hline
\text{Male}(c) & \\
\end{align*}
\]

\[
egin{align*}
\text{People with beards are male} \\
\text{Female are not male} \\
\text{C has a beard} & \\
\hline
\text{C is male} & \\
\end{align*}
\]
What can not be said in DLs?

- Exceptions from theories (due to monotonicity)

\[
\begin{align*}
\text{WithBeard} & \sqsubseteq \text{Male} \\
\text{Female} & \sqsubseteq \neg\text{Male} \\
\text{WithBeard}(c) & \\
\text{Female}(c) & \\
\hline
\text{Male}(c) & \\
\neg\text{Male}(c) & \\
\end{align*}
\]

People with beards are male
Female are not male
C has a beard
C is female

C is male
C is not male

Monotonicity: the more we add, the more we get!
History of Logic-based KR

- **1970’s**: Logic programming
 (e.g. Prolog)

- **1980’s**: Nonmonotonic logics
 (e.g. circumscription [McCarthy, 1980], default logic [Reiter, 1980])

- **1988**: Nonmonotonic rules under answer set semantics (ASP)
 [Gelfond and Lifschitz, 1988]
 - Logic programs with model-based semantics
 - Disjunctive datalog with default negation *not*
Not is not \neg!

Default negation *not*

At a rail road crossing cross the road if *no train is known* to approach

$$\text{walk} \leftarrow \text{at}(X), \text{crossing}(X), \text{not train_approaches}(X)$$

Classical negation \neg

At a rail road crossing cross the road if *no train* approaches

$$\text{walk} \leftarrow \text{at}(X), \text{crossing}(X), \neg\text{train_approaches}(X)$$
Nonmonotonic Rules

Closed World Assumption (CWA): what is not derived is false

Rule: \[a_1 \lor \ldots \lor a_k \leftarrow b_1, \ldots, b_m, \text{not } b_{m+1}, \ldots, \text{not } b_n \]

Informal semantics: If \(b_1, \ldots, b_m \) are true and none of \(b_{m+1}, \ldots, b_n \) is known, then at least one among \(a_1, \ldots, a_k \) must be true

Default negation: unless a child is adopted one of his parents must be female

\[
\text{female}(Y) \lor \text{female}(Z) \leftarrow \text{hasParent}(X,Y), \text{hasParent}(X,Z), \\
\quad Y \neq Z, \text{not adopted}(X)
\]

Constraint: ensure that no one is a parent of himself

\[\bot \leftarrow \text{parent}(X,Y), \text{parent}(Y,X) \]
Answer Set Programs

Evaluation of ASP programs is model-based

Answer set program (ASP) is a set of nonmonotonic rules

(1) `hasParent(john, pat)` (2) `hasParent(john, alex)` (3) `male(alex)`

(4) `female(Y) ← hasParent(X, Y), hasParent(X, Z), Y ≠ Z, male(Z), not adopted(X)`

Evaluation of ASP programs is model-based
Answer Set Programs

Evaluation of ASP programs is model-based
1. Grounding: substitute all variables with constants in all possible ways

Answer set program (ASP) is a set of nonmonotonic rules

1. hasParent(john, pat)
2. hasParent(john, alex)
3. male(alex)
4. female(Y) ← hasParent(X, Y), hasParent(X, Z), Y ≠ Z, male(Z), not adopted(X)
Answer Set Programs

Evaluation of ASP programs is model-based
1. Grounding: substitute all variables with constants in all possible ways

Answer set program (ASP) is a set of nonmonotonic rules

(1) hasParent(john, pat) (2) hasParent(john, alex) (3) male(alex)
(4) female(pat) ← hasParent(john, pat), hasParent(john, alex),
 male(alex), not adopted(john)
Answer Set Programs

Evaluation of ASP programs is model-based
1. Grounding: substitute all variables with constants in all possible ways
2. Solving: compute a minimal model (answer set) \(I \) satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

\[
(1) \text{hasParent}(john, pat) \quad (2) \text{hasParent}(john, alex) \quad (3) \text{male}(alex) \\
(4) \text{female}(pat) \leftarrow \text{hasParent}(john, pat), \text{hasParent}(john, alex), \text{male}(alex), \text{not adopted}(john)
\]

\[I = \{\text{hasParent}(john, pat), \text{hasParent}(john, alex), \text{male}(alex), \text{female}(pat)\}\]

CWA: \(\text{adopted}(john)\) can not be derived, thus it is false
Answer Set Programs

Evaluation of ASP programs is model-based
1. Grounding: substitute all variables with constants in all possible ways
2. Solving: compute a minimal model (answer set) \(I \) satisfying all rules

Answer set program (ASP) is a set of nonmonotonic rules

(1) \(\text{hasParent}(john, pat) \)
(2) \(\text{hasParent}(john, alex) \)
(3) \(\text{male}(alex) \)
(4) \(\text{female}(pat) \leftarrow \text{hasParent}(john, pat), \text{hasParent}(john, alex), \text{male}(alex), \neg \text{adopted}(john) \)
(5) \(\text{adopted}(john) \)

\[l = \{ \text{hasParent}(john, pat), \text{hasParent}(john, alex), \text{male}(alex), \text{female}(pat) \} \]

Nonmonotonicity: adding facts might lead to loss of consequences!
Knowledge Representation Standards in SW context

1994 First public presentation of the Semantic Web idea
1998 Start of standardization of data model (RDF) and a first ontology languages (RDFS) at W3C
2000 Start of large research projects about ontologies in the US and Europe (DAML & Ontoknowledge)
2002 Start of standardization of a new ontology language (OWL) based on research results
2004 Finalization of the standard for data (RDF) and ontology (OWL)
2008 Standardization of a query language (SPARQL)
2009 Extension of OWL to OWL 2.0
2010 Standard Rule Interchange Format (RIF)
Knowledge Representation Standards in SW context

1994 First public presentation of the Semantic Web idea
1998 Start of standardization of data model (RDF) and a first ontology languages (RDFS) at W3C
2000 Start of large research projects about ontologies in the US and Europe (DAML & Ontoknowledge)
2002 Start of standardization of a new ontology language (OWL) based on research results
2004 Finalization of the standard for data (RDF) and ontology (OWL)
2008 Standardization of a query language (SPARQL)
2009 Extension of OWL to OWL 2.0
2010 Standard Rule Interchange Format (RIF)
Course Agenda

• **Description Logic ontologies (DL)**
 - Theoretical background
 - Ontology Web Language (OWL)
 - Tools and applications

• **Answer Set Programming rules (ASP)**
 - Theoretical background
 - Answer set programming semantics
 - Tools and applications

• **Combining DL and ASP**
 - DL-programs
 - Inconsistency handling
 - Other advanced topics

• **Learning rules from data**
 - Relational association rule learning
 - Learning rules with exceptions under incompleteness
 - Other advanced topics
Michael Gelfond and Vladimir Lifschitz.
The stable model semantics for logic programming.

P. J. Hayes.
The logic of frames.

John McCarthy.
Programs with common sense.

John McCarthy.
Circumscription - A form of non-monotonic reasoning.

Marvin Minsky.
A framework for representing knowledge.

M. Ross Quillian.
Word concepts: A theory and simulation of some basic capabilities.

Raymond Reiter.
A logic for default reasoning.