Knowledge Representation for the Semantic Web
Lecture 2: Description Logics I

Daria Stepanova
slides based on Reasoning Web 2011 tutorial “Foundations of Description Logics and OWL” by S. Rudolph

Max Planck Institute for Informatics
D5: Databases and Information Systems group

WS 2017/18
Unit Outline

Introduction

Syntax of Description Logics
Logic-Based Knowledge Representation

- 350 BC: roots of logic-based KR
- 17th century: idea to make knowledge explicit by logical computation
- 1930s: disillusion due to results about fundamental limits for the existence of generic algorithms
- adoption of computers and AI as a new area of research leads to intensified studies
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.

In which formalisms can we encode this knowledge?
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.

In which formalisms can we encode this knowledge?

- propositional logic (PL): propositional variables, ¬, ∨, ∧, →

(1) AristotelIsAMan = true; (2) SocratesIsAMan = true
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- propositional logic (PL): propositional variables, \neg, \lor, \land, \rightarrow

(1) $\text{AristotelIsAMan} = \text{true}$; (2) $\text{SocratesIsAMan} = \text{true}$
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL):** propositional variables, ¬, ∨, ∧, →

(1) AristotelIsAMan = true; (2) SocratesIsAMan = true
(3) AristotelIsAMan → AristotelIsMortal
 SocratesIsAMan → SocratesIsMortal;

PL is **not expressive**.
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL):** propositional variables, ¬, ∨, ∧, →

 (1) AristotelIsAMan = true; (2) SocratesIsAMan = true

 (3) AristotelIsAMan → AristotelIsMortal

 SocratesIsAMan → SocratesIsMortal;

 PL is **not expressive**.

- **first order logic (FOL):** predicates of arbitrary arity, constants, variables, function symbols, ¬, ∨, ∧, ∀, ∃, →

 (1) Man(socrates); (2) Man(aristotel);

 (3) ∀X (Man(X) → Mortal(X))
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL):** propositional variables, \(\neg, \lor, \land, \rightarrow \)

\[
\begin{align*}
(1) & \text{AristotelIsAMan} = \text{true}; \\
(2) & \text{SocratesIsAMan} = \text{true} \\
(3) & \text{AristotelIsAMan} \rightarrow \text{AristotelIsMortal} \\
& \text{SocratesIsAMan} \rightarrow \text{SocratesIsMortal};
\end{align*}
\]

PL is **not expressive**...

- **first order logic (FOL):** predicates of arbitrary arity, constants, variables, function symbols, \(\neg, \lor, \land, \forall, \exists, \rightarrow \)

\[
\begin{align*}
(1) & \text{Man(socrates)}; \\
(2) & \text{Man(aristotel)}; \\
(3) & \forall X (\text{Man}(X) \rightarrow \text{Mortal}(X))
\end{align*}
\]

FOL is expressive but **undecidable** in general...
Decidability

A class of problems is called **decidable**, if there is an algorithm that given any problem instance from this class as input can output a “yes” or “no” answer to it after finite time.

Decidable logics

In logic context, the following **generic problem** is normally studied:

Given: a set of statements T and a statement ϕ,

Output: “yes”, iff T logically entails ϕ and “no” otherwise.

In case there is no danger of confusion about the type of problem considered, sometimes the logic itself is called **decidable** or **undecidable**.
Consider propositional logic (PL) and the following statements T and ϕ:

\[(SocrIsAMan \rightarrow SocrIsMortal) \land SocrIsAMan \models SocrIsMortal\]

The following questions in PL are equivalent:

- $T \models \phi$?
- $T \rightarrow \phi$ for every valuation of `socrIsAMan`, `socrIsMortal`?
- $T \land \neg \phi$ is unsatisfiable, i.e., false for every valuation?

The (un)satisfiability problem in PL is called (UN)SAT. Propositional logic is **decidable**, since (UN)SAT is decidable (consider 2^n truth assignments of n variables in $T \land \neq \phi$).
1930’s: First order logic for KR (undecidable)

Description Logics

- 1979: Encoding of frames into FOL [Hayes, 1979]
- 1980’s: Description logics (DL) for KR
- Decidable fragments of FOL
- Theories encoded in DLs are called ontologies
- Many DLs with different expressiveness and computational features
Description Logics

- 1930’s: First order logic for KR (undecidable)

- 1970’s: Network-shaped structures for KR
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]
Description Logics

- 1930’s: First order logic for KR (undecidable)
- 1970’s: Network-shaped structures for KR (no formal semantics)
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]
Description Logics

• 1930’s: First order logic for KR (undecidable)

• 1970’s: Network-shaped structures for KR (no formal semantics)
 • Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 • Frames [Minsky, 1974]

• 1979: Encoding of frames into FOL [Hayes, 1979]
Description Logics

- 1930’s: First order logic for KR (undecidable)
- 1970’s: Network-shaped structures for KR (no formal semantics)
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]
- 1979: Encoding of frames into FOL [Hayes, 1979]
- 1980’s: Description logics (DL) for KR
 - Decidable fragments of FOL
 - Theories encoded in DLs are called ontologies
 - Many DLs with different expressiveness and computational features
Description Logics

• 1930’s: First order logic for KR (undecidable)

• 1970’s: Network-shaped structures for KR (no formal semantics)
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]

• 1979: Encoding of frames into FOL [Hayes, 1979]

• 1980’s: Description logics (DL) for KR
 - Decidable fragments of FOL
 - Theories encoded in DLs are called ontologies
 - Many DLs with different expressiveness and computational features
Description Logics (cont’d)

- **Goal**: ensure decidable reasoning and formal logic-based semantics
- Description logics cater for this goal
- They can be seen as **decidable** fragments of first-order logic, closely related to modal logics
- A significant portion of DL-related research devoted to clarifying the computational effort of reasoning tasks in terms of their worst-case complexity
- Despite high worst-case complexity, even for expressive DLs optimized reasoning algorithms exist with good behaviour in practical relevant settings
 - cf. SAT Solving: NP-complete in general but works well in practice
Description Logics (cont’d)

- Description logics one of today’s main KR paradigms
- influenced standardization of Semantic Web languages, in particular the web ontology language OWL
- comprehensive tool support available

Fact++ Pellet HermiT ELK

protégé W3C Semantic Web
Applications

- Semantic Web (OWL)
- Enterprise Application Integration (EAI)
- Data Modelling (UML)
- Knowledge Representation for life sciences: SNOMED Clinical Terms, Gene ontology, UniProtKB/Swiss-Prot protein sequence database, GALEN medical concepts for e-healthcare
- Ontology-Based Data Access (OBDA)
- . . .
Syntax of Description Logics
DL Building Blocks

- **Individual names**: *john, mary, sun, lalaland*
 aka: constants (FOL), resources (RDF)

- **Concept names**: *Male, Planet, Film, Country*
 aka: unary predicates (FOL), classes (RDFS)

- **Role names**: *married, fatherOf, actedIn*
 aka: binary predicates (FOL), properties (RDFS)

The set of all individual, concept and role names is commonly referred to as signature or vocabulary.
Constituents of a DL Knowledge Base

- information about individuals and their concept and role memberships
- information about concepts and their taxonomic dependencies
- information about roles and their dependencies
Constituents of a DL

A DL is characterized by:

- A **description language**: how to form concept/role expressions

\[
\begin{align*}
\text{Human} & \sqcap \text{Male} \sqcap \exists \text{hasChild} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \text{Lawyer})
\end{align*}
\]

- A mechanism to specify knowledge about concepts (i.e., **TBox** \(\mathcal{T} \)) and roles (i.e., **RBox** \(\mathcal{R} \))

\[
\begin{align*}
\mathcal{T} & = \{ \text{Father} \equiv \text{Human} \sqcap \text{Male} \sqcap \exists \text{hasChild}, \\
& \quad \text{HappyFather} \sqsubseteq \text{Father} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \text{Lawyer}) \} \\
\mathcal{R} & = \{ \text{hasFather} \sqsubseteq \text{hasParent} \}
\end{align*}
\]

- A mechanism to specify properties of objects (i.e., an **ABox**)

\[
\mathcal{A} = \{ \text{HappyFather}(\text{john}), \text{hasChild}(\text{john}, \text{mary}) \}
\]

- A set of **inference services**: how to reason on a given KB

\[
\begin{align*}
\mathcal{T} \models \text{HappyFather} \sqcap \exists \text{hasChild}.(\text{Doctor} \sqcup \text{Lawyer}) \\
\mathcal{T} \cup \mathcal{A} \models (\text{Doctor} \sqcup \text{Lawyer})(\text{mary})
\end{align*}
\]
Concept Expressions

- **Concept expressions** are defined inductively as follows:
 - every **concept name** is a concept expression,
 - \top and \bot are concept expressions,
 - for a_1, \ldots, a_n individual names, $\{a_1, \ldots, a_n\}$ is a concept expression,
 - for C and D concept expressions, $\neg C$ and $C \cap D$ and $C \cup D$ are concept expressions,
 - for r a role and C a concept expression, $\exists r.C$ and $\forall r.C$ are concept expressions,
 - for s a **simple** role, C a concept expression and n a natural number, $\exists s.Self$ and $\leq n s.C$ and $\geq n s.C$ are concept expressions.

- Note: we formally define roles and simple roles later (for the moment, we use role names)
Examples of Concept Expressions

- Conjunction: $\textit{Singer} \sqcap \textit{Actor}$
- Disjunction: $\forall \textit{hasChild}.(\textit{Doctor} \sqcup \textit{Lawyer})$
- Qualified existential restriction: $\exists \textit{hasChild}.\textit{Doctor}$
- Full negation: $\neg(\textit{Doctor} \sqcup \textit{Lawyer})$
- Number restrictions: $(\geq 2 \textit{hasChild}) \sqcap (\leq 1 \textit{sibling})$
- Qualified number restrictions: $(\geq 2 \textit{hasChild}.\textit{Doctor})$
- Inverse role: $\forall \textit{hasChild}^-.\textit{Doctor}$
A general concept inclusion (GCI) has the form

\[C \subseteq D \]

where \(C \) and \(D \) are concept expressions.

A TBox consists of a set of GCIs.

N.B.: Definition of TBox presumes already known RBox due to role simplicity constraints.
Example Knowledge Base

TBox \mathcal{T}

<table>
<thead>
<tr>
<th>Concept</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy</td>
<td>$\sqsubseteq \neg \text{Dead}$</td>
</tr>
<tr>
<td>Cat</td>
<td>$\sqsubseteq \text{Dead} \sqcup \text{Alive}$</td>
</tr>
<tr>
<td>HappyCatOwner</td>
<td>$\sqsubseteq \exists \text{owns}.\text{Cat} \sqcap \forall \text{caresFor}.\text{Healthy}$</td>
</tr>
</tbody>
</table>

"Healthy beings are not dead."

"Every cat is dead or alive."

"A happy cat owner owns a cat and all beings he cares for are healthy."
An individual assertion can have any of the following forms:

- $C(a)$, called concept assertion
- $r(a, b)$, called role assertion
- $\neg r(a, b)$, called negated role assertion
- $a \approx b$, called equality statement, or
- $a \not\approx b$, called inequality statement.

An ABox consists of a set of individual assertions.
Example Knowledge Base

TBox \mathcal{T}

- $\text{Healthy} \sqsubseteq \lnot \text{Dead}$

 "Healthy beings are not dead."

- $\text{Cat} \sqsubseteq \text{Dead} \sqcup \text{Alive}$

 "Every cat is dead or alive."

- $\text{HappyCatOwner} \sqsubseteq \exists \text{owns}. \text{Cat} \sqcap \forall \text{caresFor}. \text{Healthy}$

 "A happy cat owner owns a cat and all beings he cares for are healthy."

ABox \mathcal{A}

- $\text{HappyCatOwner}(\text{schroedinger})$

 "Schrödinger is a happy cat owner."
Role Incision Axioms

- A **role** can be
 - a role name \(r \) or
 - an inverted role name \(r^- \) (intuitively, reversed participants) or
 - the universal role \(u \).

- A role inclusion axiom (RIA) is a statement of the form

\[
\underbrace{r_1 \circ \cdots \circ r_n} \sqsubseteq r
\]

where \(r_1, \ldots, r_n, r \) are roles.
Role Simplicity

- Given RIAs, roles are divided into simple and non-simple roles.
- Roughly, roles are non-simple if they may occur on the rhs of a complex RIA.
- More precisely,
 - for any RIA $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r$ with $n > 1$, r is non-simple,
 - for any RIA $s \sqsubseteq r$ with s non-simple, r is non-simple, and
 - all other properties are simple.

Example

$q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s$
Role Simplicity

- Given RIAs, roles are divided into **simple** and **non-simple** roles.

- Roughly, roles are **non-simple** if they may occur on the rhs of a complex RIA.

- More precisely,
 - for any RIA $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r$ with $n > 1$, r is non-simple,
 - for any RIA $s \sqsubseteq r$ with s non-simple, r is non-simple, and
 - all other properties are simple.

Example

$$q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s$$

non-simple: r, s
Role Simplicity

- Given RIAs, roles are divided into simple and non-simple roles.

- Roughly, roles are non-simple if they may occur on the rhs of a complex RIA.

- More precisely,
 - for any RIA $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r$ with $n > 1$, r is non-simple,
 - for any RIA $s \sqsubseteq r$ with s non-simple, r is non-simple, and
 - all other properties are simple.

Example

\[
q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s
\]

- non-simple: r, s
- simple: p, q
A **role disjointness** statement has the form

\[\text{Dis}(s_1, s_2) \]

where \(s_1 \) and \(s_2 \) are simple roles.

An **RBox** consists of regular\(^1\) set of RIAs and a set of role disjointness statements.

In expressive Description Logics, \(\mathcal{R} \) might contain further axioms, such as \(\text{Asym}(r) \) (asymmetry) and \(\text{Ref}(r) \) (reflexivity).

\(^1\)Syntactic conditions put on the usage of non-simple roles (see [Rudolph, 2011])
Example Knowledge Base

RBox R

<table>
<thead>
<tr>
<th>owns</th>
<th>caresFor</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊑</td>
<td></td>
</tr>
</tbody>
</table>

"If somebody owns something, s/he cares for it."

TBox T

<table>
<thead>
<tr>
<th>Healthy</th>
<th>¬Dead</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊑</td>
<td></td>
</tr>
</tbody>
</table>

"Healthy beings are not dead."

<table>
<thead>
<tr>
<th>Cat</th>
<th>Dead ⊔ Alive</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊑</td>
<td></td>
</tr>
</tbody>
</table>

"Every cat is dead or alive."

<table>
<thead>
<tr>
<th>HappyCatOwner</th>
<th>∃owns.Cat ⊓ ∀caresFor.Healthy</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊑</td>
<td></td>
</tr>
</tbody>
</table>

"A happy cat owner owns a cat and all beings he cares for are healthy."

ABox A

HappyCatOwner(schroedinger)

"Schrödinger is a happy cat owner."

Exercise: try to compute all facts that follow from the KB yourself!
1. Introduction and background
 - Brief recap on propositional and first order logic
 - Decidability of logics
 - History of DLs

2. Syntax of DLs
 - DL building blocks
 - Concept expressions
 - TBox
 - ABox
 - RBox
References I

Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors.

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph.

Foundations of Semantic Web Technologies.

Sebastian Rudolph.

Foundations of description logics.