Knowledge Representation for the Semantic Web
Lecture 2: Description Logics I

Daria Stepanova
slides based on Reasoning Web 2011 tutorial “Foundations of Description Logics and OWL" by S. Rudolph

Max Planck Institute for Informatics
D5: Databases and Information Systems group

WS 2017/18
Unit Outline

Introduction

Syntax of Description Logics
Logic-Based Knowledge Representation

• 350 BC: roots of logic-based KR

• 17th century: idea to make knowledge explicit by logical computation

• 1930s: disillusion due to results about fundamental limits for the existence of generic algorithms

• adoption of computers and AI as a new area of research leads to intensified studies
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.

In which formalisms can we encode this knowledge?
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.

In which formalisms can we encode this knowledge?

- propositional logic (PL): propositional variables, ¬, ∨, ∧, →

(1) AristotelIsAMan = true; (2) SocratesIsAMan = true
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL)**: propositional variables, \neg, \lor, \land, \rightarrow

 (1) $\text{AristotelIsAMan} = \text{true}$; (2) $\text{SocratesIsAMan} = \text{true}$
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.
(3) All men are mortal.

In which formalisms can we encode this knowledge?

- propositional logic (PL): propositional variables, ¬, ∨, ∧, →

(1) AristotelIsAMan = true; (2) SocratesIsAMan = true
(3) AristotelIsAMan → AristotelIsMortal
 SocratesIsAMan → SocratesIsMortal;

PL is not expressive.
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL)**: propositional variables, \(\neg, \lor, \land, \rightarrow \)

\[
\begin{align*}
(1) & \quad \text{AristotelIsAMan} = \text{true}; \\
(2) & \quad \text{SocratesIsAMan} = \text{true} \\
(3) & \quad \text{AristotelIsAMan} \rightarrow \text{AristotelIsMortal} \\
& \quad \text{SocratesIsAMan} \rightarrow \text{SocratesIsMortal};
\end{align*}
\]

PL is not expressive.

- **first order logic (FOL)**: predicates of arbitrary arity, constants, variables, function symbols, \(\neg, \lor, \land, \forall, \exists, \rightarrow \)

\[
\begin{align*}
(1) & \quad \text{Man(socrates)}; \\
(2) & \quad \text{Man(aristotel)}; \\
(3) & \quad \forall X (\text{Man}(X) \rightarrow \text{Mortal}(X))
\end{align*}
\]

FOL is expressive but undecidable in general...
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL):** propositional variables, \(\neg, \lor, \land, \rightarrow \)

 (1) \(\text{AristotelIsAMan} = \text{true} \); (2) \(\text{SocratesIsAMan} = \text{true} \)
 (3) \(\text{AristotelIsAMan} \rightarrow \text{AristotelIsMortal} \)
 \(\text{SocratesIsAMan} \rightarrow \text{SocratesIsMortal} \);

 PL is not expressive.

- **first order logic (FOL):** predicates of arbitrary arity, constants, variables, function symbols, \(\neg, \lor, \land, \forall, \exists, \rightarrow \)

 (1) \(\text{Man}(\text{socrates}) \); (2) \(\text{Man}(\text{aristotel}) \);
 (3) \(\forall X (\text{Man}(X) \rightarrow \text{Mortal}(X)) \)

 FOL is expressive but **undecidable** in general...
Decidability

A class of problems is called **decidable**, if there is an algorithm that given any problem instance from this class as input can output a “yes” or “no” answer to it after finite time.

Decidable logics

In logic context, the following **generic problem** is normally studied:

Given: a set of statements T and a statement ϕ,

Output: “yes”, iff T logically entails ϕ and “no” otherwise.

In case there is no danger of confusion about the type of problem considered, sometimes the logic itself is called **decidable** or **undecidable**.
Brief Note on Decidability, cont’d

Decidability of propositional logic

Consider propositional logic (PL) and the following statements T and ϕ:

$(\text{SocrIsAMan} \rightarrow \text{SocrIsMortal}) \land \text{SocrIsAMan} \quad \models \quad \text{SocrIsMortal}$

The following questions in PL are equivalent:

- $T \models \phi$?
- $T \rightarrow \phi$ for every valuation of $\text{socrIsAMan}, \text{socrIsMortal}$?
- $T \land \neg \phi$ is unsatisfiable, i.e., false for every valuation?

The (un)satisfiability problem in PL is called (UN)SAT. Propositional logic is **decidable**, since (UN)SAT is decidable (consider 2^n truth assignments of n variables in $T \land \neq \phi$).
Description Logics

- 1930’s: First order logic for KR (undecidable)
Description Logics

- 1930’s: First order logic for KR (undecidable)

- 1970’s: Network-shaped structures for KR
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]
Description Logics

- 1930’s: First order logic for KR (undecidable)
- 1970’s: Network-shaped structures for KR (no formal semantics)
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]
Description Logics

- **1930’s**: First order logic for KR *(undecidable)*

- **1970’s**: Network-shaped structures for KR *(no formal semantics)*
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]

- **1979**: Encoding of frames into FOL [Hayes, 1979]
Introduction

Description Logics

- 1930’s: First order logic for KR (undecidable)

- 1970’s: Network-shaped structures for KR (no formal semantics)
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]

- 1979: Encoding of frames into FOL [Hayes, 1979]

- 1980’s: Description logics (DL) for KR
 - Decidable fragments of FOL
 - Theories encoded in DLs are called ontologies
 - Many DLs with different expressiveness and computational features
Introduction Syntax of Description Logics

Description Logics

• 1930’s: First order logic for KR (undecidable)

• 1970’s: Network-shaped structures for KR (no formal semantics)
 • Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 • Frames [Minsky, 1974]

• 1979: Encoding of frames into FOL [Hayes, 1979]

• 1980’s: Description logics (DL) for KR
 • Decidable fragments of FOL
 • Theories encoded in DLs are called ontologies
 • Many DLs with different expressiveness and computational features
Description Logics, cont’d

- **Goal**: ensure decidable reasoning and formal logic-based semantics
- Description logics cater for this goal
- They can be seen as *decidable* fragments of first-order logic, closely related to modal logics
- A significant portion of DL-related research devoted to clarifying the computational effort of reasoning tasks in terms of their worst-case complexity
- Despite high worst-case complexity, even for expressive DLs optimized reasoning algorithms exist with good behaviour in practical relevant settings
 - cf. SAT Solving: NP-complete in general but works well in practice
Description Logics, cont’d

- Description logics one of today’s main KR paradigms

- influenced standardization of Semantic Web languages, in particular the web ontology language OWL

- comprehensive tool support available

Fact++ Pellet HermiT ELK

protégé W3C Semantic Web
Applications

- Semantic Web (OWL)
- Enterprise Application Integration (EAI)
- Data Modelling (UML)
- Knowledge Representation for life sciences: SNOMED Clinical Terms, Gene ontology, UniProtKB/Swiss-Prot protein sequence database, GALEN medical concepts for e-healthcare
- Ontology-Based Data Access (OBDA)

 ...
Syntax of Description Logics
DL Building Blocks

- **Individual names:** *john, mary, sun, lalaland*
 aka: constants (FOL), resources (RDF)

- **Concept names:** *Male, Planet, Film, Country*
 aka: unary predicates (FOL), classes (RDFS)

- **Role names:** *married, fatherOf, actedIn*
 aka: binary predicates (FOL), properties (RDFS)

The set of all individual, concept and role names is commonly referred to as signature or vocabulary.
Constituents of a DL Knowledge Base

- information about individuals and their concept and role memberships
- information about concepts and their taxonomic dependencies
- information about roles and their dependencies
Constituents of a DL

A DL is characterized by:

- A **description language**: how to form concept/role expressions

 \[
 \text{Human} \sqcap \text{Male} \sqcap \exists \text{hasChild} \sqcap \forall \text{hasChild} . (\text{Doctor} \sqcup \text{Lawyer})
 \]

- A mechanism to specify knowledge about **concepts** (i.e., TBox \mathcal{T}) and **roles** (i.e., RBox \mathcal{R})

 $\mathcal{T} = \{ \text{Father} \sqsupseteq \text{Human} \sqcap \text{Male} \sqcap \exists \text{hasChild}, \text{HappyFather} \sqsubseteq \text{Father} \sqcap \forall \text{hasChild} . (\text{Doctor} \sqcup \text{Lawyer}) \}$

 $\mathcal{R} = \{ \text{hasFather} \sqsubseteq \text{hasParent} \}$

- A mechanism to specify **properties of objects** (i.e., an ABox)

 $\mathcal{A} = \{ \text{HappyFather}(\text{john}), \text{hasChild}(\text{john}, \text{mary}) \}$

- A set of **inference services**: how to reason on a given KB

 $\mathcal{T} \models \text{HappyFather} \sqcap \exists \text{hasChild} . (\text{Doctor} \sqcup \text{Lawyer})$

 $\mathcal{T} \cup \mathcal{A} \models (\text{Doctor} \sqcup \text{Lawyer})(\text{mary})$
Concept Expressions

- **Concept expressions** are defined inductively as follows:
 - every concept name is a concept expression,
 - \(\top \) and \(\bot \) are concept expressions,
 - for \(a_1, \ldots, a_n \) individual names, \(\{a_1, \ldots, a_n\} \) is a concept expression,
 - for \(C \) and \(D \) concept expressions, \(\neg C \) and \(C \cap D \) and \(C \cup D \) are concept expressions,
 - for \(r \) a role and \(C \) a concept expression, \(\exists r.C \) and \(\forall r.C \) are concept expressions,
 - for \(s \) a simple role, \(C \) a concept expression and \(n \) a natural number, \(\exists s.Self \) and \(\leq n s.C \) and \(\geq n s.C \) are concept expressions.

- Note: we formally define roles and simple roles later (for the moment, we use role names)
Examples of Concept Expressions

- Conjunction: \(\textit{Singer} \sqcap \textit{Actor} \)
- Disjunction: \(\forall \text{hasChild}.(\textit{Doctor} \sqcup \textit{Lawyer}) \)
- Qualified existential restriction: \(\exists \text{hasChild}.\textit{Doctor} \)
- Full negation: \(\neg(\textit{Doctor} \sqcup \textit{Lawyer}) \)
- Number restrictions: \((\geq 2\text{hasChild}) \sqcap (\leq 1\text{sibling}) \)
- Qualified number restrictions: \((\geq 2\text{hasChild} . \textit{Doctor}) \)
- Inverse role: \(\forall \text{hasChild}^- . \textit{Doctor} \)
TBox

• A general concept inclusion (GCI) has the form

\[C \sqsubseteq D \]

where \(C \) and \(D \) are concept expressions.

• A TBox consists of a set of GCIs.

N.B.: Definition of TBox presumes already known RBox due to role simplicity constraints.
Example Knowledge Base

\[TBox \mathcal{T} \]

- **Healthy** ⊑ ¬Dead
 "Healthy beings are not dead."
- **Cat** ⊑ Dead ⊔ Alive
 "Every cat is dead or alive."
- **HappyCatOwner** ⊑ ∃owns.Cat ⊓ ∀caresFor.Healthy
 "A happy cat owner owns a cat and all beings he cares for are healthy."
ABox

- An individual assertion can have any of the following forms
 - \(C(a)\), called concept assertion
 - \(r(a, b)\), called role assertion
 - \(\neg r(a, b)\), called negated role assertion
 - \(a \approx b\), called equality statement, or
 - \(a \not\approx b\), called inequality statement.

- An ABox consists of a set of individual assertions.
Example Knowledge Base

TBox \top

<table>
<thead>
<tr>
<th>Class</th>
<th>Definition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>$\sqsubseteq \neg \text{Dead}$</td>
<td>"Healthy beings are not dead."</td>
</tr>
<tr>
<td>Cat</td>
<td>$\sqsubseteq \text{Dead} \sqcup \text{Alive}$</td>
<td>"Every cat is dead or alive."</td>
</tr>
<tr>
<td>HappyCatOwner</td>
<td>$\sqsubseteq \exists \text{owns} \cdot \text{Cat} \sqcap \forall \text{caresFor} \cdot \text{Healthy}$</td>
<td>"A happy cat owner owns a cat and all beings he cares for are healthy."</td>
</tr>
</tbody>
</table>

ABox A

<table>
<thead>
<tr>
<th>Individual</th>
<th>Definition</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>HappyCatOwner(schroedinger)</td>
<td></td>
<td>"Schrödinger is a happy cat owner."</td>
</tr>
</tbody>
</table>
Role Incursion Axioms

- A role can be
 - a role name r or
 - an inverted role name r^{-} (intuitively, reversed participants) or
 - the universal role u.

- A role inclusion axiom (RIA) is a statement of the form

 $$r_1 \circ \cdots \circ r_n \sqsubseteq r$$

 where r_1, \ldots, r_n, r are roles.
Role Simplicity

- Given RIAs, roles are divided into simple and non-simple roles.

- Roughly, roles are non-simple if they may occur on the rhs of a complex RIA.

- More precisely,
 - for any RIA $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r$ with $n > 1$, r is non-simple,
 - for any RIA $s \sqsubseteq r$ with s non-simple, r is non-simple, and
 - all other properties are simple.

Example

$q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s$
Role Simplicity

- Given RIAs, roles are divided into **simple** and **non-simple** roles.

- Roughly, roles are **non-simple** if they may occur on the rhs of a complex RIA.

- More precisely,
 - for any RIA $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r$ with $n > 1$, r is non-simple,
 - for any RIA $s \sqsubseteq r$ with s non-simple, r is non-simple, and
 - all other properties are simple.

Example

$q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s$

non-simple: r, s
Role Simplicity

- Given RIAs, roles are divided into simple and non-simple roles.
- Roughly, roles are non-simple if they may occur on the rhs of a complex RIA.
- More precisely,
 - for any RIA \(r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r \) with \(n > 1 \), \(r \) is non-simple,
 - for any RIA \(s \sqsubseteq r \) with \(s \) non-simple, \(r \) is non-simple, and
 - all other properties are simple.

Example

\[
q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s
\]

non-simple: \(r, s \) \hspace{1cm} simple: \(p, q \)
A role disjointness statement has the form

\[\text{Dis}(s_1, s_2) \]

where \(s_1 \) and \(s_2 \) are simple roles.

An RBox consists of regular\(^1\) set of RIAs and a set of role disjointness statements.

In expressive Description Logics, \(\mathcal{R} \) might contain further axioms, such as \(\text{Asym}(r) \) (asymmetry) and \(\text{Ref}(r) \) (reflexivity).

\(^1\)Syntactic conditions put on the usage of non-simple roles (see [Rudolph, 2011])
Example Knowledge Base

RBox \mathcal{R}

- **owns** \sqsubseteq **caresFor**
 - "If somebody owns something, s/he cares for it."

TBox \mathcal{T}

- **Healthy** $\sqsubseteq \neg$ **Dead**
 - "Healthy beings are not dead."
- **Cat** \sqsubseteq **Dead** \sqcap **Alive**
 - "Every cat is dead or alive."
- **HappyCatOwner** \sqsubseteq \exists **owns**. **Cat** \sqcap \forall **caresFor**. **Healthy**
 - "A happy cat owner owns a cat and all beings he cares for are healthy."

ABox \mathcal{A}

- **HappyCatOwner**(schroedinger)
 - "Schrödinger is a happy cat owner."

Exercise: try to compute all facts that follow from the KB yourself!
References

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors.

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph.

Foundations of Semantic Web Technologies.

Sebastian Rudolph.

Foundations of description logics.