Knowledge Representation for the Semantic Web
Lecture 2: Description Logics I

Daria Stepanova

slides based on Reasoning Web 2011 tutorial “Foundations of Description Logics and OWL” by S. Rudolph

Max Planck Institute for Informatics
D5: Databases and Information Systems group

WS 2017/18
Unit Outline

Introduction

Syntax of Description Logics
Logic-based Knowledge Representation

- 350 BC: roots of logic-based KR
- 17th century: idea to make knowledge explicit by logical computation
- 1930s: disillusion due to results about fundamental limits for the existence of generic algorithms
- adoption of computers and AI as a new area of research leads to intensified studies
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.

In which formalisms can we encode this knowledge?
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.

In which formalisms can we encode this knowledge?

- **propositional logic (PL):** propositional variables, \(\neg, \lor, \land, \rightarrow\)

(1) \(\text{AristotelIsAMan} = true\); (2) \(\text{SocratesIsAMan} = true\)
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL):** propositional variables, \neg, \lor, \land, \rightarrow

(1) $\text{AristotelIsAMan} = \text{true}$; (2) $\text{SocratesIsAMan} = \text{true}$
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- propositional logic (PL): propositional variables, ¬, ∨, ∧, →

(1) \(\text{AristotelIsAMan} = \text{true} \); (2) \(\text{SocratesIsAMan} = \text{true} \)

(3) \(\text{AristotelIsAMan} \rightarrow \text{AristotelIsMortal} \)

\(\text{SocratesIsAMan} \rightarrow \text{SocratesIsMortal} \);

PL is not expressive....
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man.
(3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL):** propositional variables, ¬, ∨, ∧, →

 (1) AristotelIsAMan = true; (2) SocratesIsAMan = true
 (3) AristotelIsAMan → AristotelIsMortal
 SocratesIsAMan → SocratesIsMortal;

 PL is **not expressive**.

- **first order logic (FOL):** predicates of arbitrary arity, constants, variables, function symbols, ¬, ∨, ∧, ∀, ∃, →

 (1) Man(socrates); (2) Man(aristotel); (3) ∀X (Man(X) → Mortal(X))
Propositional and First-order Logic

(1) Aristotel is a man. (2) Socrates is a man. (3) All men are mortal.

In which formalisms can we encode this knowledge?

- **propositional logic (PL):** propositional variables, ¬, ∨, ∧, →

 (1) AristotelIsAMan = true; (2) SocratesIsAMan = true
 (3) AristotelIsAMan → AristotelIsMortal
 SocratesIsAMan → SocratesIsMortal;

 PL is not expressive.

- **first order logic (FOL):** predicates of arbitrary arity, constants, variables, function symbols, ¬, ∨, ∧, ∀, ∃, →

 (1) Man(socrates); (2) Man(aristotel);
 (3) ∀X (Man(X) → Mortal(X))

 FOL is expressive but **undecidable** in general...
Decidability

A class of problems is called **decidable**, if there is an algorithm that given any problem instance from this class as input can output a “**yes**” or “**no**” answer to it after finite time.

Decidable logics

In logic context, the following **generic problem** is normally studied:

Given: a set of statements T and a statement ϕ,

Output: “**yes**”, iff T logically entails ϕ and “**no**” otherwise.

In case there is no danger of confusion about the type of problem considered, sometimes the **logic** itself is called **decidable** or **undecidable**.
Consider propositional logic (PL) and the following statements T and ϕ:

$$(SocrIsAMan \rightarrow SocrIsMortal) \land SocrIsAMan \models SocrIsMortal$$

The following questions in PL are equivalent:

- $T \models \phi$?
- $T \rightarrow \phi$ for every valuation of $socrIsAMan, socrIsMortal$?
- $T \land \neg \phi$ is unsatisfiable, i.e., false for every valuation?

The (un)satisfiability problem in PL is called (UN)SAT. Propositional logic is **decidable**, since (UN)SAT is decidable (consider 2^n truth assignments of n variables in $T \land \neg \phi$).
Introduction Syntax of Description Logics

Description Logics

- 1930’s: First order logic for KR (undecidable)
Description Logics

- 1930’s: First order logic for KR (undecidable)

- 1970’s: Network-shaped structures for KR
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]
Description Logics

- **1930’s:** First order logic for KR (undecidable)

- **1970’s:** Network-shaped structures for KR (no formal semantics)
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]
Description Logics

- 1930’s: First order logic for KR (undecidable)

- 1970’s: Network-shaped structures for KR (no formal semantics)
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]

- 1979: Encoding of frames into FOL [Hayes, 1979]
Introduction Syntax of Description Logics

Description Logics

- **1930’s:** First order logic for KR *(undecidable)*

- **1970’s:** Network-shaped structures for KR *(no formal semantics)*
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]

- **1979:** Encoding of frames into FOL [Hayes, 1979]

- **1980’s:** Description logics (DL) for KR
 - Decidable fragments of FOL
 - Theories encoded in DLs are called ontologies
 - Many DLs with different expressiveness and computational features
Description Logics

- **1930’s**: First order logic for KR *(undecidable)*

- **1970’s**: Network-shaped structures for KR *(no formal semantics)*
 - Semantic networks [Quillian, 1968], conceptual graphs, SNePs, NETL
 - Frames [Minsky, 1974]

- **1979**: Encoding of frames into FOL [Hayes, 1979]

- **1980’s**: Description logics (DL) for KR
 - Decidable fragments of FOL
 - Theories encoded in DLs are called ontologies
 - Many DLs with different expressiveness and computational features
Description Logics (cont’d)

- **Goal**: ensure decidable reasoning and formal logic-based semantics
- Description logics cater for this goal
- They can be seen as **decidable** fragments of first-order logic, closely related to modal logics
- A significant portion of DL-related research devoted to clarifying the computational effort of reasoning tasks in terms of their worst-case complexity
- Despite high worst-case complexity, even for expressive DLs optimized reasoning algorithms exist with good behaviour in practical relevant settings
 - cf. SAT Solving: NP-complete in general but works well in practice
Description Logics (cont’d)

- Description logics one of today’s main KR paradigms
- influenced standardization of Semantic Web languages, in particular the web ontology language OWL
- comprehensive tool support available

Fact++ Pellet HermiT ELK
Applications

- Semantic Web (OWL)
- Enterprise Application Integration (EAI)
- Data Modelling (UML)
- Knowledge Representation for life sciences: SNOMED Clinical Terms, Gene ontology, UniProtKB/Swiss-Prot protein sequence database, GALEN medical concepts for e-healthcare
- Ontology-Based Data Access (OBDA)
- ...
Syntax of Description Logics
DL Building Blocks

- **Individual names:** *john, mary, sun, lalaland*
 aka: constants (FOL), resources (RDF)

- **Concept names:** *Male, Planet, Film, Country*
 aka: unary predicates (FOL), classes (RDFS)

- **Role names:** *married, fatherOf, actedIn*
 aka: binary predicates (FOL), properties (RDFS)

The set of all individual, concept and role names is commonly referred to as signature or vocabulary.
Constituents of a DL Knowledge Base

- information about individuals and their concept and role memberships
- information about concepts and their taxonomic dependencies
- information about roles and their dependencies
Constituents of a DL

A DL is characterized by:

- A **description language**: how to form concept/role expressions
 \[\text{Human} \sqcap \text{Male} \sqcap \exists \text{hasChild} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \text{Lawyer}) \]

- A mechanism to specify knowledge about concepts (i.e., TBox \(T \)) and roles (i.e., RBox \(R \))
 \[T = \{ \text{Father} \equiv \text{Human} \sqcap \text{Male} \sqcap \exists \text{hasChild}, \]
 \[\quad \text{HappyFather} \sqsubseteq \text{Father} \sqcap \forall \text{hasChild}.(\text{Doctor} \sqcup \text{Lawyer}) \} \]
 \[R = \{ \text{hasFather} \sqsubseteq \text{hasParent} \} \]

- A mechanism to specify **properties of objects** (i.e., an ABox)
 \[A = \{ \text{HappyFather}(\text{john}), \text{hasChild}(\text{john}, \text{mary}) \} \]

- A set of **inference services**: how to reason on a given KB
 \[T \models \text{HappyFather} \sqcap \exists \text{hasChild}.(\text{Doctor} \sqcup \text{Lawyer}) \]
 \[T \cup A \models (\text{Doctor} \sqcup \text{Lawyer})(\text{mary}) \]
Concept Expressions

- **Concept expressions** are defined inductively as follows:
 - every concept name is a concept expression,
 - \top and \bot are concept expressions,
 - for a_1, \ldots, a_n individual names, $\{a_1, \ldots, a_n\}$ is a concept expression,
 - for C and D concept expressions, $\neg C$ and $C \cap D$ and $C \cup D$ are concept expressions,
 - for r a role and C a concept expression, $\exists r.C$ and $\forall r.C$ are concept expressions,
 - for s a simple role, C a concept expression and n a natural number, $\exists s.\text{Self}$ and $\leq n s.C$ and $\geq n s.C$ are concept expressions.

- Note: we formally define roles and simple roles later (for the moment, we use role names)
Examples of Concept Expressions

- Conjunction: $Singer \sqcap Actor$
- Disjunction: $\forall hasChild.(Doctor \sqcup Lawyer)$
- Qualified existential restriction: $\exists hasChild.\ Doctor$
- Full negation: $\neg (Doctor \sqcap Lawyer)$
- Number restrictions: $(\geq 2 hasChild) \sqcap (\leq 1 sibling)$
- Qualified number restrictions: $(\geq 2 hasChild.\ Doctor)$
- Inverse role: $\forall hasChild^{-}.\ Doctor$
A general concept inclusion (GCI) has the form

\[C \sqsubseteq D \]

where \(C \) and \(D \) are concept expressions.

A TBox consists of a set of GCIs.

N.B.: Definition of TBox presumes already known RBox due to role simplicity constraints.
Example Knowledge Base

\[TBox \mathcal{T} \]

\[
\begin{align*}
\text{Healthy} & \sqsubseteq \neg \text{Dead} \\
\text{Cat} & \sqsubseteq \text{Dead} \sqcap \text{Alive} \\
\text{HappyCatOwner} & \sqsubseteq \exists \text{owns} . \text{Cat} \sqcap \forall \text{caresFor} . \text{Healthy}
\end{align*}
\]

"Healthy beings are not dead."

"Every cat is dead or alive."

"A happy cat owner owns a cat and all beings he cares for are healthy."
ABox

- An **individual assertion** can have any of the following forms
 - $C(a)$, called **concept assertion**
 - $r(a, b)$, called **role assertion**
 - $\neg r(a, b)$, called **negated role assertion**
 - $a \approx b$, called **equality statement**, or
 - $a \not\approx b$, called **inequality statement**.

- An **ABox** consists of a set of individual assertions.
Example Knowledge Base

TBox \mathcal{T}

- **Healthy** $\sqsubseteq \neg$ **Dead**

 "Healthy beings are not dead."

- **Cat** \sqsubseteq **Dead** \sqcap **Alive**

 "Every cat is dead or alive."

- **HappyCatOwner** $\sqsubseteq \exists$ **owns**. **Cat** $\sqcap \forall$ **caresFor**. **Healthy**

 "A happy cat owner owns a cat and all beings he cares for are healthy."

ABox \mathcal{A}

- **HappyCatOwner**(schroedinger)

 "Schrödinger is a happy cat owner."
Role Incusion Axioms

• A role can be
 • a role name r or
 • an inverted role name r^- (intuitively, reversed participants) or
 • the universal role u.

• A role inclusion axiom (RIA) is a statement of the form

$$r_1 \circ \cdots \circ r_n \sqsubseteq r$$

where r_1, \ldots, r_n, r are roles.
Role Simplicity

- Given RIAs, roles are divided into simple and non-simple roles.

- Roughly, roles are non-simple if they may occur on the rhs of a complex RIA.

- More precisely,
 - for any RIA $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r$ with $n > 1$, r is non-simple,
 - for any RIA $s \sqsubseteq r$ with s non-simple, r is non-simple, and
 - all other properties are simple.

Example

\[
q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s
\]
Role Simplicity

- Given RIAs, roles are divided into simple and non-simple roles.

- Roughly, roles are non-simple if they may occur on the rhs of a complex RIA.

- More precisely,
 - for any RIA $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r$ with $n > 1$, r is non-simple,
 - for any RIA $s \sqsubseteq r$ with s non-simple, r is non-simple, and
 - all other properties are simple.

Example

\[
q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s
\]

non-simple: \(r, s \)
Role Simplicity

- Given RIAs, roles are divided into simple and non-simple roles.

- Roughly, roles are non-simple if they may occur on the rhs of a complex RIA.

- More precisely,
 - for any RIA $r_1 \circ r_2 \circ \ldots \circ r_n \sqsubseteq r$ with $n > 1$, r is non-simple,
 - for any RIA $s \sqsubseteq r$ with s non-simple, r is non-simple, and
 - all other properties are simple.

Example

$q \circ p \sqsubseteq r \quad r \circ p \sqsubseteq r \quad r \sqsubseteq s \quad p \sqsubseteq r \quad q \sqsubseteq s$

non-simple: r, s
simple: p, q
A role disjointness statement has the form

\[\text{Dis}(s_1, s_2) \]

where \(s_1 \) and \(s_2 \) are simple roles.

An RBox consists of regular\(^1\) set of RIAs and a set of role disjointness statements.

In expressive Description Logics, \(\mathcal{R} \) might contain further axioms, such as \textit{Asym}(r) (asymmetry) and \textit{Ref}(r) (reflexivity).

\(^1\)Syntactic conditions put on the usage of non-simple roles (see [Rudolph, 2011])
Example Knowledge Base

RBox \mathcal{R}

- **owns** \sqsubseteq **caresFor**

 "If somebody owns something, s/he cares for it."

TBox \mathcal{T}

- **Healthy** $\sqsubseteq \neg$ **Dead**

 "Healthy beings are not dead."

- **Cat** \sqsubseteq **Dead** \sqcap **Alive**

 "Every cat is dead or alive."

- **HappyCatOwner** $\sqsubseteq \exists$ **owns** . **Cat** $\sqcap \forall$ **caresFor** . **Healthy**

 "A happy cat owner owns a cat and all beings he cares for are healthy."

ABox \mathcal{A}

- **HappyCatOwner**(schroedinger)

 "Schrödinger is a happy cat owner."

Exercise: try to compute all facts that follow from the KB yourself!
Summary

1. Introduction and background
 - Brief recap on propositional and first order logic
 - Decidability of logics
 - History of DLs

2. Syntax of DLs
 - DL building blocks
 - Concept expressions
 - TBox
 - ABox
 - RBox
Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider, editors.
The Description Logic Handbook: Theory, Implementation and Applications.

Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph.
Foundations of Semantic Web Technologies.

Sebastian Rudolph.
Foundations of description logics.