Knowledge Representation for the Semantic Web

Lecture 6: Answer Set Programming I

Daria Stepanova

partially based on slides by Thomas Eiter

D5: Databases and Information Systems
Max Planck Institute for Informatics

WS 2017/18
Unit Outline

Introduction

Horn Logic Programming

Negation in Logic Programs

Answer Set Semantics
French Phrases, Italian Soda

- Six people sit at a round table.
- Each drinks a different kind of soda.
- Each plans to visit a different French-speaking country.
- The person who is planning a trip to Quebec, who drank either blueberry or lemon soda, didn’t sit in seat number one.
- Jeanne didn’t sit next to the person who enjoyed the kiwi soda.
- The person who has a plane ticket to Belgium, who sat in seat four or seat five, didn’t order the cherry soda.
- ...

Question:
- What is each of them drinking, and where is each of them going?
Sudoku

Task:
Fill in the grid so that every row, every column, and every 3x3 box contains the digits 1 through 9.
Graph 3-colouring

![Graph Diagram]

Task:

Colour the nodes of the graph in three colors such that none of the two adjacent nodes share the same colour.

Introduction

- A rule r, if $\text{Head}(r) \neq \emptyset$ whenever $\text{Body}^+(r) \subseteq S$ and $\text{Body}^-(r) \setminus S = \emptyset$;
- A logic program P, if it is a model of P,

Horn Logic Programming

- Negation in Logic Programs
- Answer Set Semantics

ASP reasoning tools, combining clasp and gringo into a system architecture.

Graph 3-colourability

Consider a graph with nodes 1 to 6, and edges connecting pairs of nodes. The task is to colour the nodes using the colors red, blue, and green, ensuring that no two adjacent nodes share the same color.

Definition 11.

Given a logic program P, an interpretation I is a model of P, if it satisfies all rules r in P.

Definition 10.

Given a positive logic program P, the facts of the program describe the nodes and edges of the graph from above. The rules (9)-(11) state that each node has to be colored in at least one of the three colors. The constraint (12) forbids the nodes to be colored in more than one color. The constraint (13) says that two nodes connected via an edge must have different colors.

Example 10.

- The facts of the programs describe the nodes and edges of the graph from above. The rules (9)-(11) state that each node has to be colored in at least one of the three colors. The constraint (12) forbids the nodes to be colored in more than one color. The constraint (13) says that two nodes connected via an edge must have different colors.

Task:

Colour the nodes of the graph in three colors such that none of the two adjacent nodes share the same colour.
Wanted!

- A general-purpose approach for modeling and solving these and many other problems.

- Issues:
 - Diverse domains
 - Spatial and temporal reasoning
 - Constraints
 - Incomplete information
 - Frame problem

- Proposal:
 - Answer-set programming (ASP) paradigm!
Answer Set Programming

- **Answer Set Programming (ASP)** is a recent problem solving approach, based on declarative programming.

- The term was coined by Vladimir Lifschitz [1999,2002].

- Proposed by other people at about the same time, e.g., by Marek and Truszczynski [1999] and Niemelä [1999].

- It has roots in knowledge representation, logic programming, and nonmonotonic reasoning.

- At an abstract level, ASP relates to SAT solving and constraint satisfaction problems (CSPs).
Answer Set Programming (cont’d)

- Important logic programming method
- Developed in the early 1990s by Gelfond and Lifschitz.

Left: Michael Gelfond (Texas Tech Univ., Lubbock)
Right: Vladimir Lifschitz (Univ. of Texas, Austin)

- Both are graduates from the Steklov Mathematical Institute, St.Petersburg (then: Leningrad).
Answer Set Programming (cont’d)

- **ASP** is an approach to **declarative programming**, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

- **ASP** has its roots in
 - deductive **databases**
 - logic programming with negation
 - knowledge representation and **nonmonotonic reasoning**
 - constraint solving (in particular, SATisfiability testing)

- **ASP** allows for solving all **search problems** in \(\text{NP} \) (and \(\text{NP}^{\text{NP}} \)) in a uniform way
Answer Set Programming (cont’d)

- **ASP** is an approach to **declarative programming**, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

- **ASP** has its roots in
 - deductive databases
 - logic programming with negation
 - knowledge representation and nonmonotonic reasoning
 - constraint solving (in particular, SATisfiability testing)

- **ASP** allows for solving all **search problems** in NP (and NP$^\text{NP}$) in a uniform way
Traditional programming: describe how to solve the problem
Declarative programming: describe what is the problem

PROBLEM

Modeling

ANSWER SET PROGRAM

SOLVER

Solving

ASP solvers

INTERPRETING

ANSWER SET
Answer Set Programming (cont’d)

- **ASP** is an approach to *declarative programming*, combining
 - a rich yet simple modeling language
 - with high-performance solving capacities

- **ASP** has its roots in
 - deductive *databases*
 - *logic programming* with negation
 - knowledge representation and *nonmonotonic reasoning*
 - *constraint solving* (in particular, SATisfiability testing)

- **ASP** allows for solving all *search problems* in NP (and NP^{NP}) in a uniform way
Nonmonotonic Reasoning

• Nonmonotonicity means that conclusions may be invalidated in the light of new information.

• More specifically, an inference relation \models is nonmonotonic if it violates the monotonicity principle:

 \[
 \text{if } T \models \phi \text{ and } T \subseteq T', \text{ then } T' \models \phi.
 \]

• Note: inference in description logics is monotonic.

Example: Monotonicity of description logics

- $T = \{ \text{Bird} \sqsubseteq \text{Flier}, \text{Bird}(\text{tweety}) \}$
- $T \models \text{Flier}(\text{tweety})$
- $T' = T \cup \{ \neg \text{Flier}(\text{tweety}) \}$
- $T' \models \text{Flier}(\text{tweety})$ (actually T' is inconsistent)
Nonmonotonic Reasoning

- Nonmonotonicity means that conclusions may be invalidated in the light of new information.

- More specifically, an inference relation \models is nonmonotonic if it violates the monotonicity principle:

\[
\text{if } T \models \phi \text{ and } T \subseteq T', \text{ then } T' \models \phi.
\]

- Note: inference in description logics is monotonic.

Example: Nonmonotonic inference

If $\text{bird}(x)$ holds and there is no evidence for $\neg \text{flies}(x)$, then infer $\text{flies}(x)$. I.e., if $\text{bird}(x)$, assume $\text{flies}(x)$ by default.
ASP Systems

ASP gains increasing importance for knowledge representation

- High expressiveness
- Efficient solvers available: DLV, clasp, ...

<table>
<thead>
<tr>
<th>Name</th>
<th>Platform</th>
<th>Licence</th>
<th>Variables</th>
<th>Function symbols</th>
<th>Explicit sets</th>
<th>Explicit lists</th>
<th>Disjunctive (choice rules) support</th>
<th>Mechanics</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASPeRX</td>
<td>Linux</td>
<td>GPL</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>on-the-fly grounding</td>
</tr>
<tr>
<td>ASSAT</td>
<td>Solaris</td>
<td>Freeware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAT-solver based</td>
</tr>
<tr>
<td>Clasp Answer Set Solver</td>
<td>Linux, macOS, Windows</td>
<td>GPL</td>
<td>Yes, in Clingo</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>incremental, SAT-solver inspired (nogood, conflict-driven)</td>
</tr>
<tr>
<td>Cmodels</td>
<td>Linux, Solaris</td>
<td>GPL</td>
<td>Requires</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>incremental, SAT-solver inspired (nogood, conflict-driven)</td>
</tr>
<tr>
<td>DLV</td>
<td>Linux, macOS, Windows</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>not lparse compatible</td>
</tr>
<tr>
<td>DLV-Complex</td>
<td>Linux, macOS, Windows</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>built on top of DLV — not lparse compatible</td>
</tr>
<tr>
<td>GnT</td>
<td>Linux</td>
<td>GPL</td>
<td>Requires</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>built on top of smodels</td>
</tr>
<tr>
<td>nomore++</td>
<td>Linux</td>
<td>GPL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>combined literal+rule-based</td>
</tr>
<tr>
<td>Platypus</td>
<td>Linux, Solaris, Windows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>distributed, multi-threaded nomore++, smodels</td>
</tr>
<tr>
<td>Pbmodels</td>
<td>Linux</td>
<td>?</td>
<td>Requires</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pseudo-boolean solver based</td>
</tr>
<tr>
<td>Smodels</td>
<td>Linux, macOS, Windows</td>
<td></td>
<td>Requires</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAT-solver based; smodels w/conflict clauses</td>
</tr>
<tr>
<td>Smodels-cc</td>
<td>Linux</td>
<td>?</td>
<td>Requires</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SAT-solver based</td>
</tr>
<tr>
<td>Sup</td>
<td>Linux</td>
<td>?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASP: General Idea

- ASP are logic programs;
- Their semantics adheres to the multiple preferred models approach:
 - given as a selection of the collection of all classical models;
 - selected (intended) models are called stable models or answer sets.
ASP: General Idea

- ASP are logic programs;
- Their semantics adheres to the multiple preferred models approach:
 - given as a selection of the collection of all classical models;
 - selected (intended) models are called stable models or answer sets.

Fundamental characteristics:

- models, not proofs, represent solutions;
- requires techniques to compute models (rather than techniques to compute proofs)
Given a search problem Π and an instance I, reduce it to the problem of computing intended models of a logic program:

1. Encode (Π, I) as a logic program P such that the solutions of Π for the instance I are represented by the intended models of P.
2. Compute some intended model M of P.
3. Extract a solution for I from M.

Variant:
- Compute multiple/all intended models to obtain multiple/all solutions
Example

- PROBLEM
- SOLUTION

 Modeling

- ANSWER SET PROGRAM
- ANSWER SET

Interpreting

Solving

ASP solvers, e.g. clingo, dlv, dlvhex...
Motivation
Ontologies and Rules Inconsistencies in DL-programs
Nonmonotonic Rule Mining
Ongoing and Future Work

Introduction
Horn Logic Programming
Negation in Logic Programs
Answer Set Semantics

Example

Graph 3-colorability

Modeling

Solving

ANSWER SET PROGRAM
Use ASP to solve *search problems*, like

- *k*-colourability:
 - assign one of k colours to each node of a given graph such that adjacent nodes always have different colours

- **Sudoku:**
 - find a solution to a given Sudoku puzzle

- **Satisfiability (SAT):**
 - find all models of a propositional formula

- **Time Tabling:**
 - find a lecture room assignment for courses
ASP Applications (cont’d)

- Semantic Web
ASP Applications (cont’d)

- Semantic Web
- games, puzzles
- information integration
- constraint satisfaction, configuration
- planning, routing, scheduling
- diagnosis, repair
- security, verification
- systems biology / biomedicine
- knowledge management
- musicology
- …

See AI Magazine article on ASP [Erdem et al., 2016] for overview
ASP Applications (cont’d)

- **USA-Advisor** [Nogueira et al., 2001]
 - decision support system to control the Space Shuttle during flight
 - issue: problems with the oxygen transport (pipes and valves)
 - failure scenario: also multiple system failures occur

- **Biological Network Repair** [Kaminski et al., 2013]
 - model nodes (substances, etc) in a large scale biological influence graph, with roles (e.g. inhibitor, activator)
 - repair inconsistencies (modify roles, add links between nodes, etc)

- **Anton** [Boenn et al., 2011] [http://www.cs.bath.ac.uk/~mjb/anton/]
 - automatic system for the composition of renaissance-style music.
 - musical knowledge \approx 500 ASP rules (melody, harmony, rhythm)
 - can generate musical pieces, check pieces for violations.
Horn Logic Programming

Alfred Horn
Syntax

• Assume a vocabulary \(\Phi \) comprised of nonempty finite sets of
 • constants (e.g., \textit{frankfurt})
 • variables (e.g., \textit{X})
 • predicate symbols (e.g., \textit{connected})
Syntax

- Assume a vocabulary Φ comprised of nonempty finite sets of
 - constants (e.g., $frankfurt$)
 - variables (e.g., X)
 - predicate symbols (e.g., $connected$)

- A term is either a variable, a constant, or inductively built from other terms using function symbols.
Syntax

- Assume a vocabulary Φ comprised of nonempty finite sets of
 - constants (e.g., $frankfurt$)
 - variables (e.g., X)
 - predicate symbols (e.g., $connected$)

- A term is either a variable, a constant, or inductively built from other terms using function symbols.

- An atom is an expression of form $p(t_1, \ldots, t_n)$, where
 - p is a predicate symbol of arity $n \geq 0$ from Φ, and
 - t_1, \ldots, t_n are terms.

 (e.g., $connected(frankfurt)$)
Syntax

- Assume a vocabulary Φ comprised of nonempty finite sets of
 - constants (e.g., $frankfurt$)
 - variables (e.g., X)
 - predicate symbols (e.g., $connected$)

- A term is either a variable, a constant, or inductively built from other terms using function symbols.

- An atom is an expression of form $p(t_1, \ldots, t_n)$, where
 - p is a predicate symbol of arity $n \geq 0$ from Φ, and
 - t_1, \ldots, t_n are terms.
 (e.g., $connected(frankfurt)$)

- A term or an atom is ground if it contains no variable.
 (e.g., $connected(frankfurt)$ is ground, $connected(X)$ is nonground.)
Def.: **Positive logic programs**

A positive logic program, P, is a finite set of rules (clauses) of the form

$$a \leftarrow b_1, \ldots, b_m,$$

(1)

where a, b_1, \ldots, b_m are atoms.

- a is the head of the rule
- b_1, \ldots, b_m is the body of the rule.
- If $m = 0$, the rule is a fact (written shortly a)

Intuitively, (1) can be seen as material implication

$$\forall \bar{x} \ b_1 \land \cdots \land b_m \rightarrow a,$$

where \bar{x} is the list of all variables occurring in (1).
Example

- **Ground rule:** “If Franfurt is a hub airport, and there is a link between Frankfurt and Saarbrücken, then Saarbrücken is a connected airport.”

 \[
 \text{connected}(srb) \leftarrow \text{hub_airport}(frankfurt), \text{link}(frankfurt, srb)
 \]
Example

- **Ground rule:** “If Franfurt is a hub airport, and there is a link between Frankfurt and Saarbrücken, then Saarbrücken is a connected airport.”

 \[
 \text{connected}(\text{srb}) \leftarrow \text{hub_{airport}}(\text{frankfurt}), \text{link}(\text{frankfurt}, \text{srb})
 \]

- **Non-ground rule:** “All airports with a link to a hub airport are connected.”

 \[
 \text{connected}(X) \leftarrow \text{hub_{airport}}(Y), \text{link}(Y, X)
 \]

 can be read as a universally quantified clause

 \[
 \forall X, Y \ \text{hub_{airport}}(Y) \land \text{link}(Y, X) \rightarrow \text{connected}(X).
 \]
Herbrand Semantics

Def.: **Herbrand universe, base, interpretation**

- Given a logic program \(P \), the **Herbrand universe** of \(P \), \(HU(P) \), is the set of all terms which can be formed from constants and functions symbols in \(P \) (resp., the vocabulary \(\Phi \) of \(P \), if explicitly known).

- The **Herbrand base** of \(P \), \(HB(P) \), is the set of all ground atoms which can be formed from predicates and terms \(t \in HU(P) \).
Herbrand Semantics

Def.: Herbrand universe, base, interpretation

- Given a logic program P, the **Herbrand universe** of P, $HU(P)$, is the set of all terms which can be formed from constants and functions symbols in P (resp., the vocabulary Φ of P, if explicitly known).

- The **Herbrand base** of P, $HB(P)$, is the set of all ground atoms which can be formed from predicates and terms $t \in HU(P)$.

- A **(Herbrand) interpretation** is a first-order interpretation $I = (D, \cdot^I)$ of the vocabulary with domain $D = HU(P)$ where each term $t \in HU(P)$ is interpreted by itself, i.e., $t^I = t$.

Informally, a (Herbrand) interpretation can be seen as a set denoting which ground atoms are true in a given scenario. Named after logician Jacques Herbrand.
Herbrand Semantics

Def.: **Herbrand universe, base, interpretation**

- Given a logic program P, the **Herbrand universe** of P, $\text{HU}(P)$, is the set of all terms which can be formed from constants and functions symbols in P (resp., the vocabulary Φ of P, if explicitly known).

- The **Herbrand base** of P, $\text{HB}(P)$, is the set of all ground atoms which can be formed from predicates and terms $t \in \text{HU}(P)$.

- A **(Herbrand) interpretation** is a first-order interpretation $I = (D, \cdot^I)$ of the vocabulary with domain $D = \text{HU}(P)$ where each term $t \in \text{HU}(P)$ is interpreted by itself, i.e., $t^I = t$.

- I is identified with the set $\{ p(t_1, \ldots, t_n) \in \text{HB}(P) \mid \langle t_1^I, \ldots, t_n^I \rangle \in p^I \}$.

Informally, a (Herbrand) interpretation can be seen as a set denoting which ground atoms are true in a given scenario.

Named after logician Jacques Herbrand.
Herbrand Semantics

Def.: Herbrand universe, base, interpretation

- Given a logic program P, the **Herbrand universe** of P, $HU(P)$, is the set of all terms which can be formed from constants and functions symbols in P (resp., the vocabulary Φ of P, if explicitly known).

- The **Herbrand base** of P, $HB(P)$, is the set of all ground atoms which can be formed from predicates and terms $t \in HU(P)$.

- A **(Herbrand) interpretation** is a first-order interpretation $I = (D, \cdot^I)$ of the vocabulary with domain $D = HU(P)$ where each term $t \in HU(P)$ is interpreted by itself, i.e., $t^I = t$.

- I is identified with the set $\{ p(t_1, \ldots, t_n) \in HB(P) \mid \langle t^I_1, \ldots, t^I_n \rangle \in p^I \}$.

Informally, a (Herbrand) interpretation can be seen as a set denoting which ground atoms are true in a given scenario.
Herbrand Semantics

Def.: Herbrand universe, base, interpretation

- Given a logic program \(P \), the Herbrand universe of \(P \), \(HU(P) \), is the set of all terms which can be formed from constants and functions symbols in \(P \) (resp., the vocabulary \(\Phi \) of \(P \), if explicitly known).

- The Herbrand base of \(P \), \(HB(P) \), is the set of all ground atoms which can be formed from predicates and terms \(t \in HU(P) \).

- A (Herbrand) interpretation is a first-order interpretation \(I = (D, \cdot^I) \) of the vocabulary with domain \(D = HU(P) \) where each term \(t \in HU(P) \) is interpreted by itself, i.e., \(t^I = t \).

- \(I \) is identified with the set \(\{ p(t_1, \ldots, t_n) \in HB(P) \mid \langle t^I_1, \ldots, t^I_n \rangle \in p^I \} \).

Informally, a (Herbrand) interpretation can be seen as a set denoting which ground atoms are true in a given scenario.

Named after logician Jacques Herbrand.
Example

Program P:

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).$$
Example

Program P:

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$

$$p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).$$

- **Constant symbols:** $0, a, b, r$.
Example

Program P:

\[
p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]
\[
h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]
\[
p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).
\]

- Constant symbols: 0, a, b, r.
- Herbrand universe $HU(P)$: \{0, a, b, r\}
Example

Program P:

\[
p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]

\[
h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]

\[
p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).
\]

- Constant symbols: $0, a, b, r$.
- Herbrand universe $HU(P)$: $\{0, a, b, r\}$
- Herbrand base $HB(P)$: $\{ p(0, 0, 0), p(0, 0, a), \ldots, p(r, r, r),
\quad h(0, 0), h(0, a), \ldots, h(r, r, r),
\quad t(0, 0, 0), t(0, 0, a), \ldots, t(r, r, r) \}$
Example

Program P:

\[
\begin{align*}
p(X,Y,Z) & \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r). \\
h(X,Z') & \leftarrow p(X,Y,Z'), h(X,Y), t(Z,Z',r). \\
p(0,0,b). & \quad h(0,0). & \quad t(a,b,r).
\end{align*}
\]

- Constant symbols: 0, a, b, r.
- Herbrand universe $HU(P)$: \{0, a, b, r\}
- Herbrand base $HB(P)$: \{ p(0,0,0), p(0,0,a), \ldots, p(r,r,r), \\
h(0,0), h(0,a), \ldots, h(r,r,r), \\
t(0,0,0), t(0,0,a), \ldots, t(r,r,r) \}\n
- Some Herbrand interpretations:
 \[I_1 = \emptyset; \quad I_2 = HB(P); \quad I_3 = \{h(0,0), t(a,b,r), p(0,0,b)\} \]
Grounding Example

Program P:

\[
p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]

\[
h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]

\[
p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).
\]
Grounding Example

Program P:

$$
p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
$$

$$
h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
$$

$$
p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).
$$

• The ground instances of the first rule are

$$
p(0, 0, 0) \leftarrow p(0, 0, 0), h(0, 0), t(0, 0, r). \quad X = Y = Z = Z' = 0
$$

$$
\ldots
$$

$$
p(0, r, 0) \leftarrow p(0, r, 0), h(0, r), t(0, 0, r). \quad X = Z = Z' = 0, Y = r
$$

$$
\ldots
$$

$$
p(r, r, r) \leftarrow p(r, r, r), h(r, r), t(r, r, r). \quad X = Y = Z = Z' = r
$$

• The single ground instance of the last rule is

$$
t(a, b, r)
$$
Herbrand Models

Def.: **Herbrand models**

An interpretation I is a (Herbrand) model of

- a ground (variable-free) clause $C = a \leftarrow b_1, \ldots, b_m$, symbolically $I \models C$, if either $\{b_1, \ldots, b_m\} \not\subseteq I$ or $a \in I$;

- a clause C, symbolically $I \models C$, if $I \models C'$ for every $C' \in \text{grnd}(C)$;

- a program P, symbolically $I \models P$, if $I \models C$ for every clause C in P.

Proposition

For every positive logic program P, $\text{HB}(P)$ is a model of P.

\[27 / 45\]
Def.: **Herbrand models**

An interpretation I is a *(Herbrand)* model of

- a ground (variable-free) clause $C = a \leftarrow b_1, \ldots, b_m$, symbolically $I \models C$, if either $\{b_1, \ldots, b_m\} \not\subseteq I$ or $a \in I$;

- a clause C, symbolically $I \models C$, if $I \models C'$ for every $C' \in \text{grnd}(C)$;

- a program P, symbolically $I \models P$, if $I \models C$ for every clause C in P.

Proposition

For every positive logic program P, $HB(P)$ is a model of $P.
Reconsider program P:

$$p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$
$$h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).$$
$$p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).$$

Which of the following interpretations are models of P?

- $I_1 = \emptyset$
- $I_2 = \text{HB}(P)$
- $I_3 = \{h(0, 0), t(a, b, r), p(0, 0, b)\}$
Example

Reconsider program P:

\[
p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]
\[
h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]
\[
p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).
\]

Which of the following interpretations are models of P?

- $I_1 = \emptyset$ \textbf{no}
- $I_2 = HB(P)$
- $I_3 = \{h(0, 0), t(a, b, r), p(0, 0, b)\}$
Reconsider program P:

\[
p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]

\[
h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\]

\[
p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).
\]

Which of the following interpretations are models of P?

- $I_1 = \emptyset$ \textbf{no}
- $I_2 = HB(P)$ \textbf{yes}
- $I_3 = \{h(0, 0), t(a, b, r), p(0, 0, b)\}$
Example

Reconsider program P:

$$
p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\)
$$

$$
h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
\)
$$

$$
p(0, 0, b). \quad h(0, 0). \quad t(a, b, r).
\)

Which of the following interpretations are models of P?

- $I_1 = \emptyset$ **no**
- $I_2 = HB(P)$ **yes**
- $I_3 = \{h(0, 0), t(a, b, r), p(0, 0, b)\}$ **no**
Minimal Model Semantics

- A logic program has multiple models in general.
- Select one of these models as the canonical model.
- Commonly accepted: truth of an atom in model I should be “founded” by clauses.

Given:

\[P_1 = \{ a \leftarrow b. \quad b \leftarrow c. \quad c \} , \]

truth of a in the model $I = \{ a, b, c \}$ is “founded”.

Given:

\[P_2 = \{ a \leftarrow b. \quad b \leftarrow a. \quad c \} , \]

truth of a in the model $I = \{ a, b, c \}$ is not founded.
Minimal Model Semantics (cont’d)

Semantics follows Occam’s razor principle: prefer models with true-part as small as possible.

Def: **Minimal models**

A model I of P is **minimal**, if there exists no model J of P such that $J \subset I$.
Semantics follows Occam’s razor principle: prefer models with true-part as small as possible.

Def: **Minimal models**

A model I of P is minimal, if there exists no model J of P such that $J \subset I$.

Theorem

Every positive logic program P has a single minimal model (called the least model), denoted $LM(P)$.
Minimal Model Semantics (cont’d)

Semantics follows Occam’s razor principle: prefer models with true-part as small as possible.

Def: **Minimal models**

A model I of P is **minimal**, if there exists no model J of P such that $J \subset I$.

Theorem

Every positive logic program P has a single minimal model (called the least model), denoted $LM(P)$.

This is a consequence of the following property:

Proposition (Intersection closure)

If I and J are models of a positive program P, then $I \cap J$ is also a model of P.
Example

- For $P_1 = \{ a \leftarrow b. \ b \leftarrow c. \ c \}$, we have $LM(P_1) = \{ a, b, c \}$.

- For $P_2 = \{ a \leftarrow b. \ b \leftarrow a. \ c \}$, we have $LM(P_2) = \{ c \}$.

- For P from above,

 \[
p(X, Y, Z) \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
 \]
 \[
h(X, Z') \leftarrow p(X, Y, Z'), h(X, Y), t(Z, Z', r).
 \]
 \[
p(0, 0, b). \ h(0, 0). \ t(a, b, r).
 \]

 we have

 $LM(P) = \{ h(0, 0), t(a, b, r), p(0, 0, b), p(0, 0, a), h(0, b) \}$.
Negation in Logic Programs
Negation in Logic Programs

Why negation?

- Natural linguistic concept.
- Facilitates convenient, declarative descriptions (definitions).
 E.g., “Men who are not husbands are singles”.

Def: **Normal logic program**

A *normal logic program* is a set of rules of the form

\[a \leftarrow b_1, \ldots, b_m, \text{not } c_1, \ldots, \text{not } c_n \quad (n, m \geq 0) \] (2)

where \(a \) and all \(b_i, c_j \) are atoms.

The symbol “not” is called *negation as failure* (or default negation, weak negation).
Programs with Negation

• Prolog: logic-based programming language (developed in the 1970s), with particular algorithm for proving goals (queries) \(\langle X \rangle \)

• Negation in Prolog: “\(\text{not} \langle X \rangle \)” means “negation as failure (to prove) \(\langle X \rangle \)”.

• Closed World Assumption (CWA): whatever cannot be derived is false.
Programs with Negation

- Prolog: logic-based programming language (developed in the 1970s), with particular algorithm for proving goals (queries) \(\langle X \rangle \)

- Negation in Prolog: "\(\text{not} \langle X \rangle \)" means "negation as failure (to prove) \(\langle X \rangle \)".

- **Closed World Assumption (CWA):** whatever cannot be derived is false.

Different from classical negation in first-order logic!

Negation as failure (default negation) \(\text{not} \)

At a rail road crossing cross the road if **no train is known** to approach

\[
\text{walk} \leftarrow \text{at}(X), \text{crossing}(X), \text{not} \text{ train}_\text{approaches}(X)
\]

Classical negation \(\neg \)

At a rail road crossing cross the road if **no train** approaches

\[
\text{walk} \leftarrow \text{at}(X), \text{crossing}(X), \neg \text{train}_\text{approaches}(X)
\]
Example:

\[
\text{man}(\text{dilbert}).
\]
\[
\text{single}(X) \leftarrow \text{man}(X), \neg \text{husband}(X).
\]

- Can not prove \textit{husband}(\textit{dilbert}) from rules.
- Single intended minimal model: \{\text{man}(\text{dilbert}), \text{single}(\text{dilbert})\}.
Example:

Modifying the last rule of P_5, let the result be P_1:

\[
\begin{align*}
\text{man}(\text{dilbert}). \\
\text{single}(X) & \leftarrow \text{man}(X), \neg \text{husband}(X). \\
\text{husband}(X) & \leftarrow \text{man}(X), \neg \text{single}(X).
\end{align*}
\]

Semantics???

Problem: not a single intuitive model!
Example:

Modifying the last rule of P_5, let the result be P_1:

\[
\begin{align*}
\text{man}(\text{dilbert}). \\
\text{single}(X) & \leftarrow \text{man}(X), \neg \text{husband}(X). \\
\text{husband}(X) & \leftarrow \text{man}(X), \neg \text{single}(X).
\end{align*}
\]

Semantics???

Problem: not a single intuitive model!

Two intuitive Herbrand models:

\[
\begin{align*}
M_1 &= \{ \text{man}(\text{dilbert}), \text{single}(\text{dilbert}) \}, \text{ and } \\
M_2 &= \{ \text{man}(\text{dilbert}), \text{husband}(\text{dilbert}) \}.
\end{align*}
\]

Which one to choose?
Semantics of Negation in Logic Programs

- “War of Semantics” in LP (1980/90ies):
 Meaning of programs like the Dilbert example above
Semantics of Negation in Logic Programs

- “War of Semantics” in LP (1980/90ies):
 Meaning of programs like the Dilbert example above

- Single model vs. multiple model semantics
Introduction
Horn Logic Programming
Negation in Logic Programs
Answer Set Semantics

Semantics of Negation in Logic Programs

- "War of Semantics" in LP (1980/90ies):
 Meaning of programs like the Dilbert example above

- Single model vs. multiple model semantics

- To date:
 - **Well-Founded Semantics** by Gelder, Ross & Schlipf (1991)
 Partial model: \(\text{man(dilbert)} \) is true,
 \(\text{single(dilbert)}, \text{husband(dilbert)} \) are unknown
Semantics of Negation in Logic Programs

- “War of Semantics” in LP (1980/90ies):
 Meaning of programs like the Dilbert example above

- Single model vs. multiple model semantics

- To date:

 - **Well-Founded Semantics** by Gelder, Ross & Schlipf (1991)

 Partial model: \(\text{man}(\text{dilbert}) \) is true,
 \(\text{single}(\text{dilbert}), \text{husband}(\text{dilbert}) \) are unknown

 - **Stable Model (alias Answer Set) Semantics**
 by Gelfond and Lifschitz (1990)

 Alternative models:
 \[M_1 = \{ \text{man}(\text{dilbert}), \text{single}(\text{dilbert}) \}, \]
 \[M_2 = \{ \text{man}(\text{dilbert}), \text{husband}(\text{dilbert}) \}. \]
Semantics of Negation in Logic Programs

• “War of Semantics” in LP (1980/90ies): Meaning of programs like the Dilbert example above

• Single model vs. multiple model semantics

• To date:

 • **Well-Founded Semantics** by Gelder, Ross & Schlipf (1991)

 Partial model: \(\text{man}(\text{dilbert}) \) is true, \(\text{single}(\text{dilbert}), \text{husband}(\text{dilbert}) \) are unknown

 • **Stable Model (alias Answer Set) Semantics** by Gelfond and Lifschitz (1990)

 Alternative models: \(M_1 = \{ \text{man}(\text{dilbert}), \text{single}(\text{dilbert}) \} \), \(M_2 = \{ \text{man}(\text{dilbert}), \text{husband}(\text{dilbert}) \} \).
Stable Models: Intuition

Consider program P_1:

\[
\begin{align*}
\text{man}(\text{dilbert}). & \quad (f_1) \\
\text{single}(\text{dilbert}) & \leftarrow \text{man}(\text{dilbert}), \text{not husband}(\text{dilbert}). & \quad (r_1) \\
\text{husband}(\text{dilbert}) & \leftarrow \text{man}(\text{dilbert}), \text{not single}(\text{dilbert}). & \quad (r_2)
\end{align*}
\]
Stable Models: Intuition

Consider program P_1:

\[
\begin{align*}
\text{man}(\text{dilbert}). & \quad (f_1) \\
\text{single}(\text{dilbert}) & \leftarrow \text{man}(\text{dilbert}), \text{not husband}(\text{dilbert}). & \quad (r_1) \\
\text{husband}(\text{dilbert}) & \leftarrow \text{man}(\text{dilbert}), \text{not single}(\text{dilbert}). & \quad (r_2)
\end{align*}
\]

- Consider $M' = \{\text{man}(\text{dilbert})\}$.
 - Assuming that $\text{man}(\text{dilbert})$ is true and $\text{husband}(\text{dilbert})$ is false, by r_1 also $\text{single}(\text{dilbert})$ should be true.
 - M' does not represent a coherent or “stable” view of the information given by P_1.
Consider program P_1:

\[
\begin{align*}
\text{man}(\text{dilbert}). & \quad (f_1) \\
\text{single}(\text{dilbert}) \leftarrow \text{man}(\text{dilbert}), \neg \text{husband}(\text{dilbert}). & \quad (r_1) \\
\text{husband}(\text{dilbert}) \leftarrow \text{man}(\text{dilbert}), \neg \text{single}(\text{dilbert}). & \quad (r_2)
\end{align*}
\]

- Consider $M' = \{\text{man}(\text{dilbert})\}$.
 - Assuming that $\text{man}(\text{dilbert})$ is true and $\text{husband}(\text{dilbert})$ is false, by r_1 also $\text{single}(\text{dilbert})$ should be true.
 - M' does not represent a coherent or “stable” view of the information given by P_1.

- Consider $M'' = \{\text{man}(\text{dilbert}), \text{single}(\text{dilbert}), \text{husband}(\text{dilbert})\}$.
 - The bodies of r_1 and r_2 are not true w.r.t. M'', hence there is no evidence for $\text{single}(\text{dilbert})$ and $\text{husband}(\text{dilbert})$ being true.
 - M'' is not “stable” either.
Stable Models

Def: **Gelfond-Lifschitz reduct, stable models, answer sets**

- The **GL-reduct** (or simply **reduct**) of a ground program P w.r.t. an interpretation M, denoted P^M, is the program obtained from P by performing the following two steps:

 1. remove all rules with some $\text{not } a$ in its body s.t. $a \in M$; and
 2. remove all default negated literals from the remaining rules.

- An interpretation M of P is a **stable model** (or **answer set**) of P if

 $M = LM(P^M)$.
Stable Models (cont’d)

Intuition behind GL-reduct:

- \(M \) makes an assumption about what is true and what is false.
- The GL-reduct \(P^M \) incorporates this assumption.
- As a “not”-free program, \(P^M \) derives positive facts, given by the least model \(LM(P^M) \).
- If this coincides with \(M \), then the assumption of \(M \) is “stable”.

Observe:

- \(P^M = P \) for any “not”-free program \(P \).
- For any positive program \(P \), \(LM(P) (=LM(P^M)) \) is its single stable model.
Consider again the grounding of P_1:

\[
\text{\texttt{man}}(\texttt{dilbert}). \quad (f_1)
\]
\[
\text{\texttt{single}}(\texttt{dilbert}) \leftarrow \text{\texttt{man}}(\texttt{dilbert}), \text{not \texttt{husband}}(\texttt{dilbert}). \quad (r_1)
\]
\[
\text{\texttt{husband}}(\texttt{dilbert}) \leftarrow \text{\texttt{man}}(\texttt{dilbert}), \text{not \texttt{single}}(\texttt{dilbert}). \quad (r_2)
\]

Candidate interpretations:

- $M_1 = \{\text{\texttt{man}}(\texttt{dilbert}), \text{\texttt{single}}(\texttt{dilbert})\}$,
- $M_2 = \{\text{\texttt{man}}(\texttt{dilbert}), \text{\texttt{husband}}(\texttt{dilbert})\}$,
- $M_3 = \{\text{\texttt{man}}(\texttt{dilbert}), \text{\texttt{single}}(\texttt{dilbert}), \text{\texttt{husband}}(\texttt{dilbert})\}$,
- $M_4 = \{\text{\texttt{man}}(\texttt{dilbert})\}$.

Example

Consider again the grounding of P_1:

- man(dilbert). \hspace{1cm} (f_1)
- $\text{single(dilbert) ← man(dilbert), not husband(dilbert)}$. \hspace{1cm} (r_1)
- $\text{husband(dilbert) ← man(dilbert), not single(dilbert)}$. \hspace{1cm} (r_2)

Candidate interpretations:

- $M_1 = \{\text{man(dilbert), single(dilbert)}\}$,
- $M_2 = \{\text{man(dilbert), husband(dilbert)}\}$,
- $M_3 = \{\text{man(dilbert), single(dilbert), husband(dilbert)}\}$,
- $M_4 = \{\text{man(dilbert)}\}$.

M_1 and M_2 are stable models.
Example (cont’d)

Recall the program \(P_1 \):

\[
\text{man}(\text{dilbert}). \\
\text{single}(\text{dilbert}) \leftarrow \text{man}(\text{dilbert}), \neg \text{husband}(\text{dilbert}). \\
\text{husband}(\text{dilbert}) \leftarrow \text{man}(\text{dilbert}), \neg \text{single}(\text{dilbert}).
\]

Consider \(M_1 = \{\text{man}(\text{dilbert}), \text{single}(\text{dilbert})\} \):
Example (cont’d)

Recall the program P_1:

\[
\begin{align*}
\text{man}(\text{dilbert}). & \quad (f_1) \\
\text{single}(\text{dilbert}) & \leftarrow \text{man}(\text{dilbert}), \neg \text{husband}(\text{dilbert}). & \quad (r_1) \\
\text{husband}(\text{dilbert}) & \leftarrow \text{man}(\text{dilbert}), \neg \text{single}(\text{dilbert}). & \quad (r_2)
\end{align*}
\]

Consider $M_1 = \{\text{man}(\text{dilbert}), \text{single}(\text{dilbert})\}$:

GL-reduct $P_1^{M_1}$ of M_1 is as follows:

\[
\begin{align*}
\text{man}(\text{dilbert}). \\
\text{single}(\text{dilbert}) & \leftarrow \text{man}(\text{dilbert}).
\end{align*}
\]
Example (cont’d)

Recall the program P_1:

\begin{align*}
\text{man}(dilbert). & \quad (f_1) \\
\text{single}(dilbert) & \leftarrow \text{man}(dilbert), \text{not husband}(dilbert). & \quad (r_1) \\
\text{husband}(dilbert) & \leftarrow \text{man}(dilbert), \text{not single}(dilbert). & \quad (r_2)
\end{align*}

Consider $M_1 = \{\text{man}(dilbert), \text{single}(dilbert)\}$:

GL-reduct $P_1^{M_1}$ of M_1 is as follows:

\begin{align*}
\text{man}(dilbert).

\text{single}(dilbert) & \leftarrow \text{man}(dilbert).
\end{align*}

The least model of $P_1^{M_1}$ is $\{\text{man}(dilbert), \text{single}(dilbert)\} = M_1$.
Example (cont’d)

Recall the program P_1:

\[
\begin{align*}
\text{man}(\text{dilbert}). & \quad (f_1) \\
\text{single}(\text{dilbert}) \leftarrow \text{man}(\text{dilbert}), \neg \text{husband}(\text{dilbert}). & \quad (r_1) \\
\text{husband}(\text{dilbert}) \leftarrow \text{man}(\text{dilbert}), \neg \text{single}(\text{dilbert}). & \quad (r_2)
\end{align*}
\]

Consider $M_1 = \{\text{man}(\text{dilbert}), \text{single}(\text{dilbert})\}$:

GL-reduct P_{1M_1} of M_1 is as follows:

\[
\begin{align*}
\text{man}(\text{dilbert}). \\
\text{single}(\text{dilbert}) \leftarrow \text{man}(\text{dilbert}).
\end{align*}
\]

The least model of P_{1M_1} is $\{\text{man}(\text{dilbert}), \text{single}(\text{dilbert})\} = M_1$.

By symmetry of husband and single, also $M_2 = \{\text{man}(\text{dilbert}), \text{husband}(\text{dilbert})\}$ is stable.
Summary

1. Introduction and background

2. Horn logic programming
 - Positive logic programs
 - Minimal model semantics

3. Negation in logic programs
 - Negation in prolog
 - Semantics of negation in logic programs

4. Answer-Set semantics
 - Semantic properties of stable models
 - Computational properties
Georg Boenn, Martin Brain, Marina De Vos, and John ffitch.
Anton - A rule-based composition system.

Esra Erdem, Michael Gelfond, and Nicola Leone.
Applications of answer set programming.

Roland Kaminski, Torsten Schaub, Anne Siegel, and Santiago Videla.
Minimal intervention strategies in logical signaling networks with ASP.
Vladimir Lifschitz.
Answer set planning.
In *Proc. 16th International Conference on Logic Programming (ICLP)*,,

Vladimir Lifschitz.
Answer Set Programming and Plan Generation.

Victor W. Marek and Mirosław Truszczyński.
Stable Models and an Alternative Logic Programming Paradigm.
Ilkka Niemelä.

Logic Programming with Stable Model Semantics as Constraint Programming Paradigm.

Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew Barry.

An a-prolog decision support system for the space shuttle.